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Summary

Motivation: AI ⇒ learning high-level abstractions
⇒ highly-varying functions
⇒ non-local + deep architecture

Principle of greedy layer-wise unsupervised initialization

Deep Belief Networks

Deep Multi-layer Neural Networks

Experimental study: why this principle works

Extensions of Deep Belief Networks
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Grand Goal: AI

Ambitious goal: using ML to reach AI

AI tasks: visual and auditory perception, language
understanding, intelligent control, long-term prediction,
understanding of high-level abstractions...

Remains elusive! (did we turn our back on it?)

3 considerations:

computational efficiency
statistical efficiency
human-labor efficiency efficiency

Here: focus on algorithms associated with broad priors (i.e.,
non-parametric) with the hope of discovering principles
applicable to vast array of tasks within AI, with no need of
hand-crafted solutions for each particular task.
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Depth of Architectures

Depth = number of levels of composition of adaptable elements:

kernel machines: shallow

boosting: generally shallow

multi-layer neural networks:
usually shallow, can be deep?

decision trees: deep but local
estimators (curse of dim.)

parametric graphical models:
human-labor intensive

Non-parametric ones can theoretically
approximate any continuous function.
But how efficiently?

(computational, statistical)




... ...
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Inefficiency of Shallow Architectures

Mathematical results from complexity theory of boolean circuits:

Functions representable compactly by a deep circuit often need
circuits of exponential size to be represented by a shallow circuit
(Hastad 1987)




Very fat shallow circuit

⇒ many adjustable elements

⇒ many examples needed




Brain has a deep architecture

Number of levels should not be fixed but data-dependent.
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Curse of Dimensionality

(Bengio et al 2006):

Local kernel machines (= pattern matchers) and decision trees
partition the space and may need

exponential nb of units, i.e. of examples

inefficient at representing highly-varying functions, which may
otherwise have a compact representation.
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Optimization of Deep Architectures

What deep architectures are known?
various kinds of multi-layer neural
networks with many layers.

Except for a very special kind of
architectures for machine vision
(convolutional networks), deep
architectures have been neglected in
machine learning.

Why? Training gets stuck in

mediocre solutions (Tesauro 92).

Credit assignment problem?

No hope?
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Greedy Learning of Multiple Levels of Abstractions

Learning AI ⇒ learning abstractions

General principle: Greedily learning simple things first,

higher-level abstractions on top of lower-level ones.

Implicit prior: restrict to functions that
1 can be represented as a composition of simpler ones such that
2 the simpler ones can be learned first (i.e., are also good models

of the data).

Coherent with psychological literature (Piaget 1952).
We learn baby math before arithmetic before algebra before
differential equations . . .

Also some evidence from neurobiology: (Guillery 2005) “Is
postnatal neocortical maturation hierarchical?”.
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Deep Belief Networks

Hinton et al (2006) recently introduced a deep graphical model
that provides more evidence that this principle works:

beats state-of-the-art statistical
learning in experiments on a large
machine learning benchmark task
(knowledge-free MNIST)
See also Ranzato et al
spotlight/poster tomorrow

Each layer tries to model distribution
of its input (unsupervised training as
Restricted Boltzmann Machine)

H = hidden causes,
P(h|x) = representation of x .

Unsupervised greedy layer-wise
initialization replaces traditional
neural net random initialization.
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Greedy Layer-Wise Initialization

The principle of greedy layer-wise
initialization proposed by Hinton can
be generalized to other algorithms.

Initialize each layer of a deep
multi-layer feedforward neural net as an
autoassociator for the output of
previous layer.

Find W which minimizes cross-entropy
loss in predicting x from
x̂ = sigm(W ′sigm(Wx)).

Feed its hidden activations as input to next layer.

Sigmoid and small weights (weight decay or stochastic
gradient) prevent autoassociator from learning the identity.
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Greedy Supervised Layer-Wise Initialization

Why not use supervised learning at each stage?

Each layer is trained as the hidden layer
of a supervised 2-layer neural net.

After training the 2-layer neural net,
discard output layer;

Propagate data through new hidden
layer, train another layer, etc.
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Experiments on Greedy Layer-Wise Initialization

train. test.

Deep Belief Net, unsupervised pre-training 0% 1.2%

Deep net, autoassociator pre-training 0% 1.4%

Deep net, supervised pre-training 0% 2.0%

Deep net, no pre-training .004% 2.4%

Shallow net, no pre-training .004% 1.9%

Classification error on MNIST digits benchmark training,
validation, and test sets, with the best hyper-parameters according
to validation error.

Deep nets with 3 to 5 hidden layers.
Selects around 500 hidden units per layer.

Supervised greedy is too greedy.
Greedy unsupervised initialization works great.

Why 0 train error even with deep net / no-pretraining?
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Is it Really an Optimization Problem?

Classification error on MNIST with 20 hidden units on top layer:

train. test.

Deep Belief Net, unsupervised pre-training .008% 1.5%

Deep net, autoassociator pre-training 0% 1.6%

Deep net, supervised pre-training 0% 1.9%

Deep net, no pre-training .59% 2.2%

Shallow net, no pre-training 3.6% 5.0%

Because

1 last fat hidden layer did all the work

2 using a poor representation (output of all previous layers)

Yes it is really an optimization problem
and a representation problem
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Restricted Boltzmann Machines

Bi-partite Boltzmann machine:

P(X = x ,H = h) ∝ e−E(x ,h) = ex
′
b+h

′
c+h

′
Wx

Conditionals P(x |h) and P(h|x) easy to derive, and factorize.

Contrastive divergence provides good estimator of
log-likelihood gradient.

Originally for binary variables; we extend it easily to
continuous variables by slightly changing energy function and
range of values (see poster).
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Combining Supervised & Unsupervised

MNIST: nice clusters in the distribution
⇒ input distribution structure reveals the target class.

f1(x) = P(Y |x) related to f2(x) = P(x)

Otherwise? Simple solution:
combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.
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More experimental results

Abalone Cotton

MSE class. error

DBN, Gauss inputs, partially sup 4.18 31.4%

DBN, Gauss inputs, unsup 4.19 35.8%

DBN, Bin inputs, partially sup 4.28 43.7%

DBN, Bin inputs, unsup 4.47 45.0%

Logistic regression · 45.0%

Deep Network, no pre-training 4.2 43.0%

MSE on Abalone task and classification error on Cotton task,
showing improvement with Gaussian vs binomial units and partial
supervision
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Conclusions

For AI ⇒ must learn high level abstractions efficiently
⇒ deep architectures (statistical efficiency)

Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle

Basic principle: greedy layer-wise unsupervised (or adding
unsupervised and supervised criteria)

Principle works about as well with symmetric

autoassociators in feedforward neural net

The unsupervised part is important: regularizes and makes
sure to propagate most information about input, purely

supervised is too greedy.

Easy extensions of Deep Belief Nets: continuous-valued units
/ partially supervised initialization when input density is not
revealing of target

Come see the poster!
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