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Abstract

We present a statistical analysis of the AUC
as an evaluation criterion for classification
scoring models. First, we consider signifi-
cance tests for the difference between AUC
scores of two algorithms on the same test
set. We derive exact moments under sim-
plifying assumptions and use them to exam-
ine approximate practical methods from the
literature. We then compare AUC to empir-
ical misclassification error when the predic-
tion goal is to minimize future error rate. We
show that the AUC may be preferable to em-
pirical error even in this case and discuss the
tradeoff between approximation error and es-
timation error underlying this phenomenon.

1. Introduction: ROC Analysis and the
AUC

The term Receiver Operating Curve (ROC) has long
been used in the signal processing (Egan, 1975) and
medical (Hanley & McNeil, 1982) literature to describe
a curve displaying the relationship between sensitivity
and 1-specificity at all possible thresholds for a 2-class
classification scoring model, when applied to indepen-
dent (test) data. Sensitivity (or TP, for True Positive
rate) and specificity (or TN, for True Negative rate)
are defined as follows:

#number of observations predicted as positive
#positive observations

#number of observations predicted as negative
#negative observations

TP =

TN =

The area under the ROC curve (AUC) is a one-number
measure of a model’s discrimination performance, i.e.,
the extent to which a model successfully separates the
positive and the negative observations and ”ranks”
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them correctly. This number is considered of great
interest in various engineering, scientific and medical
domains. In recent years, there has been a surge of
interest in the AUC as an evaluation measure in the
Data Mining and Machine Learning communities. Its
statistical properties have been investigated in some
recent papers: (Provost & Fawcett, 1997) illustrate the
”robustness” of ROC analysis, and the AUC in partic-
ular, against changing class balance; (Ling et al., 2003)
define a rigorous discrimination measure, under which
the AUC is provably superior to the empirical misclas-
sification rate as an evaluation measure, in that it is
less prone to ties when evaluating non-equivalent mod-
els; (Cortes & Mohri, 2003) investigate the relationship
between error rate minimization and AUC maximiza-
tion by analyzing the range of possible AUCs when the
error rate is fixed. They also discuss algorithms that
directly maximize AUC.

In this paper we offer two new statistical insights about
the AUC. We aim to increase understanding of this
evaluation measure and its advantages, and to present
a new tool for its analysis. In section 2 we tackle the
issue of comparing AUC scores of two models when us-
ing the same evaluation or test set. We derive an exact
expression for the moments of the difference between
the scores, subject to some simplifying assumptions
required to make the calculation feasible. We use our
results to evaluate the performance of practical meth-
ods suggested in the AUC literature in the 80’s. In
section 3 we consider the situation when our under-
lying goal is the standard classification goal, i.e., to
minimize error rate. We show that even in that case,
the AUC may be a better model selection criterion
than empirical error rate because it is more stable (in-
curs smaller estimation error), despite the fact that it
is biased (incurs larger approximation error).

2. Significance Testing of the Difference
between AUC Scores

If we intend to use AUC as a comparison and discrimi-
nation method for scoring models, we would like to be
able to say not only which model performs better for



the given test set, but also whether its performance is
significantly better than that of other models.

In this section we first develop limited theory-based
exact moment calculations for the difference between
two AUC scores based on the same test set. Because
knowledge of the underlying probability structure is
required, our results are not applicable in real-life sit-
uations. However, they can be used to test the per-
formance of practical estimators for these moments in
simulations, where the underlying structure is known.

We then introduce two approximate significance tests
(Hanley & McNeil, 1983; DeLong et al., 1988), de-
veloped in the 1980’s, in the context of medical ex-
periments. We examine the usefulness of these ap-
proximate tests by comparing them to the exact the-
oretic derivation for some synthetic examples. The
non-parametric test suggested by (DeLong et al., 1988)
performs better on our examples and we second the
authors of that paper in preferring their method.

In what follows, we assume we have a test set of size n:
(1'1, y1)7 ($2,y2)7 ey (Z‘n, yn) with Yi € {_1’ +1} As-
sume further the test set has n4 positive examples and
n_ negative examples. Denote p; = P(y; = 1|z;) =
f(z;), and let m1(x) and ma(z) be two scoring models.

2.1. Exact Moments

We now derive the explicit formulae for the mean and
variance of the difference between two AUCs, condi-
tioned on the set of test x values. For every scoring
model my, we define several properties of the underly-
ing score distribution and we calculate the moments
as a function of those. Specifically, let I ;; to be an
indicator for the event that scoring model my gives a
higher score to observation 4 in our test set than to
observation j. We then define:

DPkij = E(Ik,ij)
pil,,?,-, = P{my (1) > my(z;) > mp(z:)} =
= E{Iyij - Inyit - Ini}
Pl = Pimin (mg(2), me(z;)) > my(2:)} =
= E{Ijlr,ulk ji + Ir,ijIn,a(1 — I j1)}
P = Plmi(a) > max (me(z;),my(z:)} =

= E{Iyijlp,ilr,jo + (L= Inij) o ,idr o }
We also define the corresponding g quantities as 1 — p.
. 1 1
That is, g,ij = 1 — pr,ij, q,(c’gjl =1 —pi’zjl etc.
2.1.1. ASSUMPTIONS

The derivation of the exact distribution of the differ-
ence between two AUC scores in the most general case

is extremely complex. To make it feasible within this
framework we use two simplifying assumptions about
the probability structure underlying the process.

First, we assume the processes underlying the ”binary
order switches” for the two models are independent:
PT’{ILH =1Nl1l; = 1} = PT‘{Il,ij = 1} . P’I"{Iz,i]' = 1}.
This assumption is very sensible if the models are ”in-
dependent” — if they use completely different infor-
mation to calculate the scores, and the dependence is
only through the use of the same test data. In compar-
ing ”similar” models this assumption may be violated.
Such a violation would tend to decrease the variance of
the difference between the scores for the two models,
hence increase the chance of correct discrimination.
So if this assumption is violated towards positive cor-
relation between the binary switches then our results
below give a ”conservative approximation” of the real
probability of identifying the better model.

Second, we assume that for each model, the ”binary
switch” behaviors for disjoint pairs of observations are
independent:

Pr{li;; =1NI1y, =1} = Pr{li;; =1} - Pr{l1,4, =1}
if 4, j,u,v are all different. This assumption is prob-
lematic in general, since for practically any real-life
model it should seem likely that the bias in a model’s
prediction at a certain x covariate vector would be re-
lated to the bias in its neighborhood. For example: in
a k-NN model, if at a certain x-covariate value most
of the neighbors are class-0, it is highly likely that the
same would apply to other x-values in the "neighbor-
hood”. Thus knowing that a certain observation has
taken part in a ”switch” would increase the likelihood
of the same being true for its neighbors. However, due
to the fact that our derivation is not applicable for real-
life situations but only for hand-crafted examples, we
prefer to make this assumption, to make calculations
manageable.

Finally, we use our moment calculations to estimate
probabilities of correct discrimination, implicitly as-
suming normal distribution. The difference between
AUCs is clearly not exactly normal, however it is
asymptotically normal. To see this, consider that AUC
scores are well established to be asymptotically nor-
mal and therefore their difference is too, unless they
are perfectly correlated.

2.1.2. MOMENT CALCULATIONS

It is well known that the AUC is equivalent to the
Mann-Whitney statistic and can be represented as:

1
nyn_—

AUC(m) =

S Y Hme) > mie)} =

yi=ly;=—1



1 n
= Y, on Z Z(yz = Yj)Im,ij

i=1 j>i

The difference between the two AUC scores on the
same data set can thus be expressed as a function of
the binary order switches :

2nyn_ - (AUC(m2) — AUC(my)) = 1)

To derive the mean and variance of this expression,
we should note that we have here 2 different, inde-
pendent, levels of stochasticity, one in ”selecting” the
model scores (which determine the ”order switches”)
and the other in drawing the actual y-values for the
test set. For the mean we thus get:

E[lnyg-n_ - (AUC(mg) — AUC(m1))] =
= %Z Z E[Lij — L,i]Ely; — yi] =

i=1 j=i+1

Z Z [P1,ij — P2,i5]lpj — pi]

i=1 j=i+1

To calculate the variance we take advantage of the
formula for two level variance:
Va,y (F(X,Y)) = Vx[E(f(X,Y)[X] + Ex[V(f(X,Y)|X)]

In our case that leads us to:

V2nin_(AUC(mz) — AUC(m4))] =
= V{Z Z [I1,ij — I2,4]ly; — vil} =

i=1 j=i+1

= Ey V{Z Z (D6 — L2iilly; — willy}| +

i=1 j=i+1

n n

W B D iy — Ll — willy}

i=1 j=i+1

A tedious analysis of each one of the two expressions
follows, which eventually leads us to the following ex-
act (if somewhat inelegant) variance calculation:

Vingn_(AUC(mz) — AUC(my))] =

= Z[piqj + p;ai][P1,ijq1,i5 + P2,ij2,i5] —
i<j

-2 Z [pigip1 + qipjq] -
i<j<l

1 1
'[p§,3jl — P1iP1ji + pg,z?jl = P2,ijP2,51] +
+2 Z [pigjq + qipipi] -
i<j<l
2 2
'[pg,gjl = P1,ijPLa + Pg,gjl — P2,ijD2,i] +
+2 Y [pipjar + a:g;p1] -
i<j<l
3 3
'[Pg,,?jl — P1,iP1,ji +pé,3jl — p2.aP2ji] +
+> (P15 — p2,4)° [P + Pici] +
i<j
+2 Z [(P1,ij — P2,i5) (Pr,it — P2,u)Pigi +
i<j<l
+(p1,a — P2,a) (P11 — P2,j0)P1qr +
+(p1,ij — P2,i5) (1,51 — P2,j1)Pj 5]

2.1.3. ExAMPLE: CALCULATING THE MOMENTS

We illustrate the use of the above formulae for the
moments of the difference between two AUC scores.
Let us take the simple case p; = i/n, and take two
models whose scores are exactly the p;’s, except for
possible deviations of fixed size ¢, which occur with a
fixed probability ¢ that depends on the model. Note
that we have no explicit = covariates at all in this syn-
thetic example. Thus the distribution of the scores for
k=1,2is

% w.p 1 — 2q;
mi(i) =< »+c Wp. g
w—C W.p. gk

(These scores are not valid probability estimates, of
course, but are legitimate as scores for ranking.)

The better model is the model with the smaller ¢ be-
cause it has, on average, a more correct ranking (as
well as a lower misclassification rate with a thresh-
old of 0.5). We would like to utilize our formu-
lae to calculate the moments of the distribution of
nyn_(AUC(ms) — AUC(m4)). For this we need to
evaluate the generic probabilities defined at the begin-
ning of section 2.1 (in all the calculations below we
assume implicitly that i < j < 1):

qe(2—3qx) ifj—i<c-n
Drij =13 4} ifecn<j—i<2-n

0 ifj—i>2c-n
o _ | (1 =2q) ifmaz(j—il—j)<c-n
Prijt =\ 0 otherwise

etc.

Using the asymptotic normality of the AUCs them-
selves we can then approximate Pr(AUC(ms) —



Table 1. Moments of the re-scaled difference between two
AUC scores in the setup of section 2.1.3.

N q q2 MEAN  VARIANCE P

50 01 0.2 8.36 476 0.65
200 0.1 0.2 127.86 28577 0.78
400 0.1 0.2 50746 226097 0.86
50 01 03 1599 592 0.74
200 0.1 0.3 246.39 35602 0.90
400 0.1 0.3 979.19 281769 0.97

AUC(m1) > 0). Table 1 displays the results for vari-
ous values of n, ¢; and g2, with ¢ fixed at 0.2005 (i.e.,
0.2 + € to prevent ties). The column titled ® refers
to the normal-tail probability approximation for the
event AUC(m2) < AUC(mq).

2.2. Empirical Evaluation of Methods from
AUC Analysis

As mentioned in section 2.1.2, the AUC is equivalent to
the Mann-Whitney 2-sample statistic. A well known
derivation exists for the moments of this statistic under
the ”alternative” that the two classes do not follow the
same distribution (Lehmann, 1975). The mean of the
AUC is p; and the variance is:

p1(1—p1) + (ng — L)(p2 — p2) + (n— — 1)(p3 — p?)
n+n_

with pi1,p2,p3s now representing various probabilities
which depend on the probability structure of the scores
of the 2 classes under the given model, as follows:

p1 = Pr {A random positive case attains a higher score
than a random negative case}

p2 = Pr {Two random positive cases attain a higher
score than a random negative case}

p3 = Pr {A random positive case attains a higher score
than two random negative cases}

These probabilities can be estimated directly from the
data, or calculated using assumptions about the para-
metric ”prior” distribution of the classes.

What we want, however, is to test the significance of

the difference between the AUCs for two different mod-

els. For this, we need to approximate the covariance

between the two AUCs calculated on the same test

data, to obtain the variance of the difference:

V(AUC(m1)-AUC(m2)) = V(AUC(m1)) + V(AUC(ms2)) -
- 2Cov(AUC(m1), AUC(m2))

(Hanley & McNeil, 1982) discussed estimation of the
variances. They suggested various methods — mostly
parametric methods, based on assuming that the

Table 2. Simulation results of variance-covariance estima-
tion methods.

n,qe HM DDC ActuaL
50,0.2 635 + 286 464 + 276 476
200,0.2 39013 + 8113 29415 + 7915 28577
400,0.2 311579 + 45112 236852 + 42915 226097
50,0.3 729 £+ 290 571 £ 290 592
200,0.3 48478 + 9340 37641 + 8613 35602
400,0.3 390504 £ 50421 304247 + 50689 281769

scores for the two classes have some known ”prior” dis-
tribution. They concluded empirically that the best
approach is to assume that the ”prior” score distri-
butions are Exponential. Following this, (Hanley &
McNeil, 1983) suggested methods of estimating the
correlation between two AUC scores on the same test
set. They did not give explicit formulae for calculat-
ing the correlation, and just supplied a tabulation of
the correlation as a function of the correlations be-
tween scores for cases from the same class in the two
models and the AUC scores themselves. If, for ex-
ample, the correlation between the scores which the
two models give class-1 observations is 0.87, the cor-
relation for class-0 observations is 0.83 and the two
AUC scores are 0.7 and 0.8, the table tells us that
the correlation between the AUC scores will be 0.81.
Given estimates for the variances of the AUC scores,
we can use this to estimate the covariance. (DeLong
et al., 1988) suggested the use of U-statistic methods
to approximate this covariance without any paramet-
ric assumptions (the Mann-Whitney statistic, hence
the AUC, is a U-statistic, of course). They employed
a method suggested by (Sen, 1960) for approximating
the full covariance matrix for the AUC scores. This
method assures that the estimates are consistent. We
can therefore expect to have low bias for these esti-
mates, but can expect to have increased variance, be-
cause without parametric assumptions the dependence
of the estimates on the data naturally increases.

We use these methods to estimate the variance of
the difference between the AUCs using data gener-
ated according to the distribution described in sec-
tion 2.1.3. We then compare them to the exact cal-
culation of table 1. Table 2 shows the results of
multiple experiments in estimating the variance us-
ing the two covariance estimation methods — Han-
ley and McNeill’s (HM’s) ”parametric” method and
DeLong et al.’s (DDC’s) ”asymptotic” method. We
have performed 1000 simulations with each method
for each (n,qi,q2) triplet. The table presents the



empirical mean and 95% CI of the estimator for
Var(AUC(my) — AUC(my2)) using the two covariance
approximation methods.

If indeed our goal is to find an estimation method
which is more consistent and less biased for
Var(AUC(m1) — AUC(mz)), we can see (not surpris-
ingly) that the DDC estimator’s average value tends
to be much nearer to the actual variance than the HM
estimator’s average. The HM estimator usually over-
estimates the variance as a result of under-estimating
the covariance. This is consistent with the results of
DDC who also compared their method to HM’s on
a real-life example and got a larger covariance esti-
mate (hence smaller variance estimate) using their own
method. The surprising result, however, is that the
empirical variance of the DDC estimator is usually
not much larger than that of the HM estimator, and
sometimes even smaller. This seems to be another in-
dication that the DDC estimator is more appropriate.
However we feel more experimentation is required to
establish the unequivocal superiority of DDC to HM
in practical situations.

3. Using AUC to Evaluate
Classification Performance

In this section we consider the use of AUC as a one-
number summary of classification performance — i.e.,
when our prediction goal is simply to correctly classify
the data, and our model selection task is to find the
model with the minimal future error rate. We illus-
trate below that in many situations — both on simu-
lation data and real data — the AUC score succeeds
more in identifying the better model for future mini-
mum error rate classification than the empirical Mis-
classification Rate (MC) on the test set. We conclude
that while we cannot formalize a set of rules indicat-
ing when AUC will be a better discrimination method
than MC, we can certainly recommend the comple-
mentary use of AUC as an evaluation criterion.

Assume as before that we have two scoring models
m1,ms and a test set of size n. Recall our represen-
tation of the difference between the two AUC scores
above (1). We can derive a similar expression for MC
when using a classification threshold ¢:

MC(mQ) - MC'(ml) = (2)
Z[I{ml(wi) <t} — I{ma(z:) < t}yi

Since we are looking to minimize MC (as opposed to
maximize AUC), a positive difference will lead us to
select m1. This is an “unbiased” representation of our

ultimate goal, which is to select the better classifica-
tion model. That is, we would ideally like to select m;
if its future performance is better than that of ma, i.e.,

We first present experiments which illustrate that
AUC often does a better job than MC in selecting
the better classification model among two candidates,
then discuss the underlying reasons.

3.1. Simulations and real data experiments

We experiment with two of the simplest and most
popular algorithms for creating classification models:
Naive Bayes and K-Nearest Neighbors (K-NN). We
create multiple pairs of models and demonstrate that
AUC consistently identifies the better model with a
higher probability across different pairs of models and
large numbers of randomly generated test sets. For
simplicity all the examples in this section were con-
structed assuming equal prior probabilities for the two
classes and equal misclassification costs. As both al-
gorithms are actually probability approximation algo-
rithms the threshold for classification is always 0.5. !

It should be noted that the issue of ties is not ad-
dressed, so cases with equal scores were randomly or-
dered and given different ranks. This does not impede
the validity of the results, however, as it is quite easy
to show that it can only harm the average performance
of AUC as a discrimination technique.

For the Naive Bayes simulations a 2-dimensional input
vector is used. All x-values are independently drawn
in [0,1]. The probability of y to be 1 is set to:

Pr(y=1|x) =

1
= 5(.’171 +.’L‘2)2'I{£L'1 + 22 < 1}+

1
=52 - —2)’]- Hal+22> 1}

Twenty training sets of size 1000 each were drawn. For
each training set, 100 test sets of size 100 each were
drawn. As Naive Bayes is based on using discrete x-

!Some recent papers, (e.g. (Lachiche & Flasch, 2003))
suggest that 0.5 may not be the optimal threshold for Naive
Bayes models, even in balanced class situations. However,
our interest is purely in comparing test set and popula-
tion performance. So, even if our threshold is indeed sub-
optimal for classification, it has no bearing on the validity
of our comparisons, as long as the same threshold is used
for the testing and for population-level evaluation. The
classification threshold in this view is a part of the Naive
Bayes model specification, not a separate parameter to be
optimized. The fact that AUC is oblivious to that thresh-
old is an illustration of the “bias” in using AUC for model
selection, as discussed in section 3.2.



Table 3. Comparison of AUC and MC performance on
Naive Bayes models.

Table 4. Comparison of AUC and MC performance on
Nearest Neighbor models.

MC AUC MC AUC
AvGg. % mo BETTER 90.05 98.60 AvGg. % mo BETTER 69.7 92.6
MIN. % m2 BETTER 69 95 MIN. % m2 BETTER 61 86
# TIMES ma» BETTER ON ALL 100 1 8 # TIMES my BETTER ON AT LEAST 80 0 20

values, the training set x-values were discretized using
a standard x? method . It is easy to see that the real
Bayes classifier (which gives y = 1 iff z1 + 22 < 1) can-
not be expressed as a Naive Bayes classifier. The best
Naive Bayes classifier should clearly be the one using
both z1,x2 for the model. Classifiers with only x; or
zo will generally be ”under-fitted” (lack vital model
flexibility), while classifiers with additional superflu-
ous predictors will generally be ”over-fitted” (contain
extra flexibility which is used to model noise). The
simulation compared the Naive Bayes classifier using
only z; to the classifier using both z; and x,.

Thus, two models were created from each of the twenty
training sets and were used to score the 100 test sets.
Each of the models was then evaluated on each of the
test sets using both MC and AUC. The result which
is of interest is the percentage of test sets on which
the better model (m2) gives a better overall evaluation
score than the worse model (m1). As expected, each
of the twenty different pairs of models indicated more
than half the time that ms was better than m, and
mo was much better than m; in terms of future clas-
sification performance in all twenty cases. The overall
average MC rates of the two models combined over all
experiments: my : 33.5%, mo : 27.5%.

The results are summarized in table 3. The first row
shows the average percentage of test sets on which mo
was better than m; (averaged over the twenty different
pairs of models, each pair generated using a different
training set). The second row shows the minimal num-
ber of times out of 100 that m, was better (taken over
the twenty experiments) and the third row shows the
number of times mo got a perfect record over m; by
being better on all 100 test sets. These results indicate
clearly that AUC succeeded much better than MC in
tracking down the better model — AUC was wrong on
average just 1.4% of the time while MC was wrong on
average 9.95% of the time. AUC also did better in the
”worst case” sense — its worst result (95%) was much
better than MC’s worst result (69%).

We performed a similar simulation experiment for K-
NN. The dimension used here was d = 10 and the true

model used here was even simpler: Pr(y = 1|z) = ;.
my used K=10 nearest neighbors, while my used K =
50. As before, we drew twenty training sets with 1000
observations in each and used 100 test sets of size 100
for each. my was the better model, incurring an aggre-
gated error rate of 26.5% over all test sets compared to
28.5% for m;. Table 4 shows the results of our exper-
iments in a similar format to table 3. The results here
are even more conclusive in favor of AUC than in table
3 — we even have a ”threshold” of 80% correct dis-
crimination between the models which AUC achieved
on all twenty pairs of models but MC achieved on none.

We also performed some simulations comparing pairs
of models where one model was a Naive Bayes model
and the other was a K-NN model. We omit them for
space considerations. Their overall results were sim-
ilar in spirit to the results we have shown, i.e., that
AUC did a better job of identifying the better model.
However, they were less conclusive. In particular, it
seemed that AUC tended to prefer K-NN models to
Naive Bayes models more than MC. So, in situations
where the Naive Bayes model is a slightly better clas-
sification model than the K-NN model, the AUC still
tends to prefer the K-NN model most of the time. This
illustrates the "bias” in using AUC to select classifica-
tion models, which we discuss in section 3.2

Finally, we performed experiments on a real-life data
set. We used the ” Adult” data-set available from the
UCI repository (Blake & Merz, 1998). We used only
the first ten variables in this data-set, to make a large-
scale experiment feasible, and compared performance
of Naive Bayes models using different subsets of these
ten predictors. We had a total of 17000 cases for our
experiments, of which we used 1700 for ”training” the
various models. We tested the models on 100 small
test samples randomly drawn from the rest of the data.
Table 5 shows the setup for the different experiments
and their outcome. In it we can see the models and
their “population” error rate (for the 15300 observa-
tions not used for training).

The results confirm our general intuition about the
discrimination performance of AUC — in cases 1,2,3



Table 5. Comparison of AUC and MC performance in selecting the better Naive Bayes classification model for the Adult

dataset.

m1 FEATURES mi1 ACCURACY m2 FEATURES

m2 ACCURACY

# MC SELECTS ma

# AUC SELECTS m2

3 0.771 5
3 0.771 8
5 0.784 7
6 0.816 10
8 0.803 10

0.785
0.804
0.815
0.797
0.797

66
73.5
82.5

26

33

95
100
100

75

39.5

it is much more conclusive than MC in its choice of
the better model. In case 5 the two methods perform
approximately the same. In case 4 we see that AUC
and MC select different models as the better model —
here the “bias” of AUC controls the decision.

3.2. Discussion: Estimation-Approximation
Tradeoff

In comparing AUC and MC, equations (1) and (2)
show the similarity in the structure of the model com-
parisons . In each summand we have a first term which
compares the decisions of the two models. (2) com-
pares a thresholding decision while (1) compares an
ordering decision. If the two decisions differ, they are
confronted with the evidence from the test set — which
determines whether 1 will be added to or subtracted
from the sum. For example: for MC, if m4 (z;) < t and
ma(xz;) > t, the sum will increase by 1 if y; = 1 (evi-
dence in favor of my) and will decrease by 1 if y; = —1
(evidence in favor of my). The MC score (2) compares
these decisions on the n test-set cases and checks them
against the test-set y values when the two models dis-
agree. The AUC score (1) compares decisions on the
n(n—1)/2 pairs of cases and checks the y-values when
the decisions regarding the ordering of these cases by
their scores disagree.

So in general we can say that Misclassification Rate
sums over the results of O(n) comparisons and AUC
sums over the results of O(n?) comparisons (these
comparisons are not independent, of course). This
gives us a sense of the advantage of AUC over the
MC — it is in fact the reduced variance of the result-
ing decision, obtained by using more information to
make it. On the other hand, the fewer comparisons
we make in (2) are the ones which actually determine
the classification performance of the models. Thus,
the mean result of (2) is guaranteed to be the right
one, when our goal is to minimize the misclassification
rate. The comparisons in (1) check slightly different
attributes of the scoring model. A scoring model may
have one behavior with regard to the ”threshold cross-

ings” tested in (2) and a different one with regard to
the ”binary switches” tested in (1). So, AUC may be
”biased” in that its result may not reflect the true dif-
ference in classification accuracy. Consequently, mod-
els for which AUC should be effective as a compari-
son method would be ones where the scoring behavior
is ”consistent” in the sense that threshold crossings
are as common as can be expected given the num-
ber and magnitude of binary order switches and vice
versa. When this consistency does not exist we can
expect that AUC will not always outperform MC in
selecting the better classification model. Examples of
both scenarios can be found above.

Intuitively it seems reasonable that most of the algo-
rithms for creating scoring models, which fit the data
to some non-trivial structures, should not display in-
consistent behavior between threshold crossings and
binary order switches, so the amount of ”bias” they in-
troduce in our representation should not be large and
the decreased ”variance” should control the process.
The experimental results we presented above — for
simulation studies and real data — illustrate that in
most of the scenarios we have checked, the researcher
would indeed do well to select models by their AUC
score, even if the future goal is to obtain the best pos-
sible misclassification rate performance.

As one more concrete illustration of what we mean
by reduced “variance” from using the AUC, we ana-
lytically calculated the moments of the MC difference
for our example of section 2.1.3 (this is not a compli-
cated calculation, given (2)) . The results, together
with previously displayed moments for AUC, are pre-
sented in table 6. A concrete concept of “variance” is
to compare the magnitude of the difference in means
to the standard deviation. The columns labeled @ give
the corresponding normal tail probabilities for this ra-
tio, i.e 1 — ®(™2). Reduced variance indeed leads
to higher probability of correct discrimination for the
AUC on all these examples.

It is interesting to compare our conclusion with two
recent related papers. From a theoretical perspective,



Table 6. Expansion of table 1 to include the moments and tail probability for misclassification rate.

N gt q AUC-MEAN AUC-VARIANCE AUC-& MC-MEAN MC-VARIANCE MC-@
50 0.1 0.2 8.36 476 0.65 0.42 5.36 0.57
200 0.1 0.2 127.86 28577 0.78 1.63 20.93 0.64
400 0.1 0.2 507.46 226097 0.86 3.22 41.69 0.69
50 0.1 03 15.99 592 0.74 0.85 6.98 0.63
200 0.1 0.3 246.39 35602 0.90 3.25 27.25 0.73
400 0.1 03 979.19 281769 0.97 6.45 54.38 0.81
(Ling et al., 2003) show that AUC tends to select the = References
same models as empirical error, but is less prone to
. . . Blak . M C. (1998). R -
ties. They conclude that AUC is “statistically con- axe, C, & erz, ( . ) cpos
itory of machine learning databases.

sistent and more discriminating” than empirical error.
The fundamental difference between their work and
ours is that we are ultimately concerned with the pre-
diction performance of our models, while they perform
combinatorial analysis of test-set performance. On the
other hand, (Perlich et al., 2003) compare AUC and
MC in the context of a large scale empirical study.
They conclude that in most cases the both criteria tend
to select the same models, although they note some
interesting exceptions (e.g. pruning decision trees im-
proves MC but not AUC). Their experiments illustrate
the “bias” effect we discussed above and verify that
the two measures are usually — but not always —
consistent. Note that they utilize large test sets and
therefore the “variance” effects we consider are much
less relevant.

4. Conclusion

Our aim in this paper is to improve understanding and
usefulness of AUC as a tool for model selection and dis-
crimination. We have introduced a theoretical method
for calculating the moments of AUC differences, as a
means to better understand the underlying processes
and to investigate the correctness of practical meth-
ods. We have also illustrated the usefulness of AUC as
a stable classification evaluation measure. This implies
that in high-uncertainty situations, such as having a
small amount of independent data for model selection,
the AUC may be the better performance measure for
discriminating between models than empirical error,
even when the ultimate goal is to classify well.

Some interesting questions remain unanswered. In
particular, we would like to be more specific about the
“bias-variance” tradeoff in using the AUC to evaluate
classification performance. Can we define more clearly
and rigorously situations where the AUC is preferable?
Where the misclassification rate is preferable?
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