Greedy Layer-Wise Training of Deep Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici,
Hugo Larochelle
U. Montreal

December 5th 2006

Thanks to: Yann Le Cun, Geoffrey Hinton,
Olivier Delalleau, Nicolas Le Roux

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS*2006

(]

Motivation: Al = learning high-level abstractions
= highly-varying functions
= non-local + deep architecture

Principle of greedy layer-wise unsupervised initialization
Deep Belief Networks
Deep Multi-layer Neural Networks

Experimental study: why this principle works

Extensions of Deep Belief Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Grand Goal: Al

@ Ambitious goal: using ML to reach Al

@ Al tasks: visual and auditory perception, language
understanding, intelligent control, long-term prediction,
understanding of high-level abstractions...

@ Remains elusive! (did we turn our back on it?)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Grand Goal: Al

)

)

Ambitious goal: using ML to reach Al

Al tasks: visual and auditory perception, language
understanding, intelligent control, long-term prediction,
understanding of high-level abstractions...

@ Remains elusive! (did we turn our back on it?)
@ 3 considerations:

e computational efficiency
o statistical efficiency
o human-labor efficiency efficiency

Here: focus on algorithms associated with broad priors (i.e.,
non-parametric) with the hope of discovering principles
applicable to vast array of tasks within Al, with no need of
hand-crafted solutions for each particular task.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Grand Goal: Al

)

)

Ambitious goal: using ML to reach Al

Al tasks: visual and auditory perception, language
understanding, intelligent control, long-term prediction,
understanding of high-level abstractions...

@ Remains elusive! (did we turn our back on it?)
@ 3 considerations:

e computational efficiency
o statistical efficiency
o student-labor efficiency

Here: focus on algorithms associated with broad priors (i.e.,
non-parametric) with the hope of discovering principles
applicable to vast array of tasks within Al, with no need of
hand-crafted solutions for each particular task.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Depth of Architectures

Depth = number of levels of composition of adaptable elements:

@ kernel machines: shallow

level 2
@ boosting: generally shallow
@ multi-layer neural networks: level 1
usually shallow, can be deep?
X

@ decision trees: deep but local
estimators (curse of dim.)

@ parametric graphical models: y
human-labor intensive U

Non-parametric ones can theoretically O00000O0) h
approximate any continuous function. A

But how efficiently? w
(computational, statistical) OO0 «x

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Inefficiency of Shallow Architectures

Mathematical results from complexity theory of boolean circuits:

Functions representable compactly by a deep circuit often need
circuits of exponential size to be represented by a shallow circuit

(Hastad 1987) level log N
parity(v)
@OOOOOOOOOO) level 2
2N
X level 1
Very fat shallow circuit O©OOO0000) x
= many adjustable elements T 2 N
= many examples needed Brain has a deep architecture

Number of levels should not be fixed but data-dependent.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Curse of Dimensionality

(Bengio et al 2006):

Local kernel machines (= pattern matchers) and decision trees
partition the space and may need

exponential nb of units, i.e. of examples

inefficient at representing highly-varying functions, which may
otherwise have a compact representation.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Optimization of Deep Architectures

A

y

@ What deep architectures are known?
various kinds of multi-layer neural

networks with many layers. @OOOOOCD hn

@ Except for a very special kind of
architectures for machine vision
(convolutional networks), deep

architectures have been neglected in (OOOC%OOO) h
2
A

machine learning.

@ Why? Training gets stuck in
mediocre solutions (Tesauro 92).

@OOQOO®h7

@ Credit assignment problem?
@ No hope?

00000 «

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Learning of Multiple Levels of Abstractions

@ Learning Al = learning abstractions

@ General principle: Greedily learning simple things first,
higher-level abstractions on top of lower-level ones.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Learning of Multiple Levels of Abstractions

@ Learning Al = learning abstractions

@ General principle: Greedily learning simple things first,
higher-level abstractions on top of lower-level ones.

@ Implicit prior: restrict to functions that

@ can be represented as a composition of simpler ones such that
© the simpler ones can be learned first (i.e., are also good models
of the data).

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Learning of Multiple Levels of Abstractions

@ Learning Al = learning abstractions
@ General principle: Greedily learning simple things first,
higher-level abstractions on top of lower-level ones.
@ Implicit prior: restrict to functions that
@ can be represented as a composition of simpler ones such that
© the simpler ones can be learned first (i.e., are also good models
of the data).
@ Coherent with psychological literature (Piaget 1952).
We learn baby math before arithmetic before algebra before
differential equations . ..

@ Also some evidence from neurobiology: (Guillery 2005) “Is
postnatal neocortical maturation hierarchical?”.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Deep Belief Networks

Hinton et al (2006) recently introduced a deep graphical model
that provides more evidence that this principle works:

@ beats state-of-the-art statistical
learning in experiments on a large
machine learning benchmark task
(knowledge-free MNIST)

See also Ranzato et al
spotlight/poster tomorrow

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Deep Belief Networks

Hinton et al (2006) recently introduced a deep graphical model
that provides more evidence that this principle works:

@ beats state-of-the-art statistical
learning in experiments on a large
machine learning benchmark task
(knowledge-free MNIST)

See also Ranzato et al
spotlight/poster tomorrow

@ Each layer tries to model distribution
of its input (unsupervised training as

Restricted Boltzmann Machine) COOOOOOO) hi

@ H = hidden causes, RBM

P(h|x) = representation of x.
QOOOO00 «

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Deep Belief Networks

Hinton et al (2006) recently introduced a deep graphical model
that provides more evidence that this principle works:

® beats state-of-the-art statistical
learning in experiments on a large
machine learning benchmark task
(knowledge-free MNIST)
See also Ranzato et al

spotlight/poster tomorrow GO0OOO0)
@ Each layer tries to model distribution RBM

of its input (unsupervised training as

Restricted Boltzmann Machine) COOOAOOOO) hi

@ H = hidden causes, X

P(h|x) = representation of x. '
QOOOO00 «

@ Unsupervised greedy layer-wise
initialization replaces traditional
neural net random initialization.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Deep Belief Networks

Hinton et al (2006) recently introduced a deep graphical model
that provides more evidence that this principle works:

@ beats state-of-the-art statistical

learning in experiments on a large

h
machine learning benchmark task <OOOOOOO> ’
(knowledge-free MNIST) RBM

See also Ranzato et al
spotlight /poster tomorrow QOOO0O0O0) h,
A

@ Each layer tries to model distribution
of its input (unsupervised training as

Restricted Boltzmann Machine) (QQOC)VQOCD h;
A

® H = hidden causes,
P(h|x) = representation of x.

@ Unsupervised greedy layer-wise y
OQOOO000) x

initialization replaces traditional
neural net random initialization.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Layer-Wise Initialization

@ The principle of greedy layer-wise
initialization proposed by Hinton can
be generalized to other algorithms.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Layer-Wise Initialization

@ The principle of greedy layer-wise
initialization proposed by Hinton can
be generalized to other algorithms.

@ Initialize each layer of a deep X OOSEOO
multi-layer feedforward neural net as an wy'
autoassociator for the output of N elelelelelel®)
previous layer. A

w

@ Find W which minimizes cross-entropy ’

loss in predicting x from x QOO00
& = sigm(W'sigm(Wx)).

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Layer-Wise Initialization

@ The principle of greedy layer-wise
initialization proposed by Hinton can
be generalized to other algorithms.

@ Initialize each layer of a deep
multi-layer feedforward neural net as an
autoassociator for the output of nOO00000
A

previous layer.
Wi wy'

@ Find W which minimizes cross-entropy
loss in predicting x from » ©0000 COOCD

& = sigm(W'sigm(Wx)).

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Layer-Wise Initialization

@ The principle of greedy layer-wise
initialization proposed by Hinton can
be generalized to other algorithms.

@ Initialize each layer of a deep ha OOOSEOOO
multi-layer feedforward neural net as an W, w,'
auto.associator for the output of mO000000) OO0
previous layer. A

w

@ Find W which minimizes cross-entropy 7

loss in predicting x from x QOO00
& = sigm(W'sigm(Wx)).

@ Feed its hidden activations as input to next layer.

@ Sigmoid and small weights (weight decay or stochastic
gradient) prevent autoassociator from learning the identity.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Layer-Wise Initialization

@ The principle of greedy layer-wise
initialization proposed by Hinton can y
be generalized to other algorithms.

u
@ Initialize each layer of a deep nOO000000
multi-layer feedforward neural net as an A
autoassociator for the output of W2
previous layer. ’”@SEQX)
@ Find W which minimizes cross-entropy W
loss in predicting x from x ©O0000

& = sigm(W'sigm(Wx)).

@ Feed its hidden activations as input to next layer.

@ Sigmoid and small weights (weight decay or stochastic
gradient) prevent autoassociator from learning the identity.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Supervised Layer-Wise Initialization

Why not use supervised learning at each stage?

@ Each layer is trained as the hidden layer
of a supervised 2-layer neural net. y

Uy

hy OOO(EOOO
A

W

x ©OO00O

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Supervised Layer-Wise Initialization

Why not use supervised learning at each stage?

@ Each layer is trained as the hidden layer
of a supervised 2-layer neural net.

hy OOO(EOOO
A
Wy Uy

x Q0000 ©) ¥

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Supervised Layer-Wise Initialization

Why not use supervised learning at each stage?

@ Each layer is trained as the hidden layer
of a supervised 2-layer neural net. h[OO0O0000O
A

@ After training the 2-layer neural net,

discard output layer; n©QO00000) y
@ Propagate data through new hidden WiA
layer, train another layer, etc.
x (©OO000O

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Greedy Supervised Layer-Wise Initialization

Why not use supervised learning at each stage?

y
@ Each layer is trained as the hidden layer Us
of a supervised 2-layer neural net. hOO00000
@ After training the 2-layer neural net, A
discard output layer; W2
@ Propagate data through new hidden “’@9@@
layer, train another layer, etc. W,
J(Clelelel®)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Experiments on Greedy Layer-Wise Initialization

train. test.
Deep Belief Net, unsupervised pre-training 0% 1.2%

Deep net, autoassociator pre-training 0% 1.4%
Deep net, supervised pre-training 0% 2.0%
Deep net, no pre-training .004% 2.4%
Shallow net, no pre-training .004% 1.9%

Classification error on MNIST digits benchmark training,
validation, and test sets, with the best hyper-parameters according

to validation error.

Deep nets with 3 to 5 hidden layers.
Selects around 500 hidden units per layer.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Experiments on Greedy Layer-Wise Initialization

train. test.
Deep Belief Net, unsupervised pre-training 0% 1.2%

Deep net, autoassociator pre-training 0% 1.4%
Deep net, supervised pre-training 0% 2.0%
Deep net, no pre-training .004% 2.4%
Shallow net, no pre-training .004% 1.9%

Classification error on MNIST digits benchmark training,
validation, and test sets, with the best hyper-parameters according
to validation error.

Deep nets with 3 to 5 hidden layers.
Selects around 500 hidden units per layer.

Supervised greedy is too greedy.
Greedy unsupervised initialization works great.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Experiments on Greedy Layer-Wise Initialization

train. test.
Deep Belief Net, unsupervised pre-training 0% 1.2%

Deep net, autoassociator pre-training 0% 1.4%
Deep net, supervised pre-training 0% 2.0%
Deep net, no pre-training .004% 2.4%
Shallow net, no pre-training .004% 1.9%

Classification error on MNIST digits benchmark training,
validation, and test sets, with the best hyper-parameters according
to validation error.

Deep nets with 3 to 5 hidden layers.
Selects around 500 hidden units per layer.

Supervised greedy is too greedy.
Greedy unsupervised initialization works great.

Why 0 train error even with deep net / no-pretraining?

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Is it Really an Optimization Problem?

Classification error on MNIST with 20 hidden units on top layer:

train. test.

Deep Belief Net, unsupervised pre-training .008% 1.5%
Deep net, autoassociator pre-training 0% 1.6%
Deep net, supervised pre-training 0% 1.9%
Deep net, no pre-training 59% 2.2%
Shallow net, no pre-training 36% 5.0%

NIPS*2006

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle

Is it Really an Optimization Problem?

Classification error on MNIST with 20 hidden units on top layer:

train. test.
.008% 1.5%

Deep Belief Net, unsupervised pre-training
Deep net, autoassociator pre-training 0% 1.6%
Deep net, supervised pre-training 0% 1.9%
Deep net, no pre-training 59% 2.2%
Shallow net, no pre-training 36% 5.0%

Because

© last fat hidden layer did all the work
© using a poor representation (output of all previous layers)

Yes it is really an optimization problem
and a representation problem

NIPS*2006

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle

Restricted Boltzmann Machines

COOOOO0) h

Bi-partite Boltzmann machine:

P(X =x,H = h) x e E00h) — oX'bth cth W

00000 ~

o Conditionals P(x|h) and P(h|x) easy to derive, and factorize.

o Contrastive divergence provides good estimator of
log-likelihood gradient.

@ Originally for binary variables; we extend it easily to
continuous variables by slightly changing energy function and
range of values (see poster).

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Combining Supervised & Unsupervised

MNIST: nice clusters in the distribution
= input distribution structure reveals the target class.
fi(x) = P(Y|x) related to f5(x) = P(x)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Combining Supervised & Unsupervised

% (OOS)OO) y
N
w;' U;
h7(OOO§)OOO
N
4]

x (©OO00O

MNIST: nice clusters in the distribution
= input distribution structure reveals the target class.
fi(x) = P(Y|x) related to f,(x) = P(x)

Otherwise? Simple solution:
combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Combining Supervised & Unsupervised

MNIST: nice clusters in the distribution
= input distribution structure reveals the target class.
fi(x) = P(Y|x) related to f,(x) = P(x)

Otherwise? Simple solution:
combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Combining Supervised & Unsupervised

h7©OOS)OOO) @leleleleloloLl
N
4]

x (©OO00O

MNIST: nice clusters in the distribution
= input distribution structure reveals the target class.
fi(x) = P(Y|x) related to f,(x) = P(x)

Otherwise? Simple solution:
combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Combining Supervised & Unsupervised

y
Uz
0000000
W,
L Clelelelele]e)
Wi
x ©O000

MNIST: nice clusters in the distribution
= input distribution structure reveals the target class.
fi(x) = P(Y|x) related to f,(x) = P(x)

Otherwise? Simple solution:
combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

More experimental results

Abalone Cotton

MSE class. error
DBN, Gauss inputs, partially sup 4.18 31.4%
DBN, Gauss inputs, unsup 4.19 35.8%
DBN, Bin inputs, partially sup 4.28 43.7%
DBN, Bin inputs, unsup 4.47 45.0%
Logistic regression . 45.0%
Deep Network, no pre-training 4.2 43.0%

MSE on Abalone task and classification error on Cotton task,
showing improvement with Gaussian vs binomial units and partial
supervision

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Conclusions

@ For Al = must learn high level abstractions efficiently
= deep architectures (statistical efficiency)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Conclusions

@ For Al = must learn high level abstractions efficiently
= deep architectures (statistical efficiency)

@ Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Conclusions

@ For Al = must learn high level abstractions efficiently
= deep architectures (statistical efficiency)

@ Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle

@ Basic principle: greedy layer-wise unsupervised (or adding
unsupervised and supervised criteria)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Conclusions

@ For Al = must learn high level abstractions efficiently
= deep architectures (statistical efficiency)
@ Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle
@ Basic principle: greedy layer-wise unsupervised (or adding
unsupervised and supervised criteria)

@ Principle works about as well with symmetric
autoassociators in feedforward neural net

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Conclusions

@ For Al = must learn high level abstractions efficiently
= deep architectures (statistical efficiency)

@ Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle

@ Basic principle: greedy layer-wise unsupervised (or adding
unsupervised and supervised criteria)

@ Principle works about as well with symmetric
autoassociators in feedforward neural net

@ The unsupervised part is important: regularizes and makes
sure to propagate most information about input, purely
supervised is too greedy.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

Conclusions

@ For Al = must learn high level abstractions efficiently
= deep architectures (statistical efficiency)

@ Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle

@ Basic principle: greedy layer-wise unsupervised (or adding
unsupervised and supervised criteria)

@ Principle works about as well with symmetric
autoassociators in feedforward neural net

@ The unsupervised part is important: regularizes and makes
sure to propagate most information about input, purely
supervised is too greedy.

@ Easy extensions of Deep Belief Nets: continuous-valued units
/ partially supervised initialization when input density is not
revealing of target

@ Come see the poster!

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle . NIPS*2006

