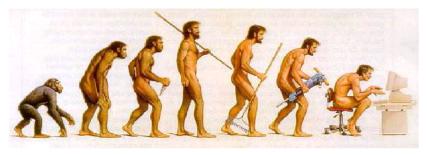
Module Master Recherche Apprentissage Autonomic Computing – Analyse Exploratoire

> Michele Sebag CNRS – INRIA – Université Paris-Sud http://tao.lri.fr

> > 14 Janvier 2008

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

## Autonomic Computing



Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010.

Gartner 6/2001 in Autonomic Computing Wshop, ECML / PKDD 2006 Irina Rish & Gerry Tesauro.

・ロト ・聞ト ・ヨト ・ヨト

# Autonomic Computing

#### The need

Main bottleneck of the deployment of complex systems: shortage of skilled administrators

#### Vision

- Computing systems take care of the mundane elements of management by themselves.
- Inspiration: central nervous system (regulating temperature, breathing, and heart rate without conscious thought)

#### Goal

Computing systems that manage themselves in accordance with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003

# Autonomic Computing

## Activity: A growing field

|   | IBM Manifesto for Autonomic Computing                                                | 2001 |
|---|--------------------------------------------------------------------------------------|------|
|   | http://www.research.ibm.com/autonomic                                                |      |
| • | ECML/PKDD Wshop on Autonomic Computing<br>http://www.ecmlpkdd2006.org/workshops.html | 2006 |
|   | JIC. on Measurement and Performance of Systems<br>http://www.cs.wm.edu/sigm06/       | 2006 |
|   | NIPS Wshop on Machine Learning for Systems<br>http://radlab.cs.berkeley.edu/MLSys/   | 2007 |
| • | Networked System Design and Implementation<br>http://www.usenix.org/events/nsdi08/   | 2008 |

# Overview of the Tutorial

## Autonomic Computing

- ML & DM for Systems: Introduction, motivations, applications
- Zoom on an application: Performance management

#### Autonomic Grid

- ► EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

## Modelling Jobs

- Exploratory Analysis and Clustering
- Standard approaches, stability, affinity propagation

## ML & DM for Systems

#### Some applications

Cohen et al., OSDI 2004, Performance management

detailed next

 Palatin-Wolf-Schuster, KDD06. Find misconfigured CPUs in a grid system

find outliers

- Xiao et al. AAAI05, Active learning for game player modeling situations where it's too easy
- Zheng et al. NIPS03-ICML06, Use traces to identify bugs put probes, suggest causes for failures
- Baskiotis et al., IJCAI07, ILP07, Statistical Structural Software Testing

construct test cases for software testing

# Performance management

## The goal

Ensure that the system complies with performance level objectives

## The problem: System Modelling

Large-scale system complex behavior depends on:

- Workload
- Software structure
- Hardware
- Traffic
- System goals

## The approaches

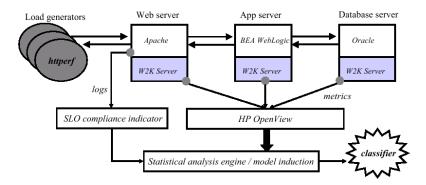
- Prior knowledge
- Statistical learning

exploiting pervasive instrumentation / query facilities

set of (event - condition - action) rules

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Example: a 3-tier Web application with a Java middleware component, backed by a DB



Correlating instrumentation data to system states: A building block for automated diagnosis and control, Cohen et al. OSDI 2004

## Supervised Learning, Notations

#### Training set, set of examples, data base

(iid sample  $\sim P(\mathbf{x}, y)$ )

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1 \dots N\}$$

#### X: Instance space

• propositional (examples described after D attributes)  $\mathbb{R}^{D}$ 

$$\mathbf{x} = (X_1(\mathbf{x}), \dots X_D(\mathbf{x}))$$

- relational (examples described after objects in relation, e.g. events - see later on)
- ►  $\mathcal{Y}$ : Label space
  - Discrete: classification
  - Continuous: regression

(compliant, not-compliant) (average response time)

## Example

#### Instance space, set of attributes

| motunee space, set of        | attributes                                                                        |
|------------------------------|-----------------------------------------------------------------------------------|
| Metric                       | Description                                                                       |
| mean_AS_CPU_1_USERTIME       | CPU time spent in user mode on the application server.                            |
| var_AS_CPU_1_USERTIME        | Variance of user CPU time on the application server.                              |
| mean_AS_DISK_1_PHYSREAD      | Number of physical disk reads for disk 1 on the application server,               |
|                              | includes file system reads, raw I/O and virtual memory I/O.                       |
| mean_AS_DISK_1_BUSYTIME      | Time in seconds that disk 1 was busy with pending I/O on the application server.  |
| var_AS_DISK_1_BUSYTIME       | Variance of time that disk 1 was busy with pending I/O on the application server. |
| mean_DB_DISK_1_PHYSWRITEBYTE | Number of kilobytes written to disk 1 on the database server,                     |
|                              | includes file system reads, raw I/O and virtual memory I/O.                       |
| var_DB_GBL_SWAPSPACEUSED     | Variance of swap space allocated on the database server.                          |
| var_DB_NETIF_2_INPACKET      | Variance of the number of successful (no errors or collisions) physical packets   |
|                              | received through network interface #2 on the database server.                     |
| mean_DB_GBL_SWAPSPACEUSED    | Amount of swap space, in MB, allocated on the database server.                    |
| mean_DB_GBL_RUNQUEUE         | Approximate average queue length for CPU on the database server.                  |
| var_DB_NETIF_2_INBYTE        | Variance of the number of KBs received from the network                           |
|                              | via network interface #2 on the database server. Only bytes in packets            |
|                              | that carry data are included.                                                     |
| var_DB_DISK_1_PHYSREAD       | Variance of physical disk reads for disk 1 on the database server.                |
| var_AS_GBL_MEMUTIL           | Variance of the percentage of physical memory in use on the application server,   |
|                              | including system memory (occupied by the kernel), buffer cache, and user memory.  |
| numReqs                      | Number of requests the system has served.                                         |
| var_DB_DISK_1_PHYSWRITE      | Variance of the number of writes to disk 1 on the database server.                |
| var_DB_NETIF_2_OUTPACKET     | Variance of the number of successful (no errors or collisions) physical packets   |
|                              | sent through network interface #2 on the database server.                         |
|                              |                                                                                   |

#### Label space

Compliance with Service Level Objectives (SLO) YES / NO

## Learning a model

#### Desiderata

- Efficient
- Compact
- Easy/Fast to train
- Interpretable

few prediction errors fast to use on further cases no expertise needed to use guide design/improvement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Learning – Hypothesis search space

Learning = finding h with good quality

$$h \in \mathcal{H} : \mathcal{X} \mapsto \mathcal{Y}$$

Loss function

 $\ell(y, y') =$  Cost of predicting y' instead of y

$$\ell(y, y') = 1_{[y=y']}$$
 classification
  $\ell(y, y') = (y - y')^2$  regression

Learning — Hypothesis search space, 2 Learning criterion

• Generalization error (ideal, alas P(x, y) is unknown)

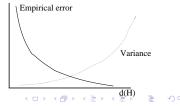
$$Err_{gen}(h) = E[\ell(y, h(\mathbf{x}))] = \int \ell(y, h(\mathbf{x})) dP(\mathbf{x}, y)$$

Empirical error

(known)

$$Err_{emp}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i))$$

$$Err_{gen}(h) \leq Err_{emp}(h) + \mathcal{F}(n, d(\mathcal{H}))$$



## **Bayesian Learning**

Bayes theorem

$$P(Y = y | X = \mathbf{x}) = P(X = \mathbf{x} | Y = y).P(Y = y) / P(X = \mathbf{x})$$
$$\propto P(X = \mathbf{x} | Y = y).P(Y = y)$$

Let  $\mathbf{x} = (X_1(\mathbf{x}), \dots, X_D(\mathbf{x})) \in \mathbb{R}^D$ . Assuming attributes are independent,

$$P(X = \mathbf{x}|Y = y) = \prod_{i=1}^{d} P(X_i = X_i(\mathbf{x})|Y = y)$$

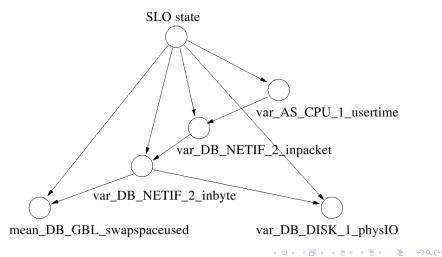
Prediction: select class that maximizes the probability of x

$$\hat{y}(\mathbf{x}) = \operatorname{argmax} \{\prod_{i=1}^{d} P(X_i = X_i(\mathbf{x}) | Y = y_j) . P(Y = y_j), y_j \in \mathcal{Y}\}$$

## **Tree-Augmented Naive Bayes**

Learn probability of attribute  $X_i$  conditionally to \* label Y:

\* at most one other attribute  $X_i$ .



## Tree-Augmented Naive Bayes, 2

Friedman, Geiger, Goldszmidt, MLJ 1997

#### Algorithm

▶ For each pair of attributes  $(X_i, X_j)$ , compute  $I(X_i, X_j) =$ 

$$\sum_{v_i, v_j, y} P(X_i = v_i, X_j = v_j, Y = y) \ln \frac{P(X_i = v_i, X_j = v_j | Y = y)}{P(X_i = v_i | Y = y) P(X_j = v_j | Y = y)}$$

- ▶ Define the complete graph G with  $I(X_i, X_j)$  on edge  $(X_i, X_j)$
- $\blacktriangleright$  Define the maximum weight spanning tree from  ${\cal G}$

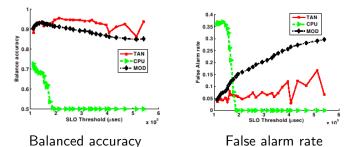
#### Complexity

D: number of attributes N: number of examples Complexity:  $\mathcal{O}(D^2N)$ 

## Results: 1. Accuracy

Balanced accuracy =  $\frac{1}{2}$  (True Pos. rate + True Neg rate ). Measured by 10 fold CV

Depending on performance threshold



- CPU: baseline predictor, use the CPU level only
- MOD: TAN trained with highest performance threshold
- TAN: TAN trained for each performance threshold

Results: 2. Using the model

Forecasting the failures

$$\ln \frac{P(X_{i,t+1} = v | X_{i,t} = v', Y = 0) P(Y = 0)}{P(X_{i,t+1} = v | X_{i,t} = v', Y = 1) P(Y = 1)} > 0$$

#### Interpreting the causes of failures

- Direct interpretation might be hindered by limited description.
- Learning would select an effect for a (missing) cause.
- Example: minute-average-load used as disk queue is missing.

# Overview of the Tutorial

## Autonomic Computing

- ML & DM for Systems: Introduction, motivations, applications
- Zoom on an application: Performance management

#### Autonomic Grid

- ► EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

## Modelling Jobs

- Exploratory Analysis and Clustering
- Standard approaches, stability, affinity propagation

# Part 2

#### Grid Systems

Presentation of EGEE, Enabling Grids for e-Science in Europe

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Acquiring the data The grid observatory
- Preparation of the data
  - Functional dependencies
  - Dimensionality reduction
  - Propositionalization

# Computing Systems: The landscape



parallel

- distributed
- homogeneous soft and hard
- resources
  - dedicated
  - static
  - controlled
- reduced software stack
- no built-in fault tolerance

heterogeneous soft and hard

- resources
  - shared
  - dynamic
  - aggregated
- middleware
- faults: the norm

## Storage and Computation have to be distributed



## EGEE: Enabling Grids for E-Science in Europe



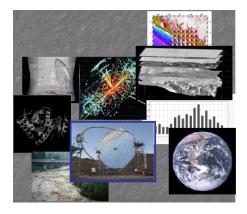
# EGEE, 2

- $\blacktriangleright$  Infrastructure project started in 2001  $\rightarrow$  FP6 and FP7
- Large scale, production quality grid
- Core node: Lab. Accelerateur Linéaire, Université Paris-Sud
- ▶ 240 partners, 41,000 CPUs, all over the world
- 5 Peta bytes storage
- 24  $\times$  7, 20 K concurrent jobs
- Web: www.eu-egee.org

#### Storage as important as CPU

# Applications

- High energy physics
- Life sciences
- Astrophysics
- Computational chemistry
- Earth sciences
- Financial simulation
- Fusion
- Multimedia
- Geophysics



(日)、

э

## Autonomic Grid

#### Requisite: The Grid Observatory

- Cluster in the EGEE-III proposal 2008-2010
- Data collection and publication: filtering, clustering

#### Workload management

- Models of the grid dynamics
- Models of requirements and middleware reaction: time series and beyond
- Utility based-scheduling, local and global: MAB problem
- Policy evaluations: very large scale optimization

#### Fault detection and diagnosis

 Categorization of failure modes from the Logging and Bookkeeping: feature construction, clustering,

Abrupt changepoint detection

Autonomic Grid: The Grid Observatory

#### Data acquisition

Data have not been stored with DM in mind never
 Data [partially] automatically generated here for EGEE services
 redundant

little expert help

## Data preprocessing

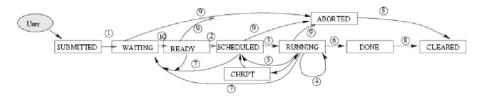
- ▶ 80% of the human cost
- Governs the quality of the output

# The grid system and the data

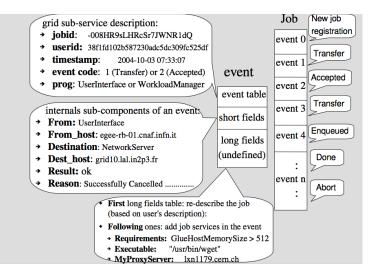
The Workload Management System

 User Interface
 User submits job description and requirements, and gets the results
 Resource Broker
 Job Submission Service
 Logging and Bookkeeping Service
 User submits job description Decides Computing Element
 Submits to CE and Checks
 Archive the data

#### Job Lifecycle



## The data



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Data Tables

#### Events

| jobid               | event | i. | code | host                  | I | time_stamp |          | l | arrived    |          | 10 | evel |
|---------------------|-------|----|------|-----------------------|---|------------|----------|---|------------|----------|----|------|
| BrI1BgbIqkwtszqGfmA |       | i  |      | atlfarm008.mi.infn.it |   | 2004-09-17 |          |   | 2004-09-17 |          |    | 8    |
| BrI1BgbIqkwtszqGfmA | 1     | 1  | 1    | atlfarm008.mi.infn.it | L | 2004-09-17 | 16:17:48 | Ľ | 2004-09-17 | 16:17:49 | 1  | 8    |
| BrI1BgbIqkwtszqGfmA | 2     | 1  | 2    | lxb0728.cern.ch       | L | 2004-09-17 | 16:17:53 | L | 2004-09-17 | 16:17:53 | 1  | 8    |
| BrI1BgbIqkwtszqGfmA | 3     | 1  | 4    | lxb0728.cern.ch       | L | 2004-09-17 | 16:18:00 | L | 2004-09-17 | 16:18:01 | 1  | 8    |
| BrI1BgbIqkwtszqGfmA | 4     | 1  | 1    | atlfarm008.mi.infn.it | L | 2004-09-17 | 16:18:00 | L | 2004-09-17 | 16:18:01 | 1  | 8    |
| BrI1BgbIqkwtszqGfmA | 5     | L  | 5    | lxb0728.cern.ch       | I | 2004-09-17 | 16:18:01 | l | 2004-09-17 | 16:18:01 | 1  | 8    |

#### Short Fields

| 1   | 0 1 | JOBTYPE       | SIMPLE                                                                                        |
|-----|-----|---------------|-----------------------------------------------------------------------------------------------|
| i i | 0 i | NS            | 1xb0728.cern.ch:7772                                                                          |
| i i | 0 1 | NSUBJOBS      | 0                                                                                             |
| i i | 0 i | SEED          | uLUOBArrdV98041PLThJ50                                                                        |
| i i | o i | SEQCODE       | UI=000001:NS=00000000000:WM=000000:BH=0000000000:JSS=000000:LM=0000000:LBMS=000000:APP=000000 |
| i i | 0 1 | SRC INSTANCE  |                                                                                               |
| i   | 1 1 | DESTINATION   | NetworkServer                                                                                 |
| i   | 1   | DEST_HOST     | 1xb0728.cern.ch                                                                               |
| 1   | 1   | DEST_INSTANCE | 1xb0728.cern.ch:7772                                                                          |
| 1   | 1   | DEST_JOBID    |                                                                                               |
| 1   | 1   | REASON        |                                                                                               |
| 1   | 1   | RESULT        | START                                                                                         |
| 1   | 1   | SEQCODE       | UI=000002:NS=0000000000:WM=000000:BH=0000000000:JSS=000000:LM=000000:LRMS=000000:APP=000000   |
| 1   | 1   | SRC_INSTANCE  | 1                                                                                             |
| 1   | 2   | FROM          | UserInterface                                                                                 |
| 1   | 2   |               | 1xb0728.cern.ch                                                                               |
| 1   | 2   | FROM_INSTANCE | 1                                                                                             |
| 1   |     | LOCAL_JOBID   | 1                                                                                             |
| 1   | 2   |               | UI=000003:NS=0000000001:WM=000000:BH=0000000000:JSS=000000:LM=0000000:LRMS=000000:APP=000000  |
| 1   | 2   |               | 7772                                                                                          |
| 1   | 3   |               | /var/edgwl/workload_manager/input.fl                                                          |
| 1   | 3   | REASON        | 1                                                                                             |
| 1   | 3   |               | l ox                                                                                          |
| 1   | 3   |               | UI=000003:NS=0000000003:WM=000000:BH=0000000000:JSS=000000:LM=000000:LRMS=000000:APP=000000   |
| 1   | 3   | SRC_INSTANCE  |                                                                                               |

## Data Tables

#### Long Fields (4Gb)

| iobid | event | name | value

| ---BrI1BgbIqkwtszqGfmA | 0 | JDL |[ requirements = ( ( ( Member("VO-atlas-lcg-release -0.0.2", other.GlueHostApplicationSoftwareRunTimeEnvironment) ) && Member("VO-atlas-release -8.0.5".other.GlueHostApplicationSoftwareRunTimeEnvironment) ) && ( other.GlueCEPolicyMaxCPUTime >= ( Member("LCG -2\\_1\_0",other.GlueHostApplicationSoftwareRunTimeEnvironment) ? ( 36000000 / 60 ) : 36000000 ) / other.GlueHostBenchmarkSI00 ) ) && (other.GlueHostNetworkAdapterOutboundIP == true )) 総 (other.GlueHostMainMemoryRAMSize >= 512 ); RetryCount = 0; edg\_jobid = "https://lxb0728.cern.ch:9000/---BrI1BgbIqkwtszqGfmA"; Arguments = "dc2.003048.evgen.H4\_170\_WW.\_00002.pool.root dc2.003048.simul.H4\_170\_WW.\_00208.pool.root.2 -6 6 50 350 208"; Environment = { "LEXOR WRAPPER LOG=lexor wrapper.log", "LEXOR STAGEOUT MAXATTEMPT=5", "LEXOR STAGEOUT INTERVAL=60", "LEXOR LCG\_GFAL\_INFOSYS=1xb2011.cern.ch:2170","LEXOR\_T\_RELEASE=8.0.5", "LEXOR\_T\_PACKAGE=8.0.5.6/JobTransforms","LEXOR\_T\_BASEDIR=JobTransforms-08-00-05-06", "LEXOR\_TRANSFORMATION=share/ dc2.g4sim.trf"."LEXOR STAGEIN\_LOG=dq\_233387\_stagein.log","LEXOR\_STAGEIN\_SCRIPT=dq\_233387\_stagein.sh", "LEXOR\_STAGEOUT\_LOG=dg\_233387\_stageout.log","LEXOR\_STAGEOUT\_SCRIPT=dg\_233387\_stageout.sh" }; MyProxyServer = "lxb0727.cern.ch"; JobType = "normal"; Executable = "lexor\_wrap.sh"; StdOutput = "dc2.003048.simul.H4\_170\_WW.\_00208.job.log.2"; OutputSandbox = { "metadata.xml","lexor\_wrapper.log","dq\_233387\_stagein.log","dq\_233387\_stageout.log", "dc2.003048.simul.H4\_170\_WW.\_00208.job.log.2" }; VirtualOrganisation = "atlas"; rank = ( other.GlueCEStateEstimatedResponseTime > 999 ) ? -( other.GlueCEStateEstimatedResponseTime ) : -( other.GlueCEStateRunningJobs ); Type = "job"; StdError = "dc2.003048.simul.H4\_170\_WW.\_00208.job.log.2"; DefaultRank = -other.GlueCEStateEstimatedResponseTime; InputSandbox = { "/home/negri/windmill-0.9.15/lexor/inputsandbox/lexor\_wrap.sh". "/home/negri/windmill-0.9.15/lexor/inputsandbox/dqlcg.pv", "/home/negri/windmill-0.9.15/lexor/inputsandbox/edgrmpi.sh", "/home/negri/windmill-0.9.15/lexor/inputsandbox/dgrep.pl", "/home/negri/windmill-0.9.15/lexor/inputsandbox/run\_dqlcg.sh", "/tmp/lexor/negri/dq\_233387\_stagein.sh", "/tmp/lexor/negri/dq\_233387\_stageout.sh" } ] 

## Preparation of the data

- 1. Functional dependencies
- 2. Dimensionality reduction
  - Principal Component Analysis
  - Random Projection
  - Non linear Dimensionality Reduction
- 3. Propositionalization

curse of dimensionality

## Functional dependency

#### Definition

Given attributes X and X', X' depends on X on  $\mathcal{E}(X' \prec X)$  iff

$$\exists f: dom(X') \mapsto dom(X) \ s.t. \ \forall i = 1 \dots N, X(\mathbf{x}_i) = f(X'(\mathbf{x}_i))$$

#### Examples

- X' = City code, X = City name
- X' = Machine name, X = IP
- X' =Job ID, X =User ID

## Why removing FD ?

- Curse of dimensionality
- Biased distance

Functional dependency, 2

#### Trivial cases

#dom(X) = #dom(X') = N number of examples

#### Algorithm

Size:

$$(X' \prec X) \Rightarrow #dom(X) \leq #dom(X')$$

Sample Repeat Select  $v \in dom(X')$   $\mathcal{E}_v = \text{select } \mathbf{x}_i \text{ where } X'(\mathbf{x}_i) = v$ Define  $X(\mathcal{E}_v) = \{w \in dom(X), \exists x \in \mathcal{E}_v \mid X(x) = w\}$ If  $(\#X(\mathcal{E}_v) > 1)$  return false Until stop return true

# Dimensionality Reduction - Intuition

#### Degrees of freedom

- Image: 4096 pixels; but not independent
- Robotics: (# camera pixels + # infra-red) × time; but not independent

#### Goal

Find the (low-dimensional) structure of the data:

- Images
- Robotics
- Genes

# **Dimensionality Reduction**

## In high dimensions

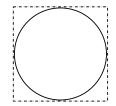
- Everybody lives in the corners of the space Volume of Sphere  $V_n = \frac{2\pi r^2}{n} V_{n-2}$
- All points are far from each other

#### Approaches

- Linear dimensionality reduction
  - Principal Component Analysis
  - Random Projection
- Non-linear dimensionality reduction

#### Criteria

- Complexity/Size
- Prior knowledge



#### e.g., relevant distance

### Linear Dimensionality Reduction

Training set

unsupervised

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathcal{E} = \{(\mathbf{x}_k), \mathbf{x}_k \in \mathbb{R}^D, k = 1 \dots N\}$$

Projection from  $\mathbb{R}^D$  onto  $\mathbb{R}^d$ 

$$\begin{split} \mathbf{x} \in \mathbb{R}^D \to & h(\mathbf{x}) \in \mathbb{R}^d, \ d << D \\ & h(\mathbf{x}) = A \mathbf{x} \end{split}$$
  
s.t. minimize  $\sum_{k=1}^N ||\mathbf{x}_k - h(\mathbf{x}_k)||^2$ 

## Principal Component Analysis

Covariance matrix S Mean  $\mu_i = \frac{1}{N} \sum_{k=1}^{N} X_i(\mathbf{x}_k)$ 

$$S_{ij} = rac{1}{N}\sum_{k=1}^{N}(X_i(\mathbf{x}_k) - \mu_i)(X_j(\mathbf{x}_k) - \mu_j)$$

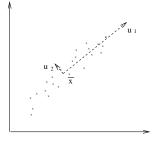
symmetric  $\Rightarrow$  can be diagonalized

$$S = U\Delta U' \quad \Delta = Diag(\lambda_1, \dots \lambda_D)$$

### Thm: Optimal projection in dimension dprojection on the first d eigenvectors of S

Let  $u_i$  the eigenvector associated to eigenvalue  $\lambda_i$   $\lambda_i > \lambda_{i+1}$ 

$$h: \mathbb{R}^D \mapsto \mathbb{R}^d, h(\mathbf{x}) = <\mathbf{x}, u_1 > u_1 + \ldots + <\mathbf{x}, u_d > u_d$$



### Sketch of the proof

1. Maximize the variance of 
$$h(\mathbf{x}) = A\mathbf{x}$$
  

$$\sum_{k} ||\mathbf{x}_{k} - h(\mathbf{x}_{k})||^{2} = \sum_{k} ||\mathbf{x}_{k}||^{2} - \sum_{k} ||h(\mathbf{x}_{k})||^{2}$$

Minimize 
$$\sum_{k} ||\mathbf{x}_{k} - h(\mathbf{x}_{k})||^{2} \Rightarrow \text{Maximize } \sum_{k} ||h(\mathbf{x}_{k})||^{2}$$

$$Var(h(\mathbf{x})) = \frac{1}{N} \left( \sum_{k} ||h(\mathbf{x}_{k})||^{2} - ||\sum_{k} h(\mathbf{x}_{k})||^{2} \right)$$

As

$$||\sum_{k} h(\mathbf{x}_{k})||^{2} = ||A\sum_{k} \mathbf{x}_{k}||^{2} = N^{2}||A\mu||^{2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where  $\mu = (\mu_1, \dots, \mu_D)$ . Assuming that  $\mathbf{x}_k$  are centered  $(\mu_i = 0)$  gives the result.

### Sketch of the proof, 2

2. Projection on eigenvectors  $u_i$  of SAssume  $h(\mathbf{x}) = A\mathbf{x} = \sum_{i=1}^{d} \langle \mathbf{x}, v_i \rangle v_i$  and show  $v_i = u_i$ .  $Var(AX) = (AX)(AX)' = A(XX')A' = ASA' = A(U\Delta U')A'$ Consider d = 1,  $v_1 = \sum w_i u_i$   $\sum w_i^2 = 1$  $remind \lambda_i > \lambda_{i+1}$ 

$$Var(AX) = \sum \lambda_i w_i^2$$

maximized for  $w_1 = 1, w_2 = \ldots = w_N = 0$ that is,  $v_1 = u_i$ . More : http://mplab.ucsd.edu/wordpress/tutorials/pca.pdf

## Principal Component Analysis, Practicalities Data preparation

Mean centering the dataset

$$\mu_i = \frac{1}{N} \sum_{k=1}^N X_i(\mathbf{x}_k)$$
  

$$\sigma_i = \sqrt{\frac{1}{N} \sum_{k=1}^N X_i(\mathbf{x}_k)^2 - \mu_i^2}$$
  

$$z_k = (\frac{1}{\sigma_i} (X_i(\mathbf{x}_k) - \mu_i))_{i=1}^D$$

#### Matrix operations

Computing the covariance matrix

$$S_{ij} = \frac{1}{N} \sum_{k=1}^{N} X_i(z_k) X_j(z_k)$$

► Diagonalizing S = U'∆U might be not affordable... Complexity  $\mathcal{O}(D^3)$ 

### Random projection

#### Random matrix

define

$$egin{aligned} A: \mathbb{R}^D &\mapsto \mathbb{R}^d \quad A[d,D] \quad A_{i,j} \sim \mathcal{N}(0,1) \ & h(\mathbf{x}) = rac{1}{\sqrt{d}} A \mathbf{x} \end{aligned}$$

Property: h preserves the norm in expectation

$$E[||h({\bf x})||^2] = ||{\bf x}||^2$$
 With high probability 
$$1 - 2exp\{-(\varepsilon^2 - \varepsilon^3)\frac{d}{4}\}$$

$$|\mathbf{1} - \varepsilon)||\mathbf{x}||^2 \le ||\mathbf{h}(\mathbf{x})||^2 \le (1 + \varepsilon)||\mathbf{x}||^2$$

### Random projection

Proof

$$h(\mathbf{x}) = \frac{1}{\sqrt{d}} A \mathbf{x}$$

$$E(||h(\mathbf{x})||^2) = \frac{1}{d} E \left[ \sum_{i=1}^d \left( \sum_{j=1}^D A_{i,j} X_j(\mathbf{x}) \right)^2 \right]$$

$$= \frac{1}{d} \sum_{i=1}^d E \left[ \left( \sum_{j=1}^D A_{i,j} X_j(\mathbf{x}) \right)^2 \right]$$

$$= \frac{1}{d} \sum_{i=1}^d \sum_{j=1}^D E[A_{i,j}^2] E[X_j(\mathbf{x})^2]$$

$$= \frac{1}{d} \sum_{i=1}^d \sum_{j=1}^D \frac{||\mathbf{x}||^2}{D}$$

$$= ||\mathbf{x}||^2$$

<□ > < @ > < E > < E > E のQ @

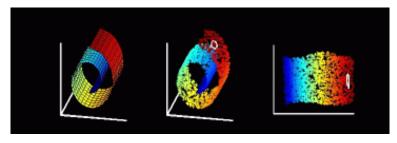
### Random projection, 2

# Johnson Lindenstrauss Lemma For $d > \frac{9 \ln D}{\varepsilon^2 - \varepsilon^3}$ , with high probability $(1 - \varepsilon)||\mathbf{x}_i - \mathbf{x}_j||^2 \le ||h(\mathbf{x}_i) - h(\mathbf{x}_j)||^2 \le (1 + \varepsilon)||\mathbf{x}_i - \mathbf{x}_j||^2$

More:

http://www.cs.yale.edu/clique/resources/RandomProjectionMethod.pdf

## Non-Linear Dimensionality Reduction



#### Conjecture

Examples live in a manifold of dimension  $d \ll D$ 

Goal: consistent projection of the dataset onto  $\mathbb{R}^d$ Consistency:

- Preserve the structure of the data
- e.g. preserve the distances between points

## Multi-Dimensional Scaling

#### Position of the problem

- Given  $\{\mathbf{x}_1, \ldots, \mathbf{x}_N, \mathbf{x}_i \in \mathbb{R}^D\}$
- Given  $sim(\mathbf{x}_i, \mathbf{x}_j) \in \mathbb{R}^+$
- Find projection  $\Phi$  onto  $\mathbb{R}^d$

$$\begin{array}{ll} x \in \mathbb{R}^D \to & \Phi(x) \in \mathbb{R}^d \\ sim(\mathbf{x}_i, \mathbf{x}_j) \sim & sim(\Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j)) \end{array}$$

#### Optimisation

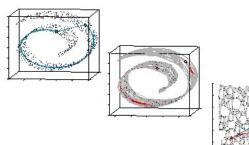
Define X,  $X_{i,j} = sim(\mathbf{x}_i, \mathbf{x}_j)$ ;  $X^{\Phi}$ ,  $X_{i,j}^{\Phi} = sim(\Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j))$ Find  $\Phi$  minimizing ||X - X'||Rq : Linear  $\Phi$  = Principal Component Analysis But linear MDS does not work: preserves all distances, while only *local* distances are meaningful

### Non-linear projections

### Approaches

- Reconstruct global structures from local ones and find global projection
- Only consider local structures

Intuition: locally, points live in  $\mathbb{R}^d$ 



Isomap

LLE

### Isomap

Tenenbaum, da Silva, Langford 2000 http://isomap.stanford.edu

### Estimate $d(x_i, x_j)$

- ▶ Known if **x**<sub>i</sub> and **x**<sub>j</sub> are close
- Otherwise, compute the shortest path between x<sub>i</sub> and x<sub>j</sub> geodesic distance (dynamic programming)

#### Requisite

If data points sampled in a convex subset of  $\mathbb{R}^d$ , then geodesic distance  $\sim$  Euclidean distance on  $\mathbb{R}^d$ .

#### General case

- Given  $d(\mathbf{x}_i, \mathbf{x}_j)$ , estimate  $< \mathbf{x}_i, \mathbf{x}_j >$
- Project points in  $\mathbb{R}^d$

Isomap, 2



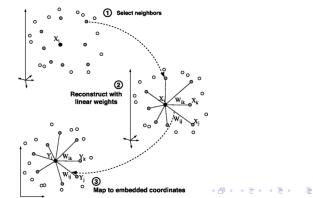
~ ~ ~ ~

## Locally Linear Embedding

Roweiss and Saul, 2000 http://www.cs.toronto.edu/~roweis/lle/

#### Principle

 Find local description for each point: depending on its neighbors



### Local Linear Embedding, 2

#### Find neighbors

For each  $\mathbf{x}_i$ , find its nearest neighbors  $\mathcal{N}(i)$ Parameter: number of neighbors

#### Change of representation

Goal Characterize  $\mathbf{x}_i$  wrt its neighbors:

$$\mathbf{x}_i = \sum_{j \in \mathcal{N}(i)} w_{i,j} \mathbf{x}_j \quad ext{ with } \sum_{j \in \mathcal{N}(i)} w_{ij} = 1$$

Property: invariance by translation, rotation, homothety How Compute the local covariance matrix:

$$C_{j,k} = < x_j - x_i, x_k - x_i >$$

Find vector  $w_i$  s.t.  $Cw_i = 1$ 

### Local Linear Embedding, 3

Algorithm Local description: Matrix W such that

$$\sum_{j} w_{i,j} = 1$$

$$W = \operatorname{argmin} \{\sum_{i=1}^{N} ||\mathbf{x}_i - \sum_j w_{i,j} \mathbf{x}_j||^2\}$$

Projection: Find  $\{z_1, \ldots, z_n\}$  in  $\mathbb{R}^d$  minimizing

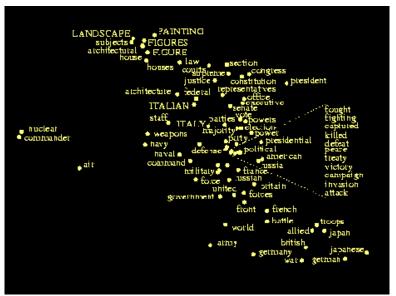
$$\sum_{i=1}^{N} ||z_i - \sum_j w_{i,j} z_j||^2$$

Minimize ((I - W)Z)'((I - W)Z) = Z'(I - W)'(I - W)Z

Solutions: vectors  $z_i$  are eigenvectors of (I - W)'(I - W)

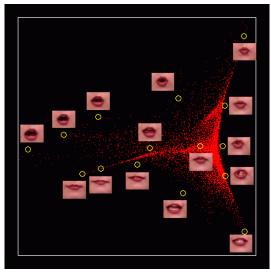
► Keeping the *d* eigenvectors with lowest eigenvalues > 0

### Example, Texts



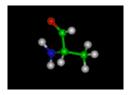
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

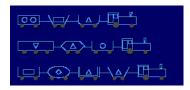
### Example, Images



LLE

#### Relational domains





#### Relational learning

 PROS
 Inductive Logic Programming

 Use domain knowledge
 Data Mining

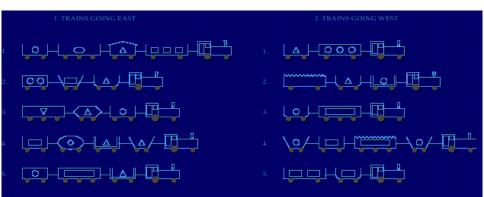
 CONS
 Data Mining

 Covering test ≡ subgraph matching
 exponential complexity

Getting back to propositional representation: propositionalization

### West - East trains

#### Michalski 1983



### Linus (ancestor)

Lavrac et al, 94

$$\begin{array}{lll} \textit{West}(a) \leftarrow & \textit{Engine}(a,b), \textit{first\_wagon}(a,c), \textit{roof}(c), \textit{load}(c,\textit{square},3)...\\ \textit{West}(a') \leftarrow & \textit{Engine}(a',b'), \textit{first\_wagon}(a',c'), \textit{load}(c',\textit{circle},1)... \end{array}$$

| West | Engine(X) | First Wagon(X,Y) | Roof(Y) | $Load_1(Y)$ | $Load_2(Y)$ |
|------|-----------|------------------|---------|-------------|-------------|
| а    | b         | С                | yes     | square      | 3           |
| a'   | b'        | c'               | no      | circle      | 1           |

Each column: a role predicate, where the predicate is determinate linked to former predicates (left columns) with a single instantiation in every example

#### Stochastic propositionalization

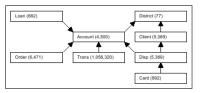
Kramer, 98

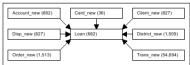
Construct random formulas  $\equiv$  boolean features

#### SINUS - RDS

http://www.cs.bris.ac.uk/home/rawles/sinus http://labe.felk.cvut.cz/~zelezny/rsd

- Use modes (user-declared) modeb(2,hasCar(+train,-car))
- Thresholds on number of variables, depth of predicates...
- Pre-processing (feature selection)





DB Schema

Propositionalization

#### RELAGGS

Database aggregates

- average, min, max, of numerical attributes
- number of values of categorical attributes

## Overview of the Tutorial

### Autonomic Computing

- ML & DM for Systems: Introduction, motivations, applications
- Zoom on an application: Performance management

#### Autonomic Grid

- ► EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

### Modelling Jobs

- Exploratory Analysis and Clustering
- Standard approaches, stability, affinity propagation

## Part 3: Clustering

#### Approaches

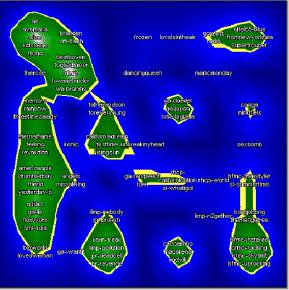
- K-Means
- ► EM
- Selecting the number of clusters
- Clustering the EGEE jobs
  - Dealing with heterogeneous data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assessing the results

## Clustering

#### http://www.ofai.at/ elias.pampalk/music/



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q ()~.

## **Clustering Questions**

#### Hard or soft ?

- Hard: find a partition of the data
- Soft: estimate the distribution of the data as a mixture of components.



#### Parametric vs non Parametric ?

- Parametric: number K of clusters is known
- Non-Parametric: find K (wrapping a parametric clustering algorithm)

#### Caveat:

- Complexity
- Outliers
- Validation

## Formal Background

#### Notations

| ${\mathcal E}$ | $\{\mathbf{x}_1, \dots \mathbf{x}_N\}$ dataset |
|----------------|------------------------------------------------|
|----------------|------------------------------------------------|

- Ν number of data points
- Κ number of clusters

given or optimized

| $C_k$     | <i>k</i> -th cluster                       | Hard clustering |
|-----------|--------------------------------------------|-----------------|
| $\tau(i)$ | index of cluster containing $\mathbf{x}_i$ |                 |

| f <sub>k</sub> | <i>k</i> -th model     | Soft clustering |
|----------------|------------------------|-----------------|
| $\gamma_k(i)$  | $Pr(\mathbf{x}_i f_k)$ |                 |

### Solution

Soft Clustering

Hard Clustering Partition  $\Delta = (C_1, \ldots, C_k)$  $\forall i \sum_{k} \gamma_k(i) = 1$ 

### Formal Background, 2

### Quality / Cost function

Measures how well the clusters characterize the data

- ► (log)likelihood soft clustering
- dispersion

hard clustering

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} d(\mathbf{x}_i, \mathbf{x}_j)^2$$

#### Tradeoff

Quality increases with  $K \Rightarrow$  Regularization needed

to avoid one cluster per data point

### Clustering vs Classification

#### Marina Meila http://videolectures.net/

#### Classification

#### Clustering

K# classes (given)QualityGeneralization errorFocus onTest setGoalPredictionAnalysisdiscriminantFieldmature

# clusters (unknown) many cost functions Training set Interpretation exploratory new

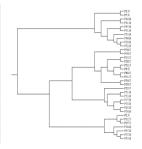
・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

## Non-Parametric Clustering

Hierarchical Clustering

### Principle

- agglomerative (join nearest clusters)
- divisive (split most dispersed cluster)

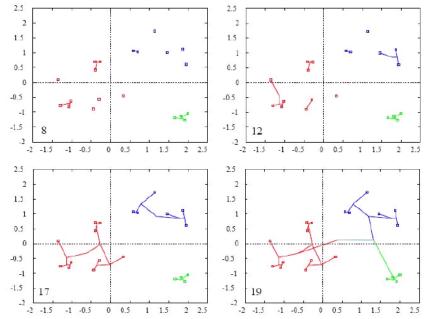


イロト イポト イヨト イヨト

э

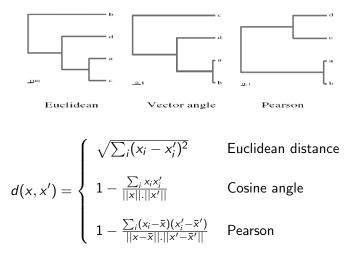
**CONS**: Complexity  $\mathcal{O}(N^3)$ 

### Hierarchical Clustering, example



790

### Influence of distance/similarity



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

## Parametric Clustering

K is known

Algorithms based on distances

- ► *K*-means
- ► graph / cut

Algorithms based on models

Mixture of models: EM algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### K-Means

### Algorithm

1. Init: Uniformly draw K points  $\mathbf{x}_{i_i}$  in  $\mathcal{E}$ Set  $C_i = \{\mathbf{x}_{i_i}\}$ 2. Repeat Draw without replacement  $\mathbf{x}_i$  from  $\mathcal{E}$ 3. 4.  $\tau(i) = \operatorname{argmin}_{k=1\dots K} \{ d(\mathbf{x}_i, C_k) \}$ find best cluster for  $\mathbf{x}_i$  $C_{\tau(i)} = C_{\tau(i)} \bigcup \mathbf{x}_i$ 5. add  $\mathbf{x}_i$  to  $C_{\tau(i)}$ 6. Until all points have been drawn 7. If partition  $C_1 \ldots C_K$  has changed Stabilize Define  $\mathbf{x}_{i_k} = \text{best point in } C_k, C_k = \{x_{i_k}\}, \text{ goto } 2.$ 

#### Algorithm terminates

### K-Means, Knobs

### Knob 1 : define $d(\mathbf{x}_i, C_k)$

$$\min\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$$

- \* average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$
- $max\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$

#### favors

long clusters compact clusters spheric clusters

#### Knob 2 : define "best" in $C_k$

- Medoid
- \* Average
   (does not belong to *E*)

$$\begin{aligned} \operatorname{argmin}_{i} \{ \sum_{\mathbf{x}_{j} \in C_{k}} d(\mathbf{x}_{i}, \mathbf{x}_{j}) \} \\ \frac{1}{|C_{k}|} \sum_{\mathbf{x}_{j} \in C_{k}} \mathbf{x}_{j} \end{aligned}$$

・ロト・西・・山・・ ・日・

### No single best choice

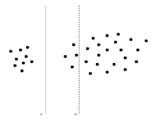


FIG. 1. Optimizing the diameter produces B while A is clearly more desirable.

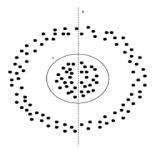


FIG. 2. The inferior clustering B is found by optimizing the 2-median measure.

# K-Means, Discussion

### PROS

- Complexity  $\mathcal{O}(K \times N)$
- Can incorporate prior knowledge

initialization

## CONS

- Sensitive to initialization
- Sensitive to outliers
- Sensitive to irrelevant attributes

# K-Means, Convergence

#### For cost function

$$\mathcal{L}(\Delta) = \sum_{k} \sum_{i,j \neq \tau(i) = \tau(j) = k} d(\mathbf{x}_i, \mathbf{x}_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ for 
$$d(\mathbf{x}_i, C_k) =$$
 average  $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$ 

▶ for "best" in 
$$C_k$$
 = average of  $\mathbf{x}_j \in C_k$ 

K-means converges toward a (local) minimum of  $\mathcal{L}$ .

## K-Means, Practicalities

#### Initialization

- Uniform sampling
- Average of  $\mathcal{E}$  + random perturbations
- Average of  $\mathcal{E}$  + orthogonal perturbations
- Extreme points: select  $\mathbf{x}_{i_1}$  uniformly in  $\mathcal{E}$ , then

Select 
$$x_{i_j} = argmax\{\sum_{k=1}^{j} d(\mathbf{x}_i, x_{i_k})\}$$

#### Pre-processing

Mean-centering the dataset

# Model-based clustering

Mixture of components

• Density 
$$f = \sum_{k=1}^{K} \pi_k f_k$$

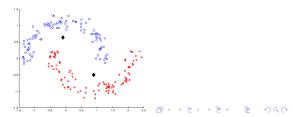
•  $f_k$ : the k-th component of the mixture

$$\blacktriangleright \gamma_k(i) = \frac{\pi_k f_k(x)}{f(x)}$$

• induces 
$$C_k = \{\mathbf{x}_j \mid k = argmax\{\gamma_k(j)\}\}$$

#### Nature of components: prior knowledge

- Most often Gaussian:  $f_k = (\mu_k, \Sigma_k)$
- Beware: clusters are not always Gaussian...



### Model-based clustering, 2

#### Search space

• Solution : 
$$(\pi_k, \mu_k, \Sigma_k)_{k=1}^K = \theta$$

Criterion: log-likelihood of dataset

$$\ell(\theta) = \log(\Pr(\mathcal{E})) = \sum_{i=1}^{N} \log \Pr(\mathbf{x}_i) \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \log(\pi_k f_k(\mathbf{x}_i))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

to be maximized.

# Model-based clustering with EM

Formalization

- Define  $z_{i,k} = 1$  iff  $\mathbf{x}_i$  belongs to  $C_k$ .
- $E[z_{i,k}] = \gamma_k(i)$  prob. **x**<sub>i</sub> generated by  $\pi_k f_k$
- Expectation of log likelihood

$$E[\ell(\theta)] \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log(\pi_k f_k(\mathbf{x}_i))$$
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log f_k(\mathbf{x}_i)$$

### EM optimization

E step Given  $\theta$ , compute

$$\gamma_k(i) = \frac{\pi_k f_k(\mathbf{x}_i)}{f(x)}$$

M step Given  $\gamma_k(i)$ , compute

$$\theta^* = (\pi_k, \mu_k, \Sigma_k)^* = \operatorname{argminE}[\ell(\theta)]$$
 is in the second se

#### Maximization step

 $\pi_k$ : Fraction of points in  $C_k$ 

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k(i)$$

 $\mu_k$ : Mean of  $C_k$ 

$$\mu_k = \frac{\sum_{i=1}^N \gamma_k(i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_k(i)}$$

 $\Sigma_k$ : Covariance

$$\Sigma_k = \frac{\sum_{i=1}^N \gamma_k(i)(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)'}{\sum_{i=1}^N \gamma_k(i)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Choosing the number of clusters

K-means constructs a partition whatever the K value is.

Selection of K

Bayesian approaches

Tradeoff between accuracy / richness of the model

Stability

Varying the data should not change the result

Gap statistics

Compare with null hypothesis: all data in same cluster.

#### Bayesian approaches

Bayesian Information Criterion

$$BIC( heta) = \ell( heta) - rac{\# heta}{2} \log N$$

Select  $K = \operatorname{argmax} BIC(\theta)$ where  $\#\theta = \operatorname{number}$  of free parameters in  $\theta$ :

 $\blacktriangleright$  if all components have same scalar variance  $\sigma$ 

$$\#\theta = K - 1 + 1 + Kd$$

• if each component has a scalar variance  $\sigma_k$ 

$$\#\theta = K - 1 + K(d+1)$$

• if each component has a full covariance matrix  $\Sigma_k$ 

$$\#\theta = K - 1 + K(d + d(d - 1)/2)$$

### Gap statistics

#### Principle: hypothesis testing

- 1. Consider hypothesis  $H_0$ : there is no cluster in the data.  $\mathcal{E}$  is generated from a no-cluster distribution  $\pi$ .
- Estimate the distribution f<sub>0,K</sub> of L(C<sub>1</sub>,...C<sub>K</sub>) for data generated after π. Analytically if π is simple Use Monte-Carlo methods otherwise
- 3. Reject  $H_0$  with confidence  $\alpha$  if the probability of generating the true value  $\mathcal{L}(C_1, \ldots, C_K)$  under  $f_{0,K}$  is less than  $\alpha$ .

Beware: the test is done for all K values...

# Gap statistics, 2

### Algorithm

Assume  $\ensuremath{\mathcal{E}}$  extracted from a no-cluster distribution, e.g. a single Gaussian.

- 1. Sample  ${\mathcal E}$  according to this distribution
- 2. Apply K-means on this sample
- 3. Measure the associated loss function

Repeat : compute the average  $\overline{\mathcal{L}}_0(K)$  and variance  $\sigma_0(K)$ Define the gap:

$$Gap(K) = \overline{\mathcal{L}}_0(K) - \mathcal{L}(C_1, \dots C_K)$$

Rule Select min K s.t.

$$Gap(K) \geq Gap(K+1) - \sigma_0(K+1)$$

What is nice: also tells if there are no clusters in the data...

# Stability

### Principle

- Consider  $\mathcal{E}'$  perturbed from  $\mathcal{E}$
- Construct  $C'_1, \ldots C'_K$  from  $\mathcal{E}'$
- Evaluate the "distance" between  $(C_1, \ldots, C_K)$  and  $(C'_1, \ldots, C'_K)$
- ▶ If small distance (stability), K is OK

# Distortion $D(\Delta)$

Define 
$$S$$
  $S_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$   
 $(\lambda_i, v_i)$  i-th (eigenvalue, eigenvector) of  $S$   
 $X$   $X_{i,j} = 1$  iff  $\mathbf{x}_i \in C_j$   
 $D(\Delta) = \sum_i ||\mathbf{x}_i - \mu_{\tau(i)}||^2 = tr(S) - tr(X'SX)$ 

Minimal distortion  $D^* = tr(S) - \sum_{k=1}^{K-1} \lambda_k$ 

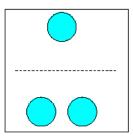
# Stability, 2

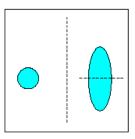
Results

- $\Delta$  has low distortion  $\Rightarrow (\mu_1, \dots \mu_K)$  close to space  $(v_1, \dots v_K)$ .
- $\Delta_1$ , and  $\Delta_2$  have low distortion  $\Rightarrow$  "close"
- (and close to "optimal" clustering)

```
Meila ICML 06
```

#### Counter-example





# Overview

### Autonomic Computing

- A booming field of applications
- Machine Learning and Data Mining for Systems

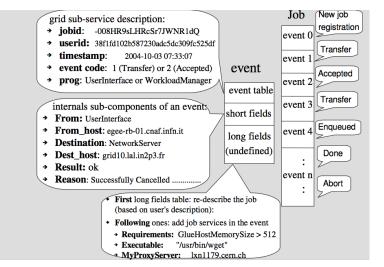
### Autonomic Grid

- EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

### Modelling Jobs

- Exploratory Analysis and Clustering
- Clustering the jobs

### Job representation



Xiangliang Zhang et al., ICDM wshop on Data streams, 2007

## Job representation

### Challenges

- Sparse representation, e.g. "user id"
- No natural distance

#### Prior knowledge

- Coarse job classification: succeeds (SUC) or fails (FAIL)
- Many failure types: Not Available Resources (NAR); User Aborted (ABU); Generic and non-Generic Error (GNG).
- Jobs are heterogeneous
  - Due to users (advanced or naive)
  - Due to virtual organizations (jobs in physics  $\neq$  jobs in biology)
  - Due to time: grid load depends on the community activity

### Feature extraction

### Slicing data

#### to get rid of heterogeneity

- Split jobs per user:  $U_i = \{ \text{ jobs of } i\text{-th user } \}$
- Split jobs per week: W<sub>j</sub> = { jobs launched in j-th week }

### Building features

 Each data slice: a supervised learning problem (discriminating SUCC from FAIL)

$$h: \mathcal{X} \mapsto \mathbb{R}$$

- Supervised Learning Algorithms:
  - Support Vector Machine
  - Optimization of AUC

SVMLight ROGER

# Feature Extraction, 2

New features Define

 $\begin{array}{l} h_{u,i} \text{ hypothesis learned from data slice } U_i \\ U : \mathcal{X} \mapsto \mathbb{R}^{\# u} \\ U(\mathbf{x}) = (h_{u,1}(\mathbf{x}), \dots h_{u,\# u}(\mathbf{x})) \\ \text{Symmetrically} \quad h_{w,i} \text{ hypothesis learned from data slice } W_i \\ W : \mathcal{X} \mapsto \mathbb{R}^{\# w} \\ W(\mathbf{x}) = (h_{w,1}(\mathbf{x}), \dots h_{w,\# w}(\mathbf{x})) \end{array}$ 

Change of representation

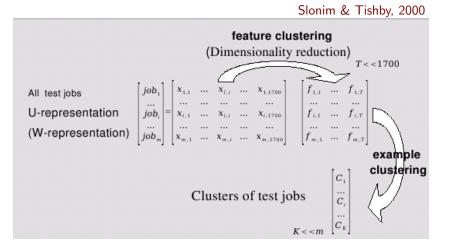
$$\begin{array}{ll} \mathcal{E} & \to & \mathcal{E}_U = \{(U(\mathbf{x}_i), y_i), i = 1 \dots N\} \\ & \to & \mathcal{E}_W = \{(W(\mathbf{x}_i), y_i), i = 1 \dots N\} \end{array}$$

#### Discussion

- Natural distance
- But new attributes  $h_{u,i}$  likely to be redundant

on  $\mathbb{R}^d$ 

## Feature Extraction: Double clustering



・ロト・西ト・西ト・日・ 日・ シック

# Experimental setting

### The datasets

- ► Training set *E*: 222,500 jobs
- Test set T: 21,512 jobs

### Hypothesis construction

- SVM: one hypothesis per slice:
- ROGER: 50 hypotheses per slice

#### Clustering

Foreach  $K = 5 \dots 30$ , Apply K-means to T

- Considering new representations U and W
- Learned after SVM and Roger.

36% SUCC, 74% FAIL

 $U: \mathcal{X} \mapsto \mathbb{R}^{34}$  $W: \mathcal{X} \mapsto \mathbb{R}^{45}$  $U: \mathcal{X} \mapsto \mathbb{R}^{1700}$  $W: \mathcal{X} \mapsto \mathbb{R}^{2250}$ 

# Goal of Experiments

#### Interpretation

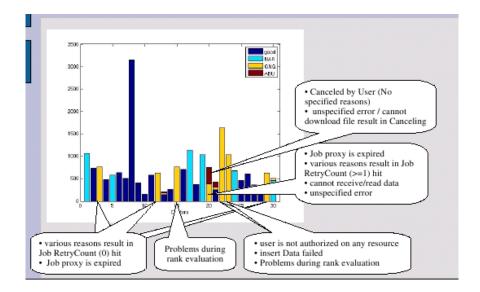
Examine the clusters

#### Stability

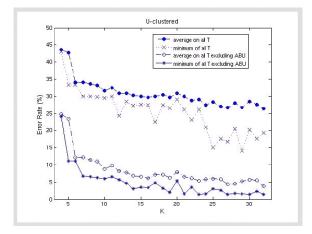
- Compare  $\Delta_K$  and  $\Delta_{K'}$
- Compare  $\Delta_{K,U}$  and  $\Delta_{K,W}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Interpretation



# Interpretation, 2



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

# Interpretation, 3

#### Pure clusters

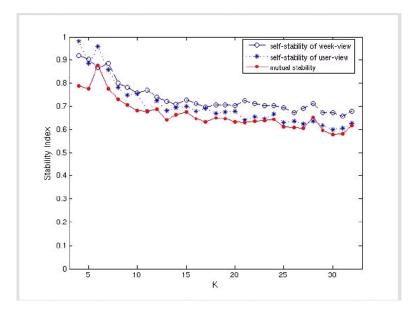
- Most clusters are pure wrt sub-classes NAR, GNG which were unknown from the algorithm
- Finer-grained classes are discovered: Problem during rank evaluation; job proxy expired; insert Data failed

 ABU class (1.2%) is not properly identified: many reasons why job might be Aborted by User

#### Usage

Use prediction for user-friendly service Anticipate job failures

# Stability



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● のへ(で)

# Stability, 2

- $\blacktriangleright$  Stability wrt initialization, for both W and U representations
- $\blacktriangleright$  Stability of clusters based on W and U-based representations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 Decreases gracefully with K (optimal value = 1)

# Grid Modelling, wrap-up

## Conclusion

- Importance of representation
- Clustering: stable wrt K and representation change re-discovers types of failures discovers finer-grained failures

#### Future work

- Cluster users (= sets of jobs)
- Cluster weeks (= sets of jobs)
- Find scenarios

   naive users gaining expertise;
   grid load & temporal regularities
- Identify communities of users.
- ▶ Use scenarios to test/optimize grid services (e.g. scheduler)

as usual

# Autonomic Computing, wrap-up

#### Huge needs

Modelling systems

Black box to calibrate, train, optimize services

Understanding systems

Hints to repair, re-design systems

#### Dealing with Complex Systems

- Findings often challenge conventional wisdow
- Theoretical vs Empirical models
- Complex systems are counter-intuitive sometimes

# Autonomic Computing, wrap-up, 2

### Good practice

- No Magic ! I don't see anything, I'll use ML or DM
- Use all of your prior knowledge If you can measure/model it, don't guess it!
- Have conjectures
- Test them!

Beware: False Discovery Rate

### Thanks to

- Cécile Germain-Renaud
- Xiangliang Zhang
- Cal Loomis
- Nicolas Baskiotis
- Moises Goldszmidt
- The PASCAL Network of Excellence

http://www.pascal-network.org

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで