
Automatically design Boolean networks
from static and dynamical knowledge on a system
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➔ The aim :

Be able to model divergent processes (cell differentiation, perturbations, mutants…)
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Be able to model divergent processes (cell differentiation, perturbations, mutants…)

Offer an exhaustive enumeration (to study motifs / gene importance in the process)
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evolutionary optimization algorithms: limited access to the space of solutions

satisfiability problems
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➔ The aim :

Be able to model divergent processes (cell differentiation, perturbations, mutants…)

Offer an exhaustive enumeration (to study motifs / gene importance in the process)

Be scalable for networks of more than 100 nodes, with non-deterministic dynamics
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➔ The issue :

Direct enumeration of the BNs compatible with the input data (static and dynamical knowledge)

➔ The methodology :

Logical inference of a Boolean network from constraints on:
◆ the domain of its Boolean functions

◆ its dynamics
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⇔ to respect ⇔
◆ the knowledge about the structure

◆ the observations
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STRUCTURE: known and putative interactions
                  between components

1) The data

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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STRUCTURE: known and putative interactions
                  between components

 BEHAVIORS: dynamics of biological observations along processes
 which are (most of the time) partial observations of the system

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

1) The data
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STRUCTURE: known and putative interactions
                  between components

 BEHAVIORS: dynamics of biological observations along processes
 which are (most of the time) partial observations of the system

Flt3 = 1
Gfi1 = 0
...

gene expr. in 
CMP:

…

gene expr. in 
macrophage:

Flt3 = 1
Gfi1 = 1
...

example:

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

1) The data
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1) static knowledge (PKN)

  constrains the domain of the
  Boolean functions of the models

2) dynamical knowledge (observations)

  constrains the dynamics of the models

Flt3 = 1
Gfi1 = 0
...

gene expr. in 
CMP:

…

gene expr. in 
macrophage:

Flt3 = 1
Gfi1 = 1
...

example:

main point:   in input, the data are

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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BOOLEAN NETWORK: discrete dynamical system

A BN of dimension n

is a function  f = ( f1 , … , fn )  with

∀i ∈ { 1, …, n },  fi : { 0, 1 } 
n → { 0, 1 }

 A configuration is a vector x ∈ { 0, 1 } 
n

example for a BN with 3 nodes:
➔ the configuration 011 means:

◆ gene 1 is silenced
◆ genes 2 & 3 are expressed

2) Boolean network

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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a BN with
3 nodes:
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STRUCTURE: known and putative interactions
                  between components

specifies the domain 
of the compatible BNs

Possible rules for node 3:
f3(x) = 0      ;     f3(x) = x2
f3(x) = 1      ;     f3(x) = ¬x1 ∧ x2 
f3(x) = ¬x1   ;     f3(x) = ¬x1 ∨ x2 

 BEHAVIORS: dynamics of observations along processes
 which are (most of the time) partial observations of the system

Boolean network inference: a complex problem

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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STRUCTURE: known and putative interactions
                  between components

specifies the domain 
of the compatible BNs

Combinatorial problem:

Possible rules for node 3:
f3(x) = 0      ;     f3(x) = x2
f3(x) = 1      ;     f3(x) = ¬x1 ∧ x2 
f3(x) = ¬x1   ;     f3(x) = ¬x1 ∨ x2 

 BEHAVIORS: dynamics of observations along processes
 which are (most of the time) partial observations of the system

Boolean network inference: a complex problem

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

Automatically design models from knowledge on a system
(BOOLEAN NETWORKS) (STRUCTURE & BEHAVIORS)



16

 BEHAVIORS: dynamics of observations along processes
 which are (most of the time) partial observations of the system

Boolean network inference: a complex problem

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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combinatorial explosion
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Boolean network inference: a complex problem

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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STRUCTURE: known and putative interactions
                  between components

  

combinatorial explosion

 BEHAVIORS: dynamics of observations along processes
 which are (most of the time) partial observations of the system

x1 = 1
x2 = 0

obs.

x1 = 1
x2 = 0
x3 = 0

compatible conf.

x1 = 1
x2 = 0
x3 = 1

→

a BN is compatible if, in its dynamics,
configurations compatible with the partial observations
respect the behaviors (reachability, stable properties)

Example of observation ↔ 
configuration compatibility:

Example of dynamics of 
compatible configurations:



 BEHAVIORS: dynamics of observations along processes
 which are (most of the time) partial observations of the system
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STRUCTURE: known and putative interactions
                  between components

  

combinatorial explosion
  

hard complexity

Boolean network inference: a complex problem

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

Automatically design models from knowledge on a system
(BOOLEAN NETWORKS) (STRUCTURE & BEHAVIORS)

PSPACE-complete



➪ strategy:
Formulate the inference as a Boolean satisfiability problem
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Boolean network inference: a complex problem

Answer-Set Programming: designed for solving combinatorial satisfaction problem

Domain & observations taken into account during the enumeration: model checking

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

  

combinatorial explosion
  

hard complexity&
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Suitable for solving combinatorial satisfaction problem

Computes stable models: minimal sets of ai satisfying the rules

A Logic Program in ASP is a set of logical rules of the form:
 
with integrity constraints as:

brief overview
of ASP syntax

[Gelfond and Lifschitz, 1988]

1) Answer-Set Programming (ASP) syntax

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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Boolean function:
expressed in propositional logic
under Disjunctive Normal Form
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encoded by  clause(N,C,L,S)
predicates such that:

● atom L
● with sign S (-1, 1)
● is included in the Cth clause
● of fN

Encoding of the canonicity for exhaustive enumeration:
2 solutions = 2 non-equivalent BNs
➪  enforced by a total ordering between the clauses

2) Our encoding

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

The implementation of BNs:Main lines of the logic program:

● the description of a BN

● the domain of its functions
= PKN

● the way to compute its dynamic
= semantics

● the properties of its dynamics
= observations

The solver enumerates the solutions
(solutions = BNs compatible with data = models)
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Existential dynamical constraints:

time series:  positive reachability                       
∃ path between configurations compatible with successive observations.

encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property
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SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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Dynamical constraints ensuring the existence of a property

time series:  positive reachability                       
∃ path between configurations compatible with successive observations.

bifurcating trajectories:  negative reachability                        
∄ path between configurations compatible with bifurcating observations.
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Existential dynamical constraints:  

time series:  positive reachability                       
∃ path between configurations compatible with successive observations.

encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property
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Dynamical constraints ensuring the existence of a property

time series:  positive reachability                       
∃ path between configurations compatible with successive observations.

bifurcating trajectories:  negative reachability                        
∄ path between configurations compatible with bifurcating observations.

stable behaviors:
- fixpoint
A config. compatible with a stable observation is a fixpoint.
- trapspace:          
Given an obs. with stability hypotheses on some nodes, these nodes are fixed from a compatible configuration.

F
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Existential dynamical constraints:  

time series:  positive reachability                       
∃ path between configurations compatible with successive observations.

encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property
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Universal dynamical constraints:   

 ➪ 2QBF constraints (saturation technique [Eiter & Gottlob - 1995])
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encoding: 2 families of dynamical constraints:
existence of a property vs universality of a property

Work in 
Progress

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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1) Test of constraint impact:  on a biological application

6 pos. reach (PR)
3 neg. reach (NR)
3 fixpoint (FP)

central nervous system development
Impact of the constraints:

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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In the case of larger domains and dynamical data not constraining enough:

exhaustive enumeration (too many solutions to be exploited)

➪ enforce diversity during enumeration:
to run partial inference while keeping 
the benefit of having sets of models
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2) Larger applications

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY

Work in 
Progress
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Domains: random scale-free directed graphs, 
                  with different biases on the in-degree of nodes

Dynamics: a generic dynamical property 
                    of a two stages differentiation process

2) Test of scalability:  inference on random network

Successfully solved instances
within 2h of CPU time (2.5Ghz) ➪ Partial enumeration up to 1000 nodes

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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the whole SIGNOR database (5656 nodes)
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3) Examples of applications

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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Ensemble modelling with MaBoSS (usable via pymaboss):
i.e. simulations from sets of Boolean networks

For questions:  📧  vincent.noel@curie.fr
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4) After the inference,
how perform simulations with a set of models?

SECTION 1:  MODELING FRAMEWORK SECTION 2:  IMPLEMENTATION SECTION 3:  APPLICABILITY
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Contribution:

Boolean network inference method in ASP
Features w.r.t. the state of the art:
● new constraints (negative reachability, trapspace)
● mix reachability and stable properties
● scalability

Work in progress:
● Encoding of 2QBF constraints to check universal properties
● Application on single-cell differentiation data, using cells as time points
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Thank you for your attention !

Do you have questions?

Synthesis of Boolean Networks from
Biological Dynamical Constraints
using Answer-Set Programming
Stéphanie Chevalier, Christine Froidevaux, Andrei Zinovyev, Loïc Paulevé

📧 stephanie.chevalier@universite-paris-saclay.fr


