LOGICAL APPROACH TO IDENTIFY BOOLEAN NETWORKS MODELLING CELL DIFFERENTIATION

Stéphanie Chevalier⁽¹⁾, Andrei Zinovyev⁽³⁾, Christine Froidevaux⁽¹⁾, Loïc Paulevé⁽²⁾

LRI UMR 8623, UNIVERSITÉ PARIS-SUD/PARIS-SACLAY, CNRS, FRANCE
LABRI UMR 5800, UNIV. BORDEAUX, BORDEAUX INP, CNRS, FRANCE
INSTITUT CURIE UMR 900, INSERM, MINES PARISTECH, FRANCE

EXHAUSTIVE, NON-REDUNDANT AND SCALABLE INFERENCE OF BOOLEAN NETWORKS

1) USING (AT MOST) THE PRIOR KNOWLEDGE INFLUENCES

Prior Knowledge Networks (PKN)→ activation — inhibition

example: PKN on the Central Nervous System development^[1] (CNS dev.)

2) VERIFYING THE DYNAMICAL PROPERTIES OF DIFFERENTIATION

Differentiation data

- partial observations (a set of binarized gene expression)
- → positive reachability
- → negative reachability
- stability features (trap spaces/attractors/fixpoints)

example: dynamical model on CNS dev.

CONTEXT

Boolean networks (BN) are intelligible and usable for modelling complex dynamics without extensive knowledge

Semantics: BoNesis applies the most permissive semantics^[2] which guarantees the capture of all possible behaviours with a quantitative model

OUR METHODOLOGY: BoNesis

Logic program in Answer-Set Programming:

IMPACT OF THE CONSTRAINTS ON THE BN INFERENCE

NUMBER OF BNs COMPATIBLE WITH CNS DATA W.R.T. VARIOUS PROPERTIES

1) APPLICATION WITH RNA-SEQ DATA TO STUDY MESENCHYMAL DIFFERENTIATION

Differentiation data

data collection time points (days): 3 5 9

0 1 3

15 15

(FP) fixpoint from an obs., a set of genes are fixed an obs. belongs to a fixpoint solver (clingo) The complete set of compatible BNs 2) Application with scRNA-Seq data TO STUDY HEMATOPOIESIS **Differentiation data** from a pseudo-time trajectory, (built from single-cell data on differentiating $cells^{[3]}$ and the tool $STREAM^{[5]}$) construction of a dynamical model with: • observations at extremities of B branches, containing the binarized

expression of 19 transition genes (TG)

binarization (tool RefBool^[4]) of RNA-Seq bulk data collected at multiple time points

PKN

the network of transcription factors extracted from MetaCore $(\sim 1000 \text{ nodes})$

• 5 PR + 1 NR + 3 TP or 3 FP

PKN

- without NR: the whole with NR: the strongly connected SIGNOR database component with the most TG (186 nodes - 19 TG) (5656 nodes)
- **RESULTS** in 10-30 min with $\sim 16-32$ Go partial enumeration of compatible BNs (with optimization on their size for application 1)

• FUTURE WORK

analyse model diversity constraints on absence of other attractors

REFERENCES CONTACT schevalier@lri.fr

[1]Qiu & al, Nature Methods 2017 [2]Chatain & al, CoRR 2018 [3]Nestorowa & al, Blood 2016 [4]Jung & al, Bioinformatics 2017 [5]Chen & al, Nature Communications 2019