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Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.

Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006

Irina Rish & Gerry Tesauro.



Autonomic Computing

The need

I Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision

I Computing systems take care of the mundane elements of
management by themselves.

I Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance with
high-level objectives from humans

Kephart & Chess, IEEE Computer 2003



Autonomic Computing

Activity: A growing field

I IBM Manifesto for Autonomic Computing 2001
http://www.research.ibm.com/autonomic

I ECML/PKDD Wshop on Autonomic Computing 2006
http://www.ecmlpkdd2006.org/workshops.html

I JIC. on Measurement and Performance of Systems 2006
http://www.cs.wm.edu/sigm06/

I NIPS Wshop on Machine Learning for Systems 2007
http://radlab.cs.berkeley.edu/MLSys/

I Networked System Design and Implementation 2008
http://www.usenix.org/events/nsdi08/



Overview of the Tutorial

Autonomic Computing

I ML & DM for Systems:
Introduction, motivations, applications

I Zoom on an application: Performance management

Autonomic Grid

I EGEE: Enabling Grids for e-Science in Europe

I Data acquisition, Logging and Bookkeeping files

I (change of) Representation, Dimensionality reduction

Modelling Jobs

I Exploratory Analysis and Clustering

I Standard approaches, stability, affinity propagation



ML & DM for Systems

Some applications

I Cohen et al., OSDI 2004, Performance management
detailed next

I Palatin-Wolf-Schuster, KDD06. Find misconfigured CPUs in a
grid system

find outliers

I Xiao et al. AAAI05, Active learning for game player modeling
situations where it’s too easy

I Zheng et al. NIPS03-ICML06, Use traces to identify bugs
put probes, suggest causes for failures

I Baskiotis et al., IJCAI07, ILP07, Statistical Structural
Software Testing

construct test cases for software testing



Performance management

The goal

Ensure that the system complies with performance level objectives

The problem: System Modelling

Large-scale system complex behavior depends on:

I Workload

I Software structure

I Hardware

I Traffic

I System goals

The approaches

I Prior knowledge set of (event - condition - action) rules

I Statistical learning
exploiting pervasive instrumentation / query facilities



Example: a 3-tier Web application with a Java middleware
component, backed by a DB

Correlating instrumentation data to system states: A building block for

automated diagnosis and control, Cohen et al. OSDI 2004



Supervised Learning, Notations

Training set, set of examples, data base

(iid sample ∼ P(x, y))

E = {(xi , yi ), xi ∈ X , yi ∈ Y, i = 1 . . .N}

I X : Instance space
I propositional (examples described after D attributes) IRD

x = (X1(x), . . . XD(x))

I relational (examples described after objects in relation, e.g.
events - see later on)

I Y: Label space
I Discrete: classification (compliant, not-compliant)
I Continuous: regression (average response time)



Example

Instance space, set of attributes

Label space

Compliance with Service Level Objectives (SLO) YES / NO



Learning a model

Desiderata

I Efficient few prediction errors

I Compact fast to use on further cases

I Easy/Fast to train no expertise needed to use

I Interpretable guide design/improvement



Learning − Hypothesis search space

Learning = finding h with good quality

h ∈ H : X 7→ Y

Loss function

`(y , y ′) = Cost of predicting y ′ instead of y

I `(y , y ′) = 1[y=y ′] classification

I `(y , y ′) = (y − y ′)2 regression



Learning − Hypothesis search space, 2

Learning criterion

I Generalization error (ideal, alas P(x , y) is unknown)

Errgen(h) = E [`(y , h(x))] =

∫
`(y , h(x))dP(x, y)

I Empirical error (known)

Erremp(h) =
1

n

n∑
i=1

`(yi , h(xi ))

The bias/variance tradeoff

d(H): dimension of Vapnik Cervonenkis

Errgen(h) ≤ Erremp(h) + F(n, d(H))

Empirical error

Variance

d(H)



Bayesian Learning

Bayes theorem

P(Y = y |X = x) = P(X = x|Y = y).P(Y = y) / P(X = x)

∝ P(X = x|Y = y).P(Y = y)

Let x = (X1(x), . . . ,XD(x)) ∈ IRD .
Assuming attributes are independent,

P(X = x|Y = y) =
d∏

i=1

P(Xi = Xi (x)|Y = y)

Prediction: select class that maximizes the probability of x

ŷ(x) = argmax{
d∏

i=1

P(Xi = Xi (x)|Y = yj).P(Y = yj), yj ∈ Y}



Tree-Augmented Naive Bayes

Learn probability of attribute Xi conditionally to
* label Y ;
* at most one other attribute Xj .



Tree-Augmented Naive Bayes, 2

Friedman, Geiger, Goldszmidt, MLJ 1997

Algorithm

I For each pair of attributes (Xi ,Xj), compute I (Xi ,Xj) =

∑
vi ,vj ,y

P(Xi = vi ,Xj = vj ,Y = y) ln
P(Xi = vi ,Xj = vj |Y = y)

P(Xi = vi |Y = y) P(Xj = vj |Y = y)

I Define the complete graph G with I (Xi ,Xj) on edge (Xi ,Xj)

I Define the maximum weight spanning tree from G

Complexity

D : number of attributes
N : number of examples
Complexity: O(D2N)



Results: 1. Accuracy

Balanced accuracy = 1
2 (True Pos. rate + True Neg rate ).

Measured by 10 fold CV

Depending on performance threshold

Balanced accuracy False alarm rate

I CPU: baseline predictor, use the CPU level only

I MOD: TAN trained with highest performance threshold

I TAN: TAN trained for each performance threshold



Results: 2. Using the model

Forecasting the failures

ln
P(Xi ,t+1 = v |Xi ,t = v ′,Y = 0)P(Y = 0)

P(Xi ,t+1 = v |Xi ,t = v ′,Y = 1)P(Y = 1)
> 0

Interpreting the causes of failures

I Direct interpretation might be hindered by limited description.

I Learning would select an effect for a (missing) cause.

I Example: minute-average-load used as disk queue is missing.



Overview of the Tutorial

Autonomic Computing

I ML & DM for Systems:
Introduction, motivations, applications

I Zoom on an application: Performance management

Autonomic Grid

I EGEE: Enabling Grids for e-Science in Europe

I Data acquisition, Logging and Bookkeeping files

I (change of) Representation, Dimensionality reduction

Modelling Jobs

I Exploratory Analysis and Clustering

I Standard approaches, stability, affinity propagation



Part 2

I Grid Systems
Presentation of EGEE, Enabling Grids for e-Science in Europe

I Acquiring the data
The grid observatory

I Preparation of the data
I Functional dependencies
I Dimensionality reduction
I Propositionalization



Computing Systems: The landscape

parallel

I homogeneous soft and hard
I resources

I dedicated
I static
I controlled

I reduced software stack

I no built-in fault tolerance

distributed

I heterogeneous soft and hard
I resources

I shared
I dynamic
I aggregated

I middleware

I faults: the norm



Storage and Computation have to be distributed



EGEE: Enabling Grids for E-Science in Europe



EGEE, 2

I Infrastructure project started in 2001 → FP6 and FP7

I Large scale, production quality grid

I Core node: Lab. Accelerateur Linéaire, Université Paris-Sud

I 240 partners, 41,000 CPUs, all over the world

I 5 Peta bytes storage

I 24 × 7, 20 K concurrent jobs

I Web: www.eu-egee.org

Storage as important as CPU



Applications

I High energy physics

I Life sciences

I Astrophysics

I Computational chemistry

I Earth sciences

I Financial simulation

I Fusion

I Multimedia

I Geophysics



Autonomic Grid

Requisite: The Grid Observatory

I Cluster in the EGEE-III proposal 2008-2010

I Data collection and publication: filtering, clustering

Workload management

I Models of the grid dynamics

I Models of requirements and middleware reaction: time series and beyond

I Utility based-scheduling, local and global: MAB problem

I Policy evaluations: very large scale optimization

Fault detection and diagnosis

I Categorization of failure modes from the Logging and Bookkeeping:
feature construction, clustering,

I Abrupt changepoint detection



Autonomic Grid: The Grid Observatory

Data acquisition

I Data have not been stored with DM in mind never

I Data [partially] automatically generated here
for EGEE services

I redundant
I little expert help

Data preprocessing

I 80% of the human cost

I Governs the quality of the output



The grid system and the data

The Workload Management System

I User Interface User submits job description
and requirements, and gets the results

I Resource Broker Decides Computing Element

I Job Submission Service Submits to CE and Checks

I Logging and Bookkeeping Service Archive the data

Job Lifecycle



The data



Data Tables

Events

Short Fields



Data Tables

Long Fields (4Gb)



Preparation of the data

1. Functional dependencies

2. Dimensionality reduction curse of dimensionality
I Principal Component Analysis
I Random Projection
I Non linear Dimensionality Reduction

3. Propositionalization



Functional dependency

Definition
Given attributes X and X ′, X ′ depends on X on E (X ′ ≺ X ) iff

∃f : dom(X ′) 7→ dom(X ) s.t. ∀i = 1 . . .N,X (xi ) = f (X ′(xi ))

Examples

I X ′ = City code, X = City name

I X ′ = Machine name, X = IP

I X ′ = Job ID, X = User ID

Why removing FD ?

I Curse of dimensionality

I Biased distance



Functional dependency, 2

Trivial cases

#dom(X ) = #dom(X ′) = N number of examples

Algorithm

I Size:
(X ′ ≺ X )⇒ #dom(X ) ≤ #dom(X ′)

I Sample
Repeat

Select v ∈ dom(X ′)
Ev = select xi where X ′(xi ) = v
Define X (Ev ) = {w ∈ dom(X ),∃x ∈ Ev / X (x) = w}
If (#X (Ev ) > 1) return false

Until stop
return true



Dimensionality Reduction − Intuition

Degrees of freedom

I Image: 4096 pixels; but not independent

I Robotics: (# camera pixels + # infra-red) × time; but not
independent

Goal
Find the (low-dimensional) structure of the data:

I Images

I Robotics

I Genes



Dimensionality Reduction

In high dimensions

I Everybody lives in the corners of the space
Volume of Sphere Vn = 2πr2

n Vn−2

I All points are far from each other

Approaches

I Linear dimensionality reduction
I Principal Component Analysis
I Random Projection

I Non-linear dimensionality reduction

Criteria

I Complexity/Size

I Prior knowledge e.g., relevant distance



Linear Dimensionality Reduction

Training set unsupervised

E = {(xk), xk ∈ IRD , k = 1 . . .N}

Projection from IRD onto IRd

x ∈ IRD → h(x) ∈ IRd , d << D
h(x) = Ax

s.t. minimize
∑N

k=1 ||xk − h(xk)||2



Principal Component Analysis

Covariance matrix S
Mean µi = 1

N

∑N
k=1 Xi (xk)

Sij =
1

N

N∑
k=1

(Xi (xk)− µi )(Xj(xk)− µj)

symmetric ⇒ can be diagonalized

S = U∆U ′ ∆ = Diag(λ1, . . . λD)
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Thm: Optimal projection in dimension d

projection on the first d eigenvectors of S

Let ui the eigenvector associated to eigenvalue λi λi > λi+1

h : IRD 7→ IRd , h(x) =< x, u1 > u1 + . . .+ < x, ud > ud

where < v , v ′ > denote the scalar product of vectors v and v ′



Sketch of the proof

1. Maximize the variance of h(x) = Ax∑
k ||xk − h(xk)||2 =

∑
k ||xk ||2 −

∑
k ||h(xk)||2

Minimize
∑
k

||xk − h(xk)||2 ⇒ Maximize
∑
k

||h(xk)||2

Var(h(x)) =
1

N

(∑
k

||h(xk)||2 − ||
∑
k

h(xk)||2
)

As
||
∑
k

h(xk)||2 = ||A
∑
k

xk ||2 = N2||Aµ||2

where µ = (µ1, . . . .µD).
Assuming that xk are centered (µi = 0) gives the result.



Sketch of the proof, 2

2. Projection on eigenvectors ui of S

Assume h(x) = Ax =
∑d

i=1 < x, vi > vi and show vi = ui .

Var(AX ) = (AX )(AX )′ = A(XX ′)A′ = ASA′ = A(U∆U ′)A′

Consider d = 1, v1 =
∑

wiui
∑

w2
i = 1

remind λi > λi+1

Var(AX ) =
∑

λiw
2
i

maximized for w1 = 1,w2 = . . . = wN = 0
that is, v1 = ui .

More :
http://mplab.ucsd.edu/wordpress/tutorials/pca.pdf



Principal Component Analysis, Practicalities

Data preparation

I Mean centering the dataset

µi = 1
N

∑N
k=1 Xi (xk)

σi =
√

1
N

∑N
k=1 Xi (xk)2 − µ2

i

zk = ( 1
σi

(Xi (xk)− µi ))
D
i=1

Matrix operations

I Computing the covariance matrix

Sij =
1

N

N∑
k=1

Xi (zk)Xj(zk)

I Diagonalizing S = U ′∆U Complexity O(D3)
might be not affordable...



Random projection

Random matrix

A : IRD 7→ IRd A[d ,D] Ai ,j ∼ N (0, 1)

define

h(x) =
1√
d

Ax

Property: h preserves the norm in expectation

E [||h(x)||2] = ||x||2

With high probability 1− 2exp{−(ε2 − ε3)d
4 }

(1− ε)||x||2 ≤ ||h(x)||2 ≤ (1 + ε)||x||2



Random projection

Proof

h(x) = 1√
d
Ax

E (||h(x)||2) = 1
d E

[∑d
i=1

(∑D
j=1 Ai ,jXj(x)

)2
]

= 1
d

∑d
i=1 E

[(∑D
j=1 Ai ,jXj(x)

)2
]

= 1
d

∑d
i=1

∑D
j=1 E [A2

i ,j ]E [Xj(x)
2]

= 1
d

∑d
i=1

∑D
j=1

||x||2
D

= ||x||2



Random projection, 2

Johnson Lindenstrauss Lemma
For d > 9 lnD

ε2−ε3 , with high probability

(1− ε)||xi − xj ||2 ≤ ||h(xi )− h(xj)||2 ≤ (1 + ε)||xi − xj ||2

More:
http://www.cs.yale.edu/clique/resources/RandomProjectionMethod.pdf



Non-Linear Dimensionality Reduction

Conjecture

Examples live in a manifold of dimension d << D

Goal: consistent projection of the dataset onto IRd

Consistency:

I Preserve the structure of the data

I e.g. preserve the distances between points



Multi-Dimensional Scaling

Position of the problem

I Given {x1, . . . , xN , xi ∈ IRD}
I Given sim(xi , xj) ∈ IR+

I Find projection Φ onto IRd

x ∈ IRD → Φ(x) ∈ IRd

sim(xi , xj) ∼ sim(Φ(xi ),Φ(xj))

Optimisation

Define X , Xi ,j = sim(xi , xj); XΦ, XΦ
i ,j = sim(Φ(xi ),Φ(xj))

Find Φ minimizing ||X − X ′||
Rq : Linear Φ = Principal Component Analysis
But linear MDS does not work: preserves all distances, while

only local distances are meaningful



Non-linear projections

Approaches

I Reconstruct global structures from local ones Isomap
and find global projection

I Only consider local structures LLE

Intuition: locally, points live in IRd



Isomap

Tenenbaum, da Silva, Langford 2000

http://isomap.stanford.edu

Estimate d(xi , xj)

I Known if xi and xj are close

I Otherwise, compute the shortest path between xi and xj

geodesic distance (dynamic programming)

Requisite

If data points sampled in a convex subset of IRd ,
then geodesic distance ∼ Euclidean distance on IRd .

General case

I Given d(xi , xj), estimate < xi , xj >

I Project points in IRd



Isomap, 2



Locally Linear Embedding

Roweiss and Saul, 2000

http://www.cs.toronto.edu/∼roweis/lle/

Principle

I Find local description for each point: depending on its
neighbors



Local Linear Embedding, 2

Find neighbors

For each xi , find its nearest neighbors N (i)
Parameter: number of neighbors

Change of representation

Goal Characterize xi wrt its neighbors:

xi =
∑

j∈N (i)

wi ,jxj with
∑

j∈N (i)

wij = 1

Property: invariance by translation, rotation, homothety
How Compute the local covariance matrix:

Cj ,k =< xj − xi , xk − xi >

Find vector wi s.t. Cwi = 1



Local Linear Embedding, 3

Algorithm

Local description: Matrix W such that
∑

j wi ,j = 1

W = argmin{
N∑

i=1

||xi −
∑

j

wi ,jxj ||2}

Projection: Find {z1, . . . , zn} in IRd minimizing

N∑
i=1

||zi −
∑

j

wi ,jzj ||2

Minimize ((I −W )Z )′((I −W )Z ) = Z ′(I −W )′(I −W )Z

Solutions: vectors zi are eigenvectors of (I −W )′(I −W )

I Keeping the d eigenvectors with lowest eigenvalues > 0



Example, Texts



Example, Images

LLE



Propositionalization

Relational domains

Relational learning

PROS Inductive Logic Programming
Use domain knowledge

CONS Data Mining
Covering test ≡ subgraph matching exponential complexity

Getting back to propositional representation: propositionalization



West - East trains

Michalski 1983



Propositionalization

Linus (ancestor)

Lavrac et al, 94

West(a)← Engine(a, b), first wagon(a, c), roof (c), load(c , square, 3)...
West(a′)← Engine(a′, b′), first wagon(a′, c ′), load(c ′, circle, 1)...

West Engine(X) First Wagon(X,Y) Roof(Y) Load1 (Y) Load2 (Y)
a b c yes square 3
a’ b’ c’ no circle 1

Each column: a role predicate, where the predicate is determinate
linked to former predicates (left columns) with a single instantiation in

every example



Propositionalization

Stochastic propositionalization

Kramer, 98

Construct random formulas ≡ boolean features

SINUS − RDS
http://www.cs.bris.ac.uk/home/rawles/sinus

http://labe.felk.cvut.cz/∼zelezny/rsd

I Use modes (user-declared) modeb(2,hasCar(+train,-car))

I Thresholds on number of variables, depth of predicates...

I Pre-processing (feature selection)



Propositionalization

DB Schema Propositionalization

RELAGGS
Database aggregates

I average, min, max, of numerical attributes

I number of values of categorical attributes



Overview of the Tutorial
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Part 3: Clustering

I Approaches
I K-Means
I EM
I Selecting the number of clusters

I Clustering the EGEE jobs
I Dealing with heterogeneous data
I Assessing the results



Clustering

http://www.ofai.at/ elias.pampalk/music/



Clustering Questions

Hard or soft ?

I Hard: find a partition of the data

I Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

I Parametric: number K of clusters is known

I Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

I Complexity

I Outliers

I Validation



Formal Background

Notations

E {x1, . . . xN} dataset
N number of data points
K number of clusters given or optimized

Ck k-th cluster Hard clustering
τ(i) index of cluster containing xi

fk k-th model Soft clustering
γk(i) Pr(xi |fk)

Solution

Hard Clustering Partition ∆ = (C1, . . . Ck)
Soft Clustering ∀i

∑
k γk(i) = 1



Formal Background, 2

Quality / Cost function

Measures how well the clusters characterize the data

I (log)likelihood soft clustering

I dispersion hard clustering

K∑
k=1

1

|Ck |2
∑

xi ,xj in Ck

d(xi , xj)
2

Tradeoff
Quality increases with K ⇒ Regularization needed

to avoid one cluster per data point



Clustering vs Classification

Marina Meila

http://videolectures.net/

Classification Clustering

K # classes (given) # clusters (unknown)
Quality Generalization error many cost functions

Focus on Test set Training set
Goal Prediction Interpretation

Analysis discriminant exploratory
Field mature new



Non-Parametric Clustering
Hierarchical Clustering

Principle

I agglomerative (join nearest clusters)

I divisive (split most dispersed cluster)

CONS: Complexity O(N3)



Hierarchical Clustering, example



Influence of distance/similarity

d(x , x ′) =



√∑
i (xi − x ′i )

2 Euclidean distance

1−
P

i xix
′
i

||x ||.||x ′|| Cosine angle

1−
P

i (xi−x̄)(x ′
i −x̄ ′)

||x−x̄ ||.||x ′−x̄ ′|| Pearson



Parametric Clustering

K is known

Algorithms based on distances

I K -means

I graph / cut

Algorithms based on models

I Mixture of models: EM algorithm



K -Means

Algorithm

1. Init:
Uniformly draw K points xij in E
Set Cj = {xij}

2. Repeat

3. Draw without replacement xi from E
4. τ(i) = argmink=1...K{d(xi ,Ck)} find best cluster for xi

5. Cτ(i) = Cτ(i)

⋃
xi add xi to Cτ(i)

6. Until all points have been drawn

7. If partition C1 . . .CK has changed Stabilize
Define xik = best point in Ck , Ck = {xik}, goto 2.

Algorithm terminates



K -Means, Knobs

Knob 1 : define d(xi , Ck) favors

I min{d(xi , xj), xj ∈ Ck} long clusters

* average{d(xi , xj), xj ∈ Ck} compact clusters

I max{d(xi , xj), xj ∈ Ck} spheric clusters

Knob 2 : define “best” in Ck

I Medoid argmini{
∑

xj∈Ck
d(xi , xj)}

* Average 1
|Ck |
∑

xj∈Ck
xj

(does not belong to E)



No single best choice



K -Means, Discussion

PROS

I Complexity O(K × N)

I Can incorporate prior knowledge initialization

CONS

I Sensitive to initialization

I Sensitive to outliers

I Sensitive to irrelevant attributes



K -Means, Convergence

I For cost function

L(∆) =
∑
k

∑
i ,j / τ(i)=τ(j)=k

d(xi , xj)

I for d(xi ,Ck) = average {d(xi , xj), xj ∈ Ck}
I for “best” in Ck = average of xj ∈ Ck

K -means converges toward a (local) minimum of L.



K -Means, Practicalities

Initialization

I Uniform sampling

I Average of E + random perturbations

I Average of E + orthogonal perturbations

I Extreme points: select xi1 uniformly in E , then

Select xij = argmax{
j∑

k=1

d(xi , xik )}

Pre-processing

I Mean-centering the dataset



Model-based clustering

Mixture of components

I Density f =
∑K

k=1 πk fk
I fk : the k-th component of the mixture

I γk(i) = πk fk (x)
f (x)

I induces Ck = {xj / k = argmax{γk(j)}}

Nature of components: prior knowledge

I Most often Gaussian: fk = (µk ,Σk)

I Beware: clusters are not always Gaussian...



Model-based clustering, 2

Search space

I Solution : (πk , µk ,Σk)Kk=1 = θ

Criterion: log-likelihood of dataset

`(θ) = log(Pr(E)) =
N∑

i=1

log Pr(xi ) ∝
N∑

i=1

K∑
k=1

log(πk fk(xi ))

to be maximized.



Model-based clustering with EM

Formalization

I Define zi ,k = 1 iff xi belongs to Ck .

I E [zi ,k ] = γk(i) prob. xi generated by πk fk
I Expectation of log likelihood

E [`(θ)] ∝
∑N

i=1

∑K
k=1 γi (k) log(πk fk(xi ))

=
∑N

i=1

∑K
k=1 γi (k) log πk +

∑N
i=1

∑K
k=1 γi (k) log fk(xi )

EM optimization

E step Given θ, compute

γk(i) =
πk fk(xi )

f (x)

M step Given γk(i), compute

θ∗ = (πk , µk ,Σk)∗ = argminE [`(θ)]



Maximization step

πk : Fraction of points in Ck

πk =
1

N

N∑
i=1

γk(i)

µk : Mean of Ck

µk =

∑N
i=1 γk(i)xi∑N
i=1 γk(i)

Σk : Covariance

Σk =

∑N
i=1 γk(i)(xi − µk)(xi − µk)′∑N

i=1 γk(i)



Choosing the number of clusters

K -means constructs a partition whatever the K value is.

Selection of K

I Bayesian approaches
Tradeoff between accuracy / richness of the model

I Stability
Varying the data should not change the result

I Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

BIC (θ) = `(θ)− #θ

2
log N

Select K = argmax BIC (θ)
where #θ = number of free parameters in θ:

I if all components have same scalar variance σ

#θ = K − 1 + 1 + Kd

I if each component has a scalar variance σk

#θ = K − 1 + K (d + 1)

I if each component has a full covariance matrix Σk

#θ = K − 1 + K (d + d(d − 1)/2)



Gap statistics

Principle: hypothesis testing

1. Consider hypothesis H0: there is no cluster in the data.
E is generated from a no-cluster distribution π.

2. Estimate the distribution f0,K of L(C1, . . . CK ) for data
generated after π. Analytically if π is simple

Use Monte-Carlo methods otherwise

3. Reject H0 with confidence α if the probability of generating
the true value L(C1, . . . CK ) under f0,K is less than α.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm

Assume E extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample E according to this distribution

2. Apply K -means on this sample

3. Measure the associated loss function

Repeat : compute the average L̄0(K ) and variance σ0(K )
Define the gap:

Gap(K ) = L̄0(K )− L(C1, . . . CK )

Rule Select min K s.t.

Gap(K ) ≥ Gap(K + 1)− σ0(K + 1)

What is nice: also tells if there are no clusters in the data...



Stability

Principle

I Consider E ′ perturbed from E
I Construct C ′

1, . . . C
′
K from E ′

I Evaluate the “distance” between (C1, . . . CK ) and (C ′
1, . . . C

′
K )

I If small distance (stability), K is OK

Distortion D(∆)

Define S Sij = < xi , xj >
(λi , vi ) i-th (eigenvalue, eigenvector) of S

X Xi ,j = 1 iff xi ∈ Cj

D(∆) =
∑

i

||xi − µτ(i)||2 = tr(S)− tr(X ′SX )

Minimal distortion D∗ = tr(S)−
∑K−1

k=1 λk



Stability, 2

Results

I ∆ has low distortion⇒ (µ1, . . . µK ) close to space (v1, . . . vK ).

I ∆1, and ∆2 have low distortion ⇒ “close”

I (and close to “optimal” clustering)

Meila ICML 06

Counter-example



Overview

Autonomic Computing

I A booming field of applications

I Machine Learning and Data Mining for Systems

Autonomic Grid

I EGEE: Enabling Grids for e-Science in Europe

I Data acquisition, Logging and Bookkeeping files

I (change of) Representation, Dimensionality reduction

Modelling Jobs

I Exploratory Analysis and Clustering

I Clustering the jobs



Job representation

Xiangliang Zhang et al., ICDM wshop on Data streams, 2007



Job representation

Challenges

I Sparse representation, e.g. “user id”

I No natural distance

Prior knowledge

I Coarse job classification: succeeds (SUC) or fails (FAIL)

I Many failure types: Not Available Resources (NAR); User
Aborted (ABU); Generic and non-Generic Error (GNG).

I Jobs are heterogeneous
I Due to users (advanced or naive)
I Due to virtual organizations (jobs in physics 6= jobs in biology)
I Due to time: grid load depends on the community activity



Feature extraction

Slicing data

to get rid of heterogeneity

I Split jobs per user: Ui = { jobs of i-th user }
I Split jobs per week: Wj = { jobs launched in j-th week }

Building features

I Each data slice: a supervised learning problem
(discriminating SUCC from FAIL)

h : X 7→ IR

I Supervised Learning Algorithms:
I Support Vector Machine SVMLight
I Optimization of AUC ROGER



Feature Extraction, 2

New features
Define

hu,i hypothesis learned from data slice Ui

U : X 7→ IR#u

U(x) = (hu,1(x), . . . hu,#u(x))
Symmetrically hw ,i hypothesis learned from data slice Wi

W : X 7→ IR#w

W (x) = (hw ,1(x), . . . hw ,#w (x))

Change of representation

E → EU = {(U(xi ), yi ), i = 1 . . .N}
→ EW = {(W (xi ), yi ), i = 1 . . .N}

Discussion

I Natural distance on IRd

I But new attributes hu,i likely to be redundant



Feature Extraction: Double clustering

Slonim & Tishby, 2000



Experimental setting

The datasets

I Training set E : 222,500 jobs 36% SUCC, 74% FAIL

I Test set T : 21,512 jobs

Hypothesis construction

I SVM: one hypothesis per slice: U : X 7→ IR34

W : X 7→ IR45

I ROGER: 50 hypotheses per slice U : X 7→ IR1700

W : X 7→ IR2250

Clustering

Foreach K = 5 . . . 30, Apply K -means to T
I Considering new representations U and W

I Learned after SVM and Roger.



Goal of Experiments

Interpretation

Examine the clusters

Stability

I Compare ∆K and ∆K ′

I Compare ∆K ,U and ∆K ,W



Interpretation



Interpretation, 2



Interpretation, 3

Pure clusters

I Most clusters are pure wrt sub-classes NAR, GNG
which were unknown from the algorithm

I Finer-grained classes are discovered: Problem during rank
evaluation; job proxy expired; insert Data failed

I ABU class (1.2%) is not properly identified:
many reasons why job might be Aborted by User

Usage

Use prediction for user-friendly service
Anticipate job failures



Stability



Stability, 2

I Stability wrt initialization, for both W and U representations

I Stability of clusters based on W and U-based representations

I Decreases gracefully with K
(optimal value = 1)



Grid Modelling, wrap-up

Conclusion

I Importance of representation as usual

I Clustering: stable wrt K and representation change
re-discovers types of failures
discovers finer-grained failures

Future work

I Cluster users (= sets of jobs)

I Cluster weeks (= sets of jobs)

I Find scenarios
naive users gaining expertise;
grid load & temporal regularities

I Identify communities of users.

I Use scenarios to test/optimize grid services (e.g. scheduler)



Autonomic Computing, wrap-up

Huge needs

I Modelling systems
Black box to calibrate, train, optimize services

I Understanding systems Hints to repair, re-design systems

Dealing with Complex Systems

I Findings often challenge conventional wisdow

I Theoretical vs Empirical models

I Complex systems are counter-intuitive sometimes



Autonomic Computing, wrap-up, 2

Good practice

I No Magic !
I don’t see anything, I’ll use ML or DM

I Use all of your prior knowledge
If you can measure/model it, don’t guess it!

I Have conjectures

I Test them! Beware: False Discovery Rate
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