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Abstract

We introduce a reduction-based model for an-
alyzing supervised learning tasks. We use
this model to devise a new reduction from
cost-sensitive classification to binary classifi-
cation with the following guarantee: If the
learned binary classifier has error rate at
most ε then the cost-sensitive classifier has
cost at most 2ε times the expected sum of
costs of all choices. Since cost-sensitve classi-
fication can embed any bounded loss finite
choice supervised learning task, this result
shows that any such task can be solved us-
ing a binary classification oracle. Finally,
we present experimental results showing that
our new reduction outperforms existing algo-
rithms for multi-class cost-sensitive learning.

1 Introduction

Supervised learning involves learning a function from
supplied examples. There are many natural supervised
learning tasks; classification alone comes in a num-
ber of different forms (e.g., binary, multi-class, cost-
sensitive, importance weighted). Generally, there are
two ways to approach a new task 1. The first is to solve
it independently from other tasks. The second is to re-
duce it to a task that has already been thoroughly an-
alyzed, automatically transferring existing theory and
algorithms from well-understood tasks to new tasks.
We investigate (and advocate) the latter approach.

Motivation. Informally, a reduction is a learning ma-
chine that solves one task using oracle (i.e., black-box)
access to a solver for another task. Reductions present
a powerful tool with a number of desirable properties:

1. They provide a formal way of comparing how rel-
atively easy different tasks are. If task A reduces
to task B, it is reasonable to say that A is not

1We use “task” instead of a more common “problem”
because we distinguish between them formally.
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much harder than B. If in addition B also reduces
to A, we can conclude that A and B are similar.
The more restricted the notion of a reduction, the
stronger the conclusions.

2. If A can be reduced to B, then techniques for
solving B can be used to solve A, transferring
results from one learning task to another. This
saves both research and development effort.

3. Reductions allow one to study an entire class of
tasks by focusing on a single primitive (they also
help to identify such primitives). Any progress
on the primitive immediately implies progress for
every task in the class. It also simplifies the eval-
uation of different learning algorithms for effec-
tiveness.

4. Viewed as negative statements, reductions imply
relative lower bounds stating that progress on one
task cannot be achieved without making progress
on some primitive.

There is an essential discrepancy between theory and
practice of supervised learning. On one hand, it is
impossible to prove, without making any assumptions,
that we can learn to predict well. (For example, in
PAC-learning we might assume that all examples are
sampled independently and the problem is predicting
an unknown decision list.) On the other hand, learning
algorithms are often succesfully used in practice.

Reductions give us a way to cope with this discrep-
ancy. They provide us with a useful tool to show rel-
ative ability to learn – relative to basic tasks that are
better understood. In other words, reductions allow us
to make statements of the form “Good performance of
the oracle on subproblems generated by the reduction
translates into good performance on the original prob-
lem”. Such statements can be made without any as-
sumptions that cannot be verified, or do not generally
hold in practice.

We propose an analysis framework allowing us to prove
such error transformation guarantees. Attempts to un-
derstand this framework in terms of sample complex-
ity based models of learning (Vapnik & Chevonenkis,
1971; Valiant, 1984) will fail; it is important to under-
stand that this is a different model of analysis.



To test the model, we consider learning machines
which have oracle access to a solver for classifica-
tion problems, and ask what can be done with such
a machine. Section 3 presents a new reduction from
cost-sensitive classification to binary classification and
quantifies the way in which errors by the binary clas-
sification oracle induce errors in the original problem.
Since cost-sensitve classification (see the definitions in
Section 2) can express any bounded loss finite choice
supervised learning task, this result shows that any
such task can be solved using a binary classification
oracle.

To give further evidence that the proposed framework
allows for a tractable analysis, we show how to ana-
lyze several existing algorithms in this model (see Sec-
tion 6).

In addition to the above theoretical motivations, there
is significant empirical evidence (see (Zadrozny et al.,
2003), (Freund & Schapire, 1997), (Dietterich &
Bakiri, 1995)) that this style of analysis often pro-
duces learning algorithms that perform well in prac-
tice. Section 3.2 presents experimental results show-
ing that our new reduction outperforms existing algo-
rithms for multi-class cost-sensitive learning.

2 Basic Definitions

This section defines the basic concepts.

Definition 1. A supervised learning task is a tuple
(K, Y, `), where K is the space of supervised advice
available at training time, Y is a prediction space, and
` : K × Y → [0,∞) is a loss function.

We assume that ` is nonconstant in both arguments,
which is satisfied by any reasonable loss function. To
test the definition, we instantiate it for common clas-
sification tasks. For binary classification, K = {0, 1}
(the space of labels given for training examples), Y =
{0, 1}, and `(k, y) = I(k 6= y), where I(·) is the indi-
cator function which is 1 when the argument is true
and 0 otherwise. A simple generalization to more
than two labels gives multiclass classification with
K = Y = {1, . . . , r} and `(k, y) = I(k 6= y).

In general, the space K of advice provided at train-
ing time need not equal the prediction space Y . We
sometimes need this additional flexibility (also used in
(Haussler, 1992)) to provide some information to the
learning algorithm about the loss of different choices.
For example, in importance weighted classification,
we want to specify that predicting some examples
correctly is more important than predicting others,
which is done by letting K = {1, . . . , r} × [0,∞) and
`(〈k1, k2〉, y) = k2I(k1 6= y). In cost-sensitive classifi-
cation, K is used to associate a cost to each prediction
y ∈ Y by setting K = [0,∞)r and `(〈k1, . . . , kr〉, y) =

ky. In both examples above, the prediction space Y is
{1, . . . , r}.

A task is (implicitly) a set of learning problems, each of
which requires more information to be fully specified.

Definition 2. A supervised learning problem is a
tuple (D,X, T ), where T = (K, Y, `) is a supervised
learning task, X is an arbitrary feature space, and D
is a distribution over X ×K.

The goal in solving a supervised learning problem is to
find a hypothesis h : X → Y minimizing the expected
loss E(x,k)∼D`(k, h(x)). Finding h is difficult because
D is generally not known at training time. For any
particular hypothesis h, the loss rate

hD = E(x,k)∼D`(k, h(x))

is a fundamental quantity of interest.

Definition 3. A supervised learning algorithm for
task (K, Y, `) is a procedure mapping any finite set of
examples in (X ×K)∗ to a hypothesis h : X → Y .

We do not require that training and test examples are
drawn from the same distribution. We also do not
require the samples to agree with some hypothesis in
a predetermined class, as in the PAC learning model.

We use these definitions in Section 4 to define the er-
ror limiting reductions model, mentioned informally in
the introduction. Ultimately, the real test of a learning
model is whether it allows for tractable analysis lead-
ing to useful learning algorithms. Thus to motivate the
formulations of the model, we first show an example
of what can be done with this model. In particular,
we present a new reduction from cost-sensitive clas-
sification to binary classification and prove its error-
transformation bounds. To give further evidence, Sec-
tion 6 shows that the model captures several existing
machine learning algorithms.

3 Reduction from Cost Sensitive Clas-
sification to Binary Classification

We present a new reduction, Weighted All-Pairs,
from r-class cost sensitive classification to importance
weighted binary classification. It can be composed
with the Costing reduction (Zadrozny et al., 2003)
to yield a reduction to binary classification. Since
cost sensitive classification can express any supervised
learning task we consider, this implies that any such
task can be solved using binary classification. (The
reduction is defined for any feature space X, and we
assume that X has been fixed and all distributions are
over X × [0,∞)r.)



3.1 The Algorithm

For a given cost-sensitive example (x, k1, . . . , kr), let
L(t) be the function L(t) = |{j | kj ≤ t}|, for
t ∈ [0,∞). By shifting, we may assume that the min-
imum cost kmin = 0, so that t ≥ 0 implies L(t) ≥ 1.
Optimizing the loss of the shifted problem is equiva-
lent to optimizing the loss of the original problem. To
define the reduction, we need values vi defined by

vi =
∫ ki

0

1/L(t)dt .

Note that the values are order-preserving: ki < kj iff
vi < vj for all i and j.

The algorithms specifying the reduction are given be-
low.

1 WAP-Train (Set of r-class cost sensitive examples
S, importance weighed binary classifier learning algo-
rithm B)

Set S′ = ∅.
for all examples (x, k1, . . . , kr) in S do

for all pairs (i, j) with 1 ≤ i < j ≤ r do
Add an importance weighted example
(〈x, i, j〉, I(ki < kj), |vj − vi|) to S′.

end for
end for
Return h = B(S′).

We say that label i beats label j for input x if either
i < j and h(〈x, i, j〉) = 1, or i > j and h(〈x, j, i〉) = 0.

2 WAP-Test (classifier h, example x)

for all pairs (i, j) with 1 ≤ i < j ≤ r do
Evaluate h(〈x, i, j〉)

end for
Output argmaxi|{j | i beats j}|.

Note that if h makes no errors and ki 6= kj , then label
i beats label j exactly when ki < kj . WAP-Test
outputs the label which beats the maximum number
of other labels, with ties broken arbitrarily.

Before stating the error transform, we must first de-
fine the distribution induced by the reduction on the
importance-weighted binary classifier (to which the
reduction makes a single call). To draw a sample
from this distribution, we first draw a cost sensi-
tive sample (x, k1, . . . , kr) from the input distribution
D and then apply WAP-Train to the singleton set
{(x, k1, . . . , kr)} to get a sequence of

(
r
2

)
examples for

the binary classifier. Now we just sample uniformly
from this set. We overload and denote the induced

distribution by WAP-Train(D). Recall that the loss
rate of classifier h on distribution D is denoted by hD.

Theorem 1. (WAP error efficiency) For all impor-
tance weighted binary learning algorithms B and cost-
sensitive datasets S, let h = WAP-Train(S, B).
Then for all cost-sensitive test distributions D,

WAP-Test(h)D ≤ 2hWAP-Train(D).

This theorem states that the cost sensitive loss is
bounded by twice the importance weighted loss on the
induced importance weighted learning problem.

Theorem 1 and the Costing reduction (Theorem 4 in
Section 6.1) imply the following efficiency guarantess:

Theorem 2. For all cost sensitive test distributions
D, let D′ be the binary classification problem induced
by WAP-Train and Costing, and h be the learned
binary classifier. Then

WAP-Test(h)D ≤ 2hD′E〈x,k1,...,kr〉∼D

r∑
i=1

ki.

For notational simplicity, assume that k1 ≤ · · · ≤ kr.
Note that no generality is lost since the algorithm does
not distinguish between the labels. The following in-
sight is the key to the proof.

Lemma 1. Suppose label i is the winner. Then, for
every j ∈ {1, . . . , i − 1}, there must be at least dj/2e
pairs (a, b), where a ≤ j < b, and b beats a.

Proof. (Lemma 1) Consider the restricted tournament
on {1, . . . , j}.

Case 1: Suppose that some w beats at least dj/2e of
the others. If no label b > j beats any label a ≤ j, then
w would beat at least dj/2e+ 1 more labels than any
b > j; in particular, w would beat at least dj/2e + 1
more labels than i. Thus, in order to have label i beat
as many labels as w, at least dj/2e edges of the form
(w, b), b > j or (a, i), a ≤ j must be reversed.

Case 2: There is no label w ∈ {1, . . . , j} beating dj/2e
of the rest of {1, . . . , j}. This can only happen if j is
odd and there is a j-way tie with (j − 1)/2 losses per
label in {1, . . . , j}. In this case, although every label
beats (j+1)/2 more labels than any b > j, in particular
i, it is still necessary to reverse at least (j + 1)/2 ≥
dj/2e edges, in order to ensure that i > j beats as
many labels as each of {1, . . . , j}.

Proof. (Theorem 1) Suppose that our algorithm
chooses the wrong label i for a particular example
(x, k1, . . . , kr). We show that this requires the adver-
sary to incur a comparable loss.



Lemma 1 and the definition of vi imply that the
penalty incurred to make label i win is at least∫ ki

0

dL(t)/2e
L(t)

dt ≥
∫ ki

0

1
2
dt =

ki

2
.

On the other hand, the total importance assigned to
queries for this instance equals

∑
i<j

vj − vi =
∑
i<j

∫ kj

ki

1
L(t)

dt =
∫ kr

0

L(t)R(t)
L(t)

dt

=
∫ kr

0

R(t)dt =
r∑

i=1

∫ ki

0

dt =
r∑

i=1

ki,

where R(t) = r − L(t) is the number of labels whose
value is greater than t and the second equality follows
from switching the order of summation and counting
the number of time a pair (i, j) satisfies i < t < j. The
second to last equality follows by writing R(t) as a sum
of the r indicator functions for the events {kj > t}, and
then switching the order of summation.

Consequently, for every example (x, k1, . . . , kr), the to-
tal importance assigned to queries for x equals

∑
i ki,

and the cost incurred by our algorithm on instance
x is at most twice the importance of errors made by
the binary classifier on instance x. Averaging over the
choice of x shows that the cost is at most 2.

This method of assigning importances is provably
near-optimal.

Theorem 3. (Lower bound) For any other assign-
ments of importances wi,j to the points (x, i, j) in the
above algorithm, there exists a distribution with ex-
pected cost ε/2.
Proof. Consider examples

(
x, 0, 1

r−1 , . . . , 1
r−1

)
. Sup-

pose that we run our algorithm using some wi,j as the
importance for the query (x, i, j). Any classifier which
errs on (x, 1, i) and (x, 1, j), where i 6= j, causes our
algorithm to choose label 2 as the winner, thereby giv-
ing a cost of 1/(r − 1), out of the total cost of 1. The
importance of these two errors is w1,i + w1,j , out of
the total importance of

∑
i,j wi,j . Choosing i and j

so that w1,i + w1,j is minimal, the adversary’s penalty
is at most 2

∑r
i=2 w1,i/(r − 1), and hence less than

2/(r−1) times the total importance for x. This shows
that the cost of the reduction cannot be reduced below
1/2 merely by improving the choice of weights.

3.2 Experiments

We conducted experiments comparing the weighted
all-pairs reduction to the original all-pairs reduc-
tion (Hastie & Tibshirani, 1997) (which ignores the
costs and attempts to predict the label with minimal
cost) and to a state-of-the-art multi-class cost-sensitive

learning algorithm called MetaCost (Domingos, 1999).
We used Boosted Naive Bayes (Elkan, 1997) as the
oracle classifier learner and applied the methods to
five UCI multiclass datasets. Since these datasets do
not have costs associated with them, we generated ar-
tificial costs in the same manner that was done in
the MetaCost paper (except that we fixed the cost
of classifying correctly at zero). We repeated the ex-
periments for 20 different settings of the costs. The
average and standard error of the test set costs ob-
tained with each method are shown in the table be-
low. Note that we often observe order-of-magnitude
improvements in performance.

We present results for two versions of this reduction.
One is the exact version used in the proof above. In the
other version, we learn one classifier per pair as is done
in the original all-pairs reduction. More specifically,
for each i and j (with i < j) we learn a classifier using
the following mapping to generate training examples:

(x, k1, . . . , kr) 7→ (x, I(ki < kj), |vi − vj |).

In the results, we see that the first version appears
to work well for some problems and badly for others,
while the second version is more stable. Perhaps this
is because the training examples given to the learner
in the first version are not drawn i.i.d. from a fixed
distribution as learning algorithms often expect.

Dataset All-Pairs MetaCost
splice 59.8 ± 24 49.8 ± 3.05
solar 3989 ± 1415 5317 ± 390

anneal 310 ± 205 207 ± 43
kdd-99 234 ± 62 49.4 ± 9.3
satellite 137 ± 33 104 ± 6.4

WAP v.1 WAP v.2
splice 197 ± 23 46.5 ± 3.5
solar 24.7 ± 2.0 36.8 ± 11

anneal 29.9 ± 3.0 164 ± 43
kdd-99 0.956 ± 0.12 1.76 ± 0.66
satellite 428 ± 21 148 ± 8.5

4 Error-Limiting Reductions

Informally, a reduction R from task T = (K, Y, l) to
another task T ′ = (K ′, Y ′, l′) is a procedure that uses
oracle access to a learning algorithm for T ′ to solve T ,
and guarantees that good performance of the oracle
on subproblems generated by the reduction translates
into good performance on the original problem.

To formalize this statement, we need to define a map-
ping from a measure D over prediction problems in
(X × K)∗ to a measure D′ over generated subprob-
lems in (X ′ ×K ′)∗.

In order to call the oracle, the reduction must take as
input some training set S from (X × K)∗ and create



some S′ from (X ′×K ′)∗. We can think of this process
as inducing a mapping from D to D′ according to

D′(S′) = ES∼DPrR(S′),

where the probability of generating S′ is over the ran-
dom bits used in the reduction on input S.

This rule defines D′ for a single invocation of the ora-
cle. If the reduction makes several sequential calls, we
need to define D′ for each invocation. Suppose that
the first invocation produces h′. We replace this invo-
cation with the oracle that always returns h′, and use
the above definition to find D′ for the next invocation.

Now, suppose that we have a test example (x, k) drawn
from some arbitrary distribution D over X ×K. (We
can think of D as being a distribution over (X ×K)∗
having all probability mass on one-element sequences
of examples.) The reduction maps this to a new mea-
sure D′ using the argument above.

We can now state the formal definition.
Definition 4. An error-limiting reduction R(S, A)
from task (K, Y, `) to task (K ′, Y ′, `′) takes as input
a finite set of examples S ∈ (X ×K)∗ and a learning
algorithm A for task (K ′, Y ′, `′), and outputs a hypoth-
esis h : X → Y that uses a collection of sub-hypotheses
returned by A. For every such sub-hypothesis h′, and
every measure D over X ×K, the reduction induces a
measure D′ over the inputs to h′, as described above.
For all X ×K and D, the reduction must satisfy

hD ≤ g(max
h′,D′

h′D′)

for some continuous monotone nondecreasing function
g : [0,∞) → [0,∞) with g(0) = 0. We call g the error-
limitation function of the reduction.

For this definition, we use the convention that max∅ =
0, where max∅ is the maximum over the empty set.
Note again that none of the above definitions require
that examples be drawn i.i.d. Analysis in this model is
therefore directly applicable to all real-world problems
which satisfy the type constraint.

Notice that we do not stipulate that the training set
and the test example (x, k) come from the same dis-
tribution. In fact, the definition is only dependent on
the training distribution through the set of training
examples S used to construct examples for the oracle.

Perspective It is useful to consider an analogy with
Turing reductions in complexity theory. In both cases,
a reduction from task A to task B is a procedure that
solves A using a solver for B as a black box. There
are several differences, the most important being that
complexity-theoretic reductions are often viewed as
negative statements providing evidence that a prob-
lem is intractable. Here we view reductions as positive
statements allowing us to solve new problems.

It should be noted that not all reductions in the learn-
ing literature are black box. For example, Allwein et
al. (Allwein et al., 2001) give a reduction from multi-
class to binary classification that uses a “margin,”
which is a heuristic form of prediction confidence that
can be extracted from many (but not all) classifiers. It
is natural to wonder if there are inherent limitations in
using learning algorithms as black boxes. Regardless
of the answer, however, a black-box type of analysis is
interesting for reasons listed in the introduction.

Metrics of success We consider several ways to
measure reductions. The metric essential to the defi-
nition of an error limiting reduction is the error effi-
ciency of the reduction for a given example, defined as
the maximum ratio of the loss of the hypothesis output
by the reduction on this example and the total loss of
the oracle hypotheses on the examples generated by
the reduction. We also want the transformation to be
computationally efficient assuming that all oracle calls
take unit time. We quantify how extensively a reduc-
tion uses its oracle based on (1) the number of oracle
calls it makes; (2) whether the calls are adaptive (i.e.,
depend on the answers to previous queries) or parallel
(i.e., all queries can be asked before any of them are
answered). For example, the reduction in Section 3
takes O(r2) time while using just a single oracle call.

Note that there is a general transformation turning
parallel calls into a single call to the oracle learning
algorithm. To make one call, we can augment the fea-
ture space with the name of the call and then learn a
classifier on the union of all training data.

5 The Structure of Error Limiting Re-
ductions

In this section we discuss some properties of error lim-
iting reductions.

5.1 Easy Directions and Completeness

The learning tasks we consider have an easy direc-
tion for reduction related to whether a particular task
is (trivially) expressible as another task. For ex-
ample, solving binary classification with importance
weighted binary classification is easy, because impor-
tance weighted binary classification with k2 = 1 is
identical to binary classification. The figure below
shows the easy direction for these reductions.

Note that all supervised learning tasks we consider
can be embedded into cost-sensitive classification us-
ing the mapping K ′ = `(K, Y ) for the task (K, Y, `).
Section 3 shows that cost-sensitive classification is re-
ducible to binary classification. Thus binary classifi-
cation is complete for the set of supervised learning
tasks considered here in the sense that a learning ma-



chine with an oracle for binary classification learning
can solve any supervised learning task.

5.2 Properties of Reductions

We show that the definition of error limiting reductions
is non-trivial (in the sense defined below).

Non-triviality of the definition

The proposition below states that every reduction
must make a non-trivial use of its oracle.

Proposition 5.1. For every error-limiting reduction
R, every training set S, and test example (x, k), there
exists an oracle A such that

ER[h(x)] = arg min
y∈Y

`(k, y) = 0,

where h is the hypothesis output by R(S, A), and the
expectation is over the randomization used by R in
forming h.

Proof. Recall that the error limitation property holds
for all D, in particular for the deterministic D with all
probability mass on (x, k). Thus if R just ignored its
oracle we would have `(k, h(x)) = g(max∅) = g(0) = 0.
The fact that `(k, y) is nonconstant (in both argu-
ments) implies that there exists (x, k) such that any
h must satisfy `(k, h(x)) > 0, a contradiction. Conse-
quently, at least one call to the oracle must be made.

Next note that for all R, S, and (x, k), there exists an
h′ (and thus an oracle A outputting h′) consistent with
all examples induced by R on (x, k). If R is random-
ized, there exists a deterministic reduction R′ taking
one additional argument (a randomly chosen string)
with the same output behavior as R. Consequently,
there exists an oracle A dependent on this random
string which achieves error rate 0. Since g(0) = 0, this
must imply that h(x) = arg miny∈Y `(k, y) = 0.

Note, however, that while the notion of error limiting
reductions is non-trivial, it does not prevent a reduc-
tion from creating hard problems for the oracle.

Composition Since our motivation for studying re-
ductions is to reduce the number of distinct problems
which must be considered, it is natural to want to com-
pose two or more reductions to obtain new ones. It is
easy to see that reductions defined above compose.

Proposition 5.2. If R12 is a reduction from task T1

to T2 with error limitation g12 and R23 is a reduction
from task T2 to T3 with error limitation g23, then the
composition R12◦R23 is a reduction from T1 to T3 with
error limitation g12 ◦ g23.

Proof. Given oracle access to any learning algorithm
A for T3, reduction R23 yields a learning algorithm
for T2 such that for any X2 and D2, it produces a
hypothesis with loss rate h′D2

≤ g23(h′′D3
), where h′′D3

is the maximum loss rate of a hypothesis h′′ output by
A (over all invocations). We also know that R12 yields
a learning algorithm for T1 such that for all X1 and D1

we have hD1 ≤ g12(h′D2
) ≤ g12(g23(h′′D3

)), where h′D2

is the maximum loss rate of a hypothesis h′ output by
R23(A). Finally, notice that g12 ◦ g23 is continuous,
monotone nondecreasing, and g12(g23(0)) = 0.

6 Examples of Reductions

Here, we show that the notion of an error-limiting re-
duction is both tractable for analysis and describes
several standard machine learning algorithms.

6.1 Reduction from Importance Weighted
Classification to Classification

In importance weighted classification, every example
comes with an extra “importance” value which mea-
sures how (relatively) important a decision might be.
This extra flexibility turns out to be useful in several
applications, and as an intermediate step in several
reductions.

The “Costing” (Zadrozny et al., 2003) algorithm is
a (very simple) reduction from importance weighted
classification to classification based on rejection sam-
pling. Given an importance weighted dataset S =
(x, k1, k2) an unweighted dataset is produced using re-
jection sampling:

{(x, k1) : (x, k1, k2) ∈ S and k2 < t ∼ U(0, w)}

where t ∼ U(0, w) is a uniform random draw from the
interval [0, w] and w is greater than k2 for all examples.
The classifier learner is applied to produce a classifier
c for this new dataset2.

Although this algorithm is remarkably simple, com-
posing costing with a decision tree has been shown
to yield superior performance (again, see (Zadrozny
et al., 2003) for details) on championship prediction
problems.
Theorem 4. (Costing error efficiency) For all im-
portance weighted problems (D,X, T ), if the classifiers
have error rate ε, costing has loss rate at most

2The actual costing algorithm repeats this process and
predicts according to the majority on learned c.



εE(x,k1,k2)∼Dk2.

Proof. Trivial. See (Zadrozny et al., 2003).

6.2 Reductions from Multiclass Classification
to Binary Classification

In this section we analyze several well known reduc-
tions for efficiency. Before we start, it is important
to note that there are boosting algorithms for solving
multiclass classification given weak binary importance
weighted classification (see (Schapire, 1997), (Schapire
& Singer, 1999)). Some of these methods require extra
powerful classification algorithms, but others are gen-
uine reductions, as defined here. A reductionist ap-
proach for creating a multiclass boosting algorithm is
to simply compose any one of the following reductions
with binary boosting.

The Tree Reduction In the tree reduction (which
is well known, see chapter 15 of (Fox, 1997)), we con-
struct r − 1 binary classifiers distinguishing between
the labels using a binary tree. The tree has depth
log2 r, and each internal node is associated with a set
of labels that can reach the node, assuming that each
classifier above it predicts correctly. The set of labels
at that node is split in half, and a classifier is trained
to distinguish between the two sets of labels. The root
node starts with the set of all labels {1, . . . , r} which
are all indistinguishable at that point. Predictions are
made by following a chain of classifications from the
root down to the leaves, each of which is associated
with a unique label. Note that instead of r − 1 paral-
lel, one could use log2 r adaptive queries.

Theorem 5. (Tree error efficiency) For all multiclass
problems (D,X, T ), if the binary classifiers have loss
rate ε, the tree reduction has loss rate at most ε log2 r.

Proof. A multiclass error occurs only if some binary
classifier on the path from the root to the leaf errs.

The Error Correcting Output Codes (ECOC)
Reduction Let C ⊆ {0, 1}n be an error-correcting
code with l codewords a minimum distance of d apart.
Let Ci,j denote the i’th bit of the j’th codeword of
C. The ECOC reduction corresponding to C learns
n classifiers: the i’th classifier predicts Ci,y where y
is the correct label given input x. The loss rate for
this reduction is at most 2nε/d, as we shall prove in
Theorem 6 below.

We mention three codes of particular interest. The
first is when the codewords form a subset of the rows
of a Hadamard matrix (an n × n binary matrix with
any two rows differing in exactly n/2 places). Such
matrices exist and are easy to construct when n is a
power of 2. Thus, for Hadamard codes, the number

of classifiers needed is less than 2r (since a power of
2 exists between r and 2r), and the loss rate is at
most 4ε. When the codewords correspond to binary
representations of 0, 1, . . . , r− 1, the ECOC reduction
is similar to (although not the same due to decoding
differences) the tree reduction above. Finally, if the
codewords form the r × r identity matrix, the ECOC
reduction corresponds to the one-against-all reduction.

Theorem 6. (ECOC ) For all multiclass problems
(D,X, T ), if the binary classifiers have loss rate ε, the
ECOC reduction has loss rate less than 2n

d ε.

This theorem is identical to Lemma 2 of (Guruswami &
Sahai, 1999) (which was generalized in (Allwein et al.,
2001)), except that we generalize the statement to any
distribution D generating (test) examples rather than
the loss rate on a training set.

Proof. When the loss rate is zero, the correct label is
consistent with all n classifiers, and wrong labels are
consistent with at most n − d classifiers, since C has
minimum distance d. In order to wrongly predict the
multiclass label, at least d/2 binary classifiers must err
simultaneously. Since every multiclass error implies at
least a fraction d/2n of the binary classifiers erred, a
binary loss rate of ε can yield at most a multiclass loss
rate of 2nε/d.

Sometimes ECOC is analyzed assuming the errors
are independent. This gives much better results, but
seems less justifiable in practice. For example, in any
setting with label noise errors are highly dependent.

We note that all reductions in this section preserve in-
dependence. Many common learning algorithms are
built under the assumption that examples are drawn
independently from some distribution, and it is a de-
sirable property for reductions to preserve this inde-
pendence when constructing datasets for the oracle.

7 Prior Work

There has been much work on reductions in learning.
One of our goals is to give a unifying framework, allow-
ing a better understanding of strengths and weaknesses
in forms of reductions.

Boosting algorithms (Freund & Schapire, 1997; Kalai
& Servedio, 2003) can be thought of as reductions from
binary (or sometimes multiclass) classification with a
small error rate to importance weighted classification
with a loss rate of nearly 1

2 . Given this, it is important
to ask: “Can’t a learning machine apply boosting to
solve any classification problem perfectly?” The an-
swer is “No” since it is impossible to always predict
correctly whenever the correct prediction given fea-
tures is not deterministic (i.e., is probabilistic). What
this implies for a learning machine is that the loss



rate becomes unbounded from 1
2 after some number

of rounds of boosting.

Bagging (Breiman, 1996) can be seen as a self-
reduction of classification to classification, which turns
learning algorithms with high “variance” (i.e., depen-
dence on the exact examples seen) into a classifier with
lower “variance”. Bagging performance sometimes suf-
fers because the examples fed into the classifier learn-
ing algorithm are not necessarily independently dis-
tributed according to the original distribution.

The ECOC reduction (Dietterich & Bakiri, 1995) gen-
eralizes the tree reduction (Fox, 1997) and the one-
against-all reduction (Rifkin & Klautau, 2004) from
multiclass to binary classification. The “Costing” al-
gorithm (Zadrozny et al., 2003) is a reduction of im-
portance weighted classification to classification. The
“Probing” algorithm (Langford & Zadrozny, 2005) is
a reduction of class probability estimation to binary
classification.

Pitt and Warmuth (Pitt & Warmuth, 1990) also in-
troduced a form of a reduction between classifica-
tion problems called prediction-preserving reducibility.
There are several important differences between this
notion and the notion presented here: (1) prediction-
preserving reductions are typically used to show neg-
ative, non-predictability results, while we show pos-
itive results transferring learning algorithms between
tasks; (2) reductions presented here are representation
independent; (3) prediction-preserving reducibility is a
computational notion, while the reductions here are in-
formational. Reductions presented here are also more
general in the sense that they are between arbitrary
learning tasks rather than between restricted sets of
classification problems.

8 Conclusion

We introduced the analysis model of error-limiting re-
ductions in learning. This model has several nice prop-
erties (often not shared with other methods of learn-
ing analysis). First, the analysis in this model does
not depend upon any unprovable (or unobservable)
assumptions such as independence. Error-limiting re-
ductions often have tractable analysis and capture sev-
eral common machine learning algorithms. They also
often work well in practice.

To test the model, we constructed, proved, and empir-
ically tested an error-limiting reduction from multi-
class cost-sensitive classification to binary classifica-
tion. Since cost sensitive classification can express any
supervised learning task considered here, this reduc-
tion can be used to reduce any such task to binary
classification.
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