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iIssue : What are the genes interactions
that lead to differentiation?

approach : Inference of Boolean networks
compatible with differentiation data

A priori knowledge

Influence graph from databases and expert knowledge :
Prior Knowledge Network (PKN)
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Differentiation data

Experimental measurements : time series of differentiation process

Measurements for only a few genes,
at first in undifferentiated and then in differentiated cells.

Example : T1>TO : differentiated cell type 1
* genel active
* gene2 active

T1>TO : differentiated cell type 2
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Transition graph

How to infer Boolean networks

* Attractor : minimal set of states without that respect these properties,
outgoing transition (long-term dynamics) )

Conclusion & Perspectives

Exhaustive model inference for differentiation data

* thanks to constraints fitting the experimental conditions
(fixed points already implemented)

* allows data informativeness quantification

Coming work :
* Implementation of negative reachability conditions

Qualitative method

Allow a weak influence of the biological data approximation,
to focus on the essential dynamics features.

Boolean network (BN) with n genes :

F=(f,..fH),Vie{l,...,n}, f:B" =B (B={0,1}),

with f. the target value of the i gene

Boolean network dynamic : transition graph

Example : o Nodes : states
fa=AAB (active/inactive status of all the genes)

fg =AV-B
° o Edges : asynchronous updates

(one gene is updated)

Boolean networks inference

Objective : exhaustive list of compatible BN

* to study the inferred BN variability
(graph influence topology & nodes importance)

* to quantify the data informativeness
(data relevance to infer BN)

Direct approach :
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Logical approach : Answer-Set Programming (ASP)
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Constraints impact:

2> necessary condition on reachability (Caspots!t)
2> necessary and sufficient condition on a stability hypothesis :
fixed point 1000 000 000

100 000 000

10 000 000

Model :

PKN : CNS development!?]
Data : 4 fates

1 000 000

100 000

# inferred BN

10 000

1000

* Generalization of the method to mutation data (perturbed differentiation e @\es RO
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* Predict mutations combinations that trigger fates constraints
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