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- The aim:

Be able to model divergent processes (cell differentiation, perturbations, mutants...)
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= Theaim:
Be able to model divergent processes (cell differentiation, perturbations, mutants...)

Offer an exhaustive enumeration (to study motifs / gene importance in the process)

x evolutionary optimization algorithms: limited access to the space of solutions

Jsatisfiability problems
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The aim :
Be able to model divergent processes (cell differentiation, perturbations, mutants...)

Offer an exhaustive enumeration (to study motifs / gene importance in the process)

Be scalable for networks of more than 100 nodes, with non-deterministic dynamics
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The issue : \ \

Direct enumeration of the BNs compatible with the input data (static and dynamical knowledge)

The methodology :
Logical inference of a Boolean network from constraints on:

4 the domain of its Boolean functions € the knowledge about the structure
& to respect &

¢ its dynamics € the observations
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1) The data

sTRUCTURE: known and putative interactions
between components
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sTRUCTURE: known and putative interactions

between components
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1) The data

BeHAviors: dynamics of biological observations along processes
which are (most of the time) partial observations of the system

{ematopoietic
Stem Cell (HSC)

Multipotent
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sTRUCTURE: known and putative interactions

between components
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1) The data

BeHAviors: dynamics of biological observations along processes
which are (most of the time) partial observations of the system

example: '®-
i3 . I
gene expr.in  gene expr. in

Multipotent

Pm(gﬁ»?;m‘ CMP: macrophage:
o ‘ LAt ‘ Fit3 = 1 Fit3 = 1
;I)-)r/n"g'g:zfr prrzg;r;ijtur ) - -
- e Gfi1=0 Gfi1 = 1
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1) The data
strucTURE: known and putative interactions BeHAviors: dynamics of biological observations along processes
between components which are (most of the time) partial observations of the system

m . ) €Xample: '®.

fematopoietic @& =" e =l
Stem Cell (HSC) e

Pax6 Multipotent gene expr.in  gene expr. in

/ \ Pm(gﬁ%'m‘ CMP: macrophage:

Mash1l | Hes5 common |  Gommon

/\_/ Lymphoid ‘ pméee‘r?iigur F|t3 =1 F|t3 =1
pm(?:eLr;l)tor (CMP) Erythroid . 1
/ \ / \ \ ] Gfi1 =0 Gfi1 = 1
ranulocytg 1

Zicl Brn2 | Olig2 | Scl —» Stat3 mmﬁ*
N/ /\ !
Tujl <——MytlL Sox8 Aldh1Ll Monocyte

Neuron Oligodendrocyte Astrocyte
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main point: in input, the data are

1) static knowledge (PKN) 2) dynamical knowledge (observations)

m e,
/ ax \ example: '@

M35h1/¥_/= == gene expr. in  gene expr. in
/ \ / L \ CMP: macrophage:
Zicl Brn2 | Olig2 | Scl —» stat3 Fit3 =1 Fit3 =1
\ / / \"K/ | Gfi1 =0 Gfi1 = 1
Tujl <«——MytlL Sox8 AldhlL1
Neuron Oligodendrocyte Astrocyte
constrains the domain of the constrains the dynamics of the models

Boolean functions of the models
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2) Boolean network

BOOLEAN NETWORK: discrete dynamical system

A BN of dimension n
is a function f=(f,,..,f ) with
Vie {1, .,n} f:{0,1}">{0,1}

A configuration is a vector x € {0, 1"

example for a BN with 3 nodes:
= the configuration 011 means:
¢ gene 1 issilenced
¢ genes 2 & 3 are expressed

11
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2) Boolean network

BOOLEAN NETWORK: discrete dynamical system

A BN of dimension n
is a function f=(f,,..,f ) with
Vie {1, .,n} f:{0,1}">{0,1}

A configuration is a vector x € {0, 1"

example of fl (ZIZ‘) :
a BN with f2($) = S

fg(a'}) e ANAN

3 nodes:

12
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2) Boolean network

BOOLEAN NETWORK: discrete dynamical system

Dynamics of a BN:

A BN of dimension n

is a function f=(f,,..,f ) with

Vi€ {1,.,n}, f:10,11">{0,1} 8
! 0
A configuration is a vector x € {0, 1" f &) 1

example of fl (ZIZ‘) :

a BN with f2($) = S

fg(a’}) e ANAN —> transition [] stable state

fully asynchronous dynamics of {

3 nodes:

13



SECTION 1: MODELING FRAMEWORK | SECTION 2: IMPLEMENTATION SECTION 3: APPLICABILITY

Automatically design models from knowledge on a system

(BOOLEAN NETWORKS) (STRUCTURE & BEHAVIORS)

Boolean network inference: a complex problem

BeHAvIORrs: dynamics of observations along processes

sTRUCTURE: known and putative interactions
which are (most of the time) partial observations of the system

between components 1

specifies the domain - < >\/ 3
of the compatible BNs
2 /

Possible rules for node 3:

fg(x) =0 ; fg(x) =X,
fLx=1 ; f&=-x Ax,
f0=-x ; f&=-x Vx,

3

14
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Boolean network inference: a complex problem

sTRUCTURE: known and putative interactions BeHAvIORrs: dynamics of observations along processes
between components 1 which are (most of the time) partial observations of the system

specifies the domain - \/ 3
of the compatible BNs
2 /

Possible rules for node 3:

fg(x) =0 ; f3(X) =X,
fLx=1 ; f&=-x Ax,
fg(x) =-x, f3(X) =-x, \Y4 X,

Combinatorial problem:

indegree  # monotonic Boolean functions

0 2

2 6

4 168

6 7,828,354

8 56,130,437,228,687,557,907,788

15
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Boolean network inference: a complex problem

sTRUCTURE: known and putative interactions BeHAvIORrs: dynamics of observations along processes
between components which are (most of the time) partial observations of the system

indegree  # monotonic Boolean functions

0 2

2 6

4 168

6 7,828,354

8 56,130,437,228,687,557,907,788

combinatorial explosion

16
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Boolean network inference: a complex problem

sTRUCTURE: known and putative interactions BeHAvIORrs: dynamics of observations along processes
between components which are (most of the time) partial observations of the system

a BN is compatible if, in its dynamics,

indegree  # monotonic Boolean functions . ’ . ] .
configurations compatible with the partial observations

0 2 . .qe .
5 5 respect the behaviors (reachability, stable properties)
g 7,822?354 obs. compatible conf.
8 56,130,437,228,687,557,907,788 Example of observation < X =1 =1 =1
. S 1 1 1
configuration compatibility: x,= 0 > x,= 0 x, =0
X, =0 X, =1
combinatorial explosion
Example of dynamics of
compatible configurations: i ,@ O configuration

2 © fixpoint

@ /: @ ---» positive reachabiility

-} negative reachability

17
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Boolean network inference: a complex problem

sTRUCTURE: known and putative interactions BeHAvIORrs: dynamics of observations along processes
between components which are (most of the time) partial observations of the system

indegree  # monotonic Boolean functions

@ 2 _,,@ ---J» positive reachabiility

421 128 @v@/@ PSPACE-complete
6
8

7,828,354 @

56,130,437,228,687,557,907,788

combinatorial explosion hard complexity

18
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Boolean network inference: a complex problem

combinatorial explosion & hard complexity

> strategy:
Formulate the inference as a Boolean satisfiability problem

Answer-Set Programming: designed for solving combinatorial satisfaction problem

Domain & observations taken into account during the enumeration: modetehecking

19
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1) Answer-Set Programming (ASP) syntax

A Logic Program in ASP is a set of logical rules of the form:

brief overview ap < ai, ..., Qn, Not ant+i, ..., DOt Qnik.
of ASP syntax | with integrity constraints as:
<_a/1 ¥4 .y a/n V4 nOt a/n—+—1 V4 DRI 4 nOt a/n—+—k .

Suitable for solving combinatorial satisfaction problem

Computes stable models: minimal sets of a, satisfying the rules

i

[Gelfond and Lifschitz, 1988]

20
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2) Our encoding

Main lines of the logic program: The implementation of BNs:

Boolean function:

e the description of a BN

expressed in propositional logic o f
e the domain of its functions under Disjunctive Normal Form example: f (x) _V (=X AX,)
= PKN |
° the way to compute its dynamic encoded by clause(N,C,L,S) is encoded: clause(a,1,c,1).
B . predicates such that: clause(a,2,3,-1).
= semantics e atoml clause(a,2,b,1).

° with sign S (-1, 1)
° is included in the C* clause
° of fN

e the properties of its dynamics
= observations

The solver enumerates the solutions
(solutions = BNs compatible with data = models) Encoding of the canonicity for exhaustive enumeration:
2 solutions = 2 non-equivalent BNs

> enforced by a total ordering between the clauses
21
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encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property

Existential dynamical constraints: 3 ... J Yo = x

time series: positive reachability

— path between configurations compatible with successive observations.

22



SECTION 1: MODELING FRAMEWORK | SECTION 2: IMPLEMENTATION | SECTION 3: APPLICABILITY

Automatically design models from knowledge on a system

(BOOLEAN NETWORKS) (STRUCTURE & BEHAVIORS)

encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property

Existential dynamical constraints: 3 ...

time series: positive reachability
— path between configurations compatible with successive observations.

bifurcating trajectories: negative reachability

1 path between configurations compatible with bifurcating observations.

23
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encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property

Existential dynamical constraints: 3 ... .J Yo = x

time series: positive reachability
— path between configurations compatible with successive observations.

bifurcating trajectories: negative reachability
1 path between configurations compatible with bifurcating observations.

stable behaviors:

- fixpoint (@
A config. compatible with a stable observation is a fixpoint.
- trapspace:

Given an obs. with stability hypotheses on some nodes, these nodes are fixed from a compatible configuration.
24
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encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property

Universal dynamical constraints: = - J T . J

Work in
Progress

> 2QBF constraints (saturation technique [Eiter & Gottlob - 1995])

25
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1) Test of constraint impact: on a biological application
central nervous system development

2

Pax6 NUMBER OF BNs COMPATIBLE WITH CNS DATA
W.R.T. VARIOUS PROPERTIES

Impact of the constraints:

MBSM/\—//= itz 1,000,000,000
/ \ / x \ 100,000,000
Zicl Brn2 | Olig2 | Scl — Stat3 7))
A~ g 10,000,000
\ / r/ \1 } o
2 1000000
Tujl <———MytlL Sox8 Aldh1L1 Z T
'8
Neuron Oligodendrocyte Astrocyte 2 100,000 2 =)
2 QA o =
o | Tri-fates s 1000 d o S
g o - H m -
o 9 6 pos. reach (PR) 1,000
o 2 & & & s s S
< Q & & &
S o8 3 neg. reach (NR) S o e T = I
o &
o\o : Q a) <
© 3 fixpoint (FP) &
26 Component 1 APPLIED CONSTRAINTS Q
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2) Larger applications

In the case of larger domains and dynamical data not constraining enough:

€ IVE enumeration (too many solutions to be exploited)

> enforce diversity during enumeration:
Work in

to run partial inference while keeping Progress

the benefit of having sets of models

27
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2) Test of scalability: inference on random network

> base k=maximal
: . : 701 - canonic
Domains: random scale-free directed graphs, B cancaic tnorsreadh
. . . . k=32
with different biases on the in-degree of nodes 40
304 e
. . . -l\'|28
Dynamics: a generic dynamical property 20 g® ® 8 &
. . . 15 1
of a two stages differentiation process ° . " g 2 ¥
10 1 @ °
’_’® (O configuration m
@ © fixpoint 5 l
@ 5 @ ---» positive reachabiility O = maximal
'''''''''' @ /l » negative reachability J
2 T g T T v T T
10 20 50 100 200 500 1000

n
Successfully solved instances
> Partial enumeration up to 1000 nodes within 2h of CPU time (2.5Ghz)

28
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3) Examples of applications

1) APPLICATION WITH RNA-SEQ DATA TO STUDY
MESENCHYMAL DIFFERENTIATION

data collection time

Differentiation data oS

binarization (tool RefBool”) of RNA-Seq At
bulk data collected at multiple time points S : 3 15
PKN

the network of transcription factors extracted from MetaCore
(~1000 nodes)

e RESULTS in 10-30 min with ~16-32 Go
partial enumeration of compatible BNs

29

2) APPLICATION WITH SCRNA-SEQ DATA
TO STUDY HEMATOPOIESIS

Differentiation data

from a pseudo-time trajectory, li

built from single-cell data on ,g., W—-\s
ity whiasitny ¢

differentiating cells” and the o
tool STREAM?)) o

construction of a dynamical model with:

e observations at extremities of
branches, containing the binarized
expression of 19 transition genes (7TG)

5PR+1NR + 3 TP ot 3 FP

PKN
the whole SIGNOR database (5656 nodes)
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4) After the inference,
how perform simulations with a set of models?

Ensemble modelling with MaBoSS (usable via pymaboss):
i.e. simulations from sets of Boolean networks

For questions: 'E! vincent.noel@curie.fr

EEE EMT -- Invasion - Metastasis
W= Apoptosis
- EMT
. <nil>
Others (0.33%)

30
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Boolean network inference method in ASP
Features w.r.t. the state of the art:
Contribution: ® new constraints (negative reachability, trapspace)
e mix reachability and stable properties
e scalability

Work in progress:

e Encoding of 2QBF constraints to check universal properties
e Application on single-cell differentiation data, using cells as time points
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Thank you for your attention !

Do you have questions?

Synthesis of Boolean Networks from
Biological Dynamical Constraints
using Answer-Set Programming
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