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Abstract

This paper analyzes the performance of semi-
supervised learning of mixture models. We show
that unlabeled data can lead to an increase in
classification error even in situations where addi-
tional labeled data would decrease classification
error. This behavior contradicts several empiri-
cal results reported in the literature. We present a
mathematical analysis of this “degradation” phe-
nomenon and show that it is due to the fact that
bias may be adversely affected by unlabeled data.
We study the impact of these theoretical results to
classifiers based on Bayesian networks: some sit-
uations call for structural learning, while others
are best handled by relatively simple classifiers.

1. Introduction

Semi-supervised learning has received considerable atten-
tion in the machine learning literature due to its potential
in reducing the need for expensive labeled data (Seeger,
2001). Applications such as web search, text classification,
genetic research and machine vision are examples where
cheap unlabeled data can be added to a pool of labeled sam-
ples. The literature seems to hold a rather optimistic view,
where “unclassified observations should certainly not be
discarded” (O’Neill, 1978). Perhaps the most representa-
tive summary of recent literature comes from (McCallum &
Nigam, 1998), who declare that “by augmenting this small
set [of labeled samples] with a large set of unlabeled data
and combining the two pools with EM, we can improve our
parameter estimates.”

Unfortunately, several experiments indicate that unlabeled
data are quite often detrimental to the performance of clas-
sifiers (Section 3. That is, the more unlabeled data are used,
the poorer is the performance of the resulting classifier. We
make this statement cautiously, for some readers may find it

obvious, while others may find it unbelievable — and some
will dismiss it as incorrect. We have occasionally met with
such reactions when communicating our findings. Several
machine learning researchers argue that numerical errors in
EM or similar algorithms are the natural suspects for such
performance degradation. Thus we want to stress that our
results concern performance degradation even in the ab-
sence of numerical instabilities. Other researchers even
doubt unlabeled data can be of any use when labeled data
are available; these researchers are apparently unconvinced
by the testimonials quoted in the previous paragraph. On
top of such testimonials, we observe that there are sev-
eral situations where unlabeled data are provably useful
(Castelli & Cover, 1996). Yet another group of researchers
seems unsurprised that unlabeled data can be deleterious in
the presence of modeling errors, arguing that after all any-
thing can be expected in the presence of modeling errors.
However, any classifier is an inexact model of reality, and
yet labeled data can be almost always useful to classifica-
tion, even in situations where unlabeled data lead to per-
formance degradation. We have made extensive tests with
semi-supervised learning, only to witness a complex inter-
action between modeling assumptions and classifier perfor-
mance. Unlabeled data do requite a delicate craftsmanship,
and we suspect that most researchers are unaware of such
complexities. With this paper we wish to contribute to a
better understanding of semi-supervised learning.

In Section 4 we show that performance degradation from
unlabeled data depends on bias. Our main result is Theo-
rem 1, where we show how semi-supervised learning can
be viewed as a convex combination of supervised and un-
supervised learning, and how to understand performance
degradation in semi-supervised learning. We discuss sim-
ple examples that illustrate the kinds of behavior one can
see when dealing with semi-supervised learning. We finish
by discussing the behavior of Bayesian network classifiers
learned with labeled and unlabeled data, indicating situa-
tions where unlabeled data do have a beneficial effect.



2. Semi-supervised learning

The goal is to classify an incoming vector of observables�
. Each instantiation of

�
is a sample. There exists a

class variable � ; the values of � are the classes. To sim-
plify the discussion, we assume that � is a binary variable
with values �������	��� ��
 . We want to build classifiers that re-
ceive a sample � and output either �� or ��� � . We assume
0-1 loss; thus our objective is to minimize the probabil-
ity of classification errors. If we knew exactly the joint
distribution ������� ���

, the optimal rule would be to choose
class ��� when the probability of ���������
 given � is larger
than ����� , and to choose class � � � otherwise. This classifica-
tion rule attains the minimum possible classification error,
called the Bayes error.

We take that the probabilities of ����� ���
, or functions

of these probabilities, are estimated from data and then
“plugged” into the optimal classification rule. We assume
that a parametric model ������� ��� � �

is adopted. An estimate
of

�
is denoted by !� . If the distribution ������� ���

belongs to
the family ������� ��� � �

, we say the “model is correct”; oth-
erwise we say the “model is incorrect.” When the model
is correct, the difference between the expected value "$#&%'!��(
and

�
, ��")# %'!��(+*,� �

, is called estimation bias. If the esti-
mation bias is zero, the estimator !� is unbiased. When the
model is incorrect, we use “bias” loosely to mean the differ-
ence between ���-��� ���

and the ������� ��� !�.� . The classifica-
tion error for

�
is denoted by /0� � � ; the difference between

"1% /0��!� �-( and the Bayes error is the classification bias.

We assume throughout that probability models satisfy the
conditions adopted by (White, 1982); essentially, param-
eters belong to compact subsets of Euclidean space, mea-
sures have measurable Radon-Nikodym densities and are
defined on measurable spaces, and all functions are domi-
nated by integrable functions and differentiable to the first
or second order as necessary.

In semi-supervised learning, classifiers are built from a
combination of 243 labeled and 265 unlabeled samples. We
assume that the samples are independent and ordered so
that the first 273 samples are labeled. We consider the
following scenario. A sample �����8� � is generated from9 ����� ���

. The value � is then either revealed, and the sam-
ple is a labeled one; or the value � is hidden, and the sam-
ple is an unlabeled one. The probability that any sample
is labeled, denoted by : , is fixed, known, and indepen-
dent of the samples. Thus the same underlying distribution9 ����� ���

models both labeled and unlabeled data; we do not
consider the possibility that labeled and unlabeled samples
have different generating mechanisms.

The likelihood of a labeled sample �����8� � is : 9 �����8� � � � ;
the likelihood of an unlabeled sample � is �'� * : � 9 ��� � � � .
The density 9 � ��� � �

is a mixture model with mixing factor

9 ����� � � � (denoted by ; ):

9 � ��� � � �<; 9 � ��� � � � � �>= �'� * ; � 9 � ��� � � � � � �0? (1)

We assume throughout that mixtures (1) are identifiable:
distinct values of

�
determine distinct distributions (permu-

tations of the mixture components are allowed).

The distribution 9 ����� ��� � �
can be decomposed either as9 ��� � � � � � 9 � ��� � �

or as 9 � ��� ��� � � 9 ��� � � �
. A parametric

model where both 9 � ��� ��� � � and 9 ��� � � �
depend explicitly

on
�

is referred to as a generative model. We adopt the
maximum likelihood method for estimation of parameters
in generative models.

A strategy that departs from the generative scheme is to
focus only on 9 ��� � � � � � and to take the marginal 9 � ���
to be independent of

�
. Such a strategy produces a diag-

nostic model (for example, logistic regression (Zhang &
Oles, 2000)). Attempts to maximize log-likelihood with
respect to

�
in diagnostic models are not be affected by

unlabeled data; in the narrow sense of diagnostic models
defined above, maximum likelihood cannot process unla-
beled data for any given dataset (see (Zhang & Oles, 2000)
for a discussion). In this paper we adopt maximum likeli-
hood estimators and generative models; we do not discuss
different strategies, such as co-training (Blum & Mitchell,
1998) or active learning (Zhang & Oles, 2000), that can be
the object of future work.

3. Do unlabeled data improve or degrade
classification performance?

It would perhaps be reasonable to expect an average im-
provement in classification performance for any increase
in the number of samples (labeled or unlabeled): the more
are processed, the smaller the variance of estimates, and the
smaller the classification error. In Section 4 we show how
the limits of this informal argument.

As we have mentioned in Section 1, there are several posi-
tive reports in the literature concerning unlabeled data. In-
vestigations in the seventies are quite optimistic (Cooper &
Freeman, 1970; Jr., 1973; O’Neill, 1978). More recently,
there has been plenty of applied work with semi-supervised
learning,1 with some notable successes. There have also
been workshops on semi-supervised learning at NIPS1998,
NIPS1999, NIPS2000 and IJCAI2001. Overall, these pub-
lications and meetings advance an optimistic view of semi-
supervised learning, where unlabeled data can be profitably
used whenever available.

Perhaps more important (at least for the sceptical reader)
1Relevant references: (Baluja, 1998; Bruce, 2001; Collins &

Singer, 2000; Comité et al., 1999; Goldman & Zhou, 2000; Mc-
Callum & Nigam, 1998; Miller & Uyar, 1996; Nigam et al., 2000;
Shahshahani & Landgrebe, 1994b).



are positive theoretical results concerning unlabeled data.
(Castelli & Cover, 1996) and (Ratsaby & Venkatesh, 1995)
use unlabeled samples to estimate decision regions (by es-
timating 9 ����� ���

), and labeled samples are used to deter-
mine the labels of each region (Ratsaby and Venkatesh re-
fer to this procedure as “Algorithm M”). Castelli and Cover
basically prove that Algorithm M is asymptotically opti-
mal under various assumptions, and that, asymptotically,
labeled data contribute exponentially faster than unlabeled
data to the reduction of classification error. These authors
make the critical assumption that 9 ����� ���

belongs to the
family of models 9 ����� ��� � �

(the “model is correct”).

However, a more detailed analysis of current empirical re-
sults does reveal some puzzling aspects of unlabeled data.2

We have reviewed descriptions of performance degradation
in the literature in (Cozman & Cohen, 2002); here we just
mention the relevant references. Four results are particu-
larly interesting: (Shahshahani & Landgrebe, 1994b) and
(Baluja, 1998) describe degradation in image understand-
ing, while (Nigam et al., 2000) report on degradation in
text classification and (Bruce, 2001) describe degradation
in Baysian network classifiers. Shahshahani and Landgrebe
speculate that degradation may be due to deviations from
modeling assumptions, such as outliers and “samples of
unknown classes” — they even suggest that unlabeled sam-
ples should be used only when the labeled data alone pro-
duce a poor classifier. Nigam et al suggest several sources
of difficulties: numerical problems in the EM algorithm,
mismatches between the natural clusters in feature space
and the actual labels.

Intrigued by such results, we have conducted extensive
tests with simulated problems, and have observed the same
pattern of “degradation.” The interested reader can again
consult (Cozman & Cohen, 2002). Here we present a dif-
ferent test, now with real data. Consider the Adult database
that is available in the UCI repository. Figure 1 shows
the result of learning a Naive Bayes classifier using differ-
ent combinations of labeled and unlabeled datasets for the
Adult classification problem (using the training and test-
ing datasets available in the UCI repository). We see that
adding unlabeled data can improve classification when the
labeled data set is small (30 labeled data), but degrade per-
formance as the labeled data set becomes larger.

Both (Shahshahani & Landgrebe, 1994a) and (Nigam,
2001) are rather explicit in stating that unlabeled data can
degrade performance, but rather vague in explaining how
to analyze the phenomenon. There are several possibili-
ties: numerical errors, mismatches between the distribu-
tion of labeled and unlabeled data, incorrect modeling as-

2The workshop at IJCAI2001 witnessed a great deal of discus-
sion on whether unlabeled data are really useful, as communicated
to us by George Forman.
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Figure 1. Naive Bayes classifiers generated from the Adult
database (bars cover 30 to 70 percentiles).

sumptions. Are unlabeled samples harmful only because of
numerical instabilities? Is performance degradation caused
by increases in variance, or bias, or both? Can performance
degradation occur in the absence of bias; that is, when mod-
eling assumptions are correct? Do we need specific types
of models, or very complex structures, to produce perfor-
mance degradation?

We propose to study the asymptotic behavior of exact max-
imum likelihood estimators in semi-supervised learning,
adopting the position that this is the best strategy to an-
swer the questions in the last paragraph. The asymptotic re-
sults obtained in the next section allows us to analyze semi-
supervised learning without resorting to numerical meth-
ods, and to obtain insights that are not clouded by the un-
certainties of numerical optimization. We do not deny that
numerical problems can happen in practice (see (McLach-
lan & Basford, 1988, Section 3.2) and (Corduneanu &
Jaakkola, 2002)), but we are interested in more fundamen-
tal phenomena. The examples in the next section show that
performance degradation with unlabeled data would occur
even if numerical problems were somehow removed.

4. Asymptotics of semi-supervised learning

In this section we discuss the asymptotic behavior of semi-
supervised learning. We assume throughout that expecta-
tions such as "1% � ��� 9 ����� ��� (

and "1% � ��� 9 ����� ��� � �'(
exist

for every
�
, and each function attains a maximum at some

value of
�

in an open neighborhood in the parameter space.

The basic result comes from application of results in (Berk,
1966), (Huber, 1967), and particularly in (White, 1982)).
To state the result, a Gaussian density with mean � and
variance ��� is denoted by 2 ��� �	�
� � , and the following ma-
trices are defined (matrices are formed by running through
the indices � and � ): �� � � � � "�� ����� ��� 9 ��� � � � ��� ��������� ,� � � � � ��"1% ����� ��� 9 ��� � � � ��� ����� ����� ��� 9 ��� � � � ��� �����-( . The
result we need is as follows. Consider a parametric model
����� � � �

satisfying assumptions we have made, and a se-



quence of maximum likelihood estimates !��� , obtained
by maximization of

� �� ��� � ��� 9 ��� �	� � � , with an increasing
number of independent samples 2 , all identically dis-
tributed according to ��� � �

. Then !���	� ��

as 2 ��

for
�

in an open neighborhood of
��


, where
��


maximizes
"1% � ��� 9 ��� � � � (

. If
��


is interior to the parameter space,
��


is a regular point of ��)� � � and
� �)� � 
 � is non-singular,

then � 2�� !��� *���
���� 2 ��� � � � ��
�8� , where � �)� � � �
 �)� � ��� � � � � � �  ��� � ��� � . This result does not require the
distribution ����� �

to belong to the family ����� � � �
.

Consider now semi-supervised learning. Here the samples
are realizations of ����� ���

with probability : , and of
�

with
probability �'� * : � . Denote by �� a random variable that
assumes the same values of � plus the “unlabeled” value� . We have 9 ������� � � ��: . The actually observed samples
are realizations of ����6� ���

, and we obtain �9 ���� � ��� ��� �
��: 9 �-� � ��� ���8�! !"�#$&%')(+*�,.-0/ �8�'� * : � 9 � ���8�1 !"2#$ ')(+*3,.-0/ , where9 � ���

is a mixture density obtained from 9 ����� ���
(Expression (1)) and 4+5 �06 � is the indicator func-
tion (1 if 6 7  ; Accordingly, the parametric
model adopted for �8�� � ���

is: �9 ���� � ��� ��� � � �
��: 9 �-� � ��� ��� � �8�  "2#$&%')(+* ,.-0/ �8�'� * : � 9 � ��� � �	�  "�#$ ')(+* ,.-0/ .
Using these definitions, we obtain our main technical
result:

Theorem 1 Consider supervised learning where samples
are randomly labeled with probability : . Adopting pre-
vious assumptions, the value of

��

(the limiting value of

maximum likelihood estimates) is:9;: �=< 9�># : "1% � ��� 9 ����� ��� � � (�= �'� * : � "1% � ��� 9 � ��� � � ( � (2)

where the expectations are with respect to 9 ����� ���
. ?

Proof. The value
��


maximizes "1% � ��� �9 ����6� ��� � �-(
(ex-

pectation with respect to �9 ���� � ���
), and "1% � ��� 9 ����6� ��� � �-(

is equal to "1% 4A@&BCED� 5;F ���� � ��� ��� : = � ��� 9 ����� ��� � �	� =
4A@&BC � 5;F ���� � ��� ��� �'� * : �>= � ��� 9 � ��� � �	�-(

; thus the ex-
pected value is equal to : � ��� : = �'� * : � � ���0�'� * : � =
"1% 4A@&BCED� 5;F ���� � � ��� 9 �-��� ��� � � (�= "1% 4A@&BC � 5;F ���� � � ��� 9 � ��� � � (

.
The first two terms of this expression are irrelevant to max-
imization with respect to

�
. The last two terms are equal to

: "1% � ��� 9 ����� ��� � �>� ��G�� � ( = �'� * : � "1% � ��� 9 � ��� � �>� �� � � ( .
As we have �9 ����6� ��� �� �� � � � 9 ����� ���

and�9 � ��� �� � � � � 9 � ���
the last expression is equal to

: "1% � ��� 9 ����� ��� � � (.= �'� * : � "1% � ��� 9 � ��� � � (
, where the last

two expectations are now with respect to 9 ����� ���
. Thus

we obtain Expression (2). ?
Expression (2) indicates that the objective function in semi-
supervised learning can be viewed asymptotically as a
“convex” combination objective functions for supervised
learning ( "1% � ��� 9 ����� ��� � �'(

) and for unsupervised learning

( "1% � ��� 9 � ��� � � (
). Denote by

��
H the value of
�

that maxi-
mizes Expression (2) for a given : ; use

��
3 for
��
 �'� � and

��
5
for

��
 ��� � .3 With a few additional assumptions on the mod-
eling densities, Theorem 1 and the implicit function theo-
rem can be used to prove that

��
H is a continuous function
of : (Cozman & Cohen, 2003). This shows that the “path”
followed by the solution is a continuous one, as also as-
sumed by (Corduneanu & Jaakkola, 2002) in their discus-
sion of numerical methods for semi-supervised learning.

The asymptotic variance in estimating
�

under the con-
ditions of Theorem 1 can also be obtained using results
in (White, 1982). The asymptotic variance is  �  ,
where ��	I-:  , C�J K / � ��
�>= �'� * : �  K � ��
�1L � � and

� �I : � , C�J K / � ��
�>= �'� * : � � K � ��
 � L . It can be seen that
this asymptotic covariance matrix is positive definite, so
asymptotically an increase in 2 (the number of labeled
and unlabeled samples), leads to a reduction in the variance
of !� .

Model is correct Suppose first that the family of distri-
butions ������� ��� � �

contains the distribution ���-��� ���
; that

is, ������� ��� �;M � � ������� ���
for some

�;M
. When such a

condition is satisfied,
��
3 � ��
5 � �;M

given identifiabil-
ity, and then

��
H � �;M
(so maximum likelihood is consis-

tent and bias is zero). Also, we obtain 4� ��
H � � * � � ��
H � ,
and then the asymptotic covariance of the maximum like-
lihood estimator is governed by the inverse of the Fisher
information, N�� �)M ��� � . As we approach an infinitely large
number of samples, the classification error should approach
the Bayes error. By following a derivation in (Shahshahani
& Landgrebe, 1994b) for unbiased estimators, we can ar-
gue (approximately) that the expected classification error
depends essentially on the variance of !O1PRQAO!S

. This covari-
ance matrix is asymptotically determined by the Fisher in-
formation of

�
, denoted by N�� � � . As N�� � � is a sum of the

information from labeled data and the information from
unlabeled data (Zhang & Oles, 2000; Cozman & Cohen,
2003), and because the information from unlabeled data is
always positive definite, the conclusion is that unlabeled
data must cause a reduction in classification error when
the model is correct. Similar derivations and conclusions
can be found in (Ganesalingam & McLachlan, 1978) and
in (Castelli, 1994).

Model is incorrect We now study the scenario that
is more relevant to our purposes, where the distribution
������� ���

does not belong to the family of distributions
������� ��� � �

. In view of Theorem 1, it is perhaps not sur-
3We have to handle a difficulty with TVU�W�XY;Z : given only unla-

beled data, there is no information to decide the labels for deci-
sion regions, and the classification error is 1/2 (Castelli, 1994). To
simplify the discussion, we assume that, when []\_^ , an “oracle”
will be available to indicate the labels of the decision regions.



prising that unlabeled data can have the deleterious effect
discussed in Section 3. Suppose that

��
5 �� ��
3 and that
/0� ��
5 ��� /0� ��
3 � . If we observe a large number of labeled
samples, the classification error is approximately /0� �V
3 � . If
we then collect more samples, most of which unlabeled,
we eventually reach a point where the classification error
approaches /0� � 
5 � . So, the net result is that we started with
classification error close to /0� ��
3 � , and by adding a great
number of unlabeled samples, classification performance
degraded. The basic fact here is that estimation and clas-
sification bias are affected differently by different values
of : . Hence, a necessary condition for this kind of per-
formance degradation is that /0� ��
5 � �� /0� ��
3 � ; a sufficient
condition is that /0� ��
5 ��� /0� ��
3 � .
The focus on asymptotics is adequate as we want to elim-
inate phenomena that can vary from dataset to dataset. If
/0� ��
3 � is smaller than /0� ��
5 � , then a large enough labeled
dataset can be dwarfed by a much larger unlabeled dataset
— the classification error using the whole dataset can be
larger than the classification error using only labeled data.

A summary 1) Labeled and unlabeled data contribute to
a reduction in variance in semi-supervised learning under
maximum likelihood estimation. 2) When the model is
correct, the maximum likelihood estimator is unbiased and
both labeled and unlabeled data reduce classification error
by reducing variance. Unlabeled data alone define the de-
cision regions and labeled data can be used only to label
regions, as in Algorithm M. 3) When the model is incor-
rect, there may be different asymptotic estimation bias for
different values of : ; asymptotic classification error may
also be different for different values of : — an increase
in the number of unlabeled samples may lead to a larger
estimation bias and a larger classification error.

An example: performance degradation with Gaussian
data The previous discussion alluded to the possibility
that /0� ��
5 ��� /0� ��
3 � when the model is incorrect. To under-
stand how such a phenomenon can occur, consider an ex-
ample of obvious practical significance. Consider Gaussian
observations ��� �	� �

taken from two classes � � and � � � . We
know that � and � are Gaussian variables, and we know
their means and variances given the class � . The mean of
��� �	� �

is ��� ���.��� � conditional on ��� � ���
 , and ���.��� � � �
conditional on ��� � �� ��
 . Variances for � and for � con-
ditional on � are equal to 1. We do not know, and have
to estimate, the mixing factor ; � 9 ��� � �� � . The data is
sampled from a distribution with mixing factor 3/5.

We want to obtain a Naive-Bayes classifier that can ap-
proximate 9 ��� � � �	� �

. Suppose that � and � are inde-
pendent conditional on ��� � � � 
 but that � and � are
dependent conditional on ��� � �� ��
 — the correlation� � "1% ��� * "1% � (�� ��� * "1% � (��� ��� ��� � ( is equal to 	 ��
 .

If we knew the value of � , we would obtain an optimal
classification boundary on the plane �� � (this optimal
classification boundary is quadratic). Under the incorrect
assumption that � � � , the classification boundary is lin-
ear: � ��� = � � ��� �8�'� * !; � � !; � ��� , and consequently it is a
decreasing function of !; . With labeled data we can easily
obtain !; (a sequence of Bernoulli trials); then ; 
3 ���.��
 and
the classification boundary is given by � ��� * � ? ������� � .
Note that the (linear) boundary obtained with labeled data
is not the best possible linear boundary. We can in fact find
the best possible linear boundary of the form � ��� =��

.
The classification error can be written as a function of

�
that has positive second derivative; consequently the func-
tion has a single minimum that can be found numerically
(the minimizing

�
is

* � ? 	�
������ ). If we consider the set of
lines of the form ����� =��

, we see that the farther we go
from the best line, the larger the classification error. Fig-
ure 2 shows the linear boundary obtained with labeled data
and the best possible linear boundary. The boundary from
labeled data is “above” the best linear boundary.

Now consider the computation of ; 
5 , the asymptotic esti-
mate with unlabeled data. By Theorem 1, we must obtain:

9;: �_< 9�>��� � ! J �#"
$&%
� %

$&%
� % �8���.��
 � 2 �8% � ���.��� ((' � diag % �&�� (��	=

��� ��
 � 2 �8% �.��� � � ((' � %*)+-,/. +-,/.
)

(��8� �
� ��� ��; 2 �8% � ���.��� ( ' � diag % �&�� (��	=

�'� * ; � 2 �8% �.��� � � ((' � diag % �&�� (��8�-0 � 0 � ?
The second derivative of this double integral is always neg-
ative (as can be seen interchanging differentiation with in-
tegration), so the function is concave and there is a single
maximum. We can search for the zero of the derivative of
the double integral with respect to ; . We obtain this value
numerically, ; 
521 � ? 
�	�	�3�
 . Using this estimate, the linear
boundary from unlabeled data is � �4� * � ? ���;� �53 . This
line is “above” the linear boundary from labeled data, and,
given the previous discussion, leads to a larger classifica-
tion error than the boundary from unlabeled data. We have:
/0� � � � � ? ����3���
 ; /0� ��
3 � � � ? ������
�� ; /0� ��
5 � � � ? ��� �6	 � .
The boundary obtained from unlabeled data is also shown
in Figure 2.

This example suggests the following situation. Suppose we
collect a large number 243 of labeled samples from 9 �����/� �

,
with ; �7�.��
 and � �8	 ��
 . The labeled estimates form a
sequence of Bernoulli trials with probability �.��
 , so the
estimates quickly approach ; 
3 (the variance of !; decreases
as �.� ����
�273 � ). If we add a very large amount of unlabeled
data to our data, !; approaches ; 
5 and the classification error
increases.

By changing the “true” mixing factor and the correlation � ,
we can produce examples where the best linear boundary is
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Figure 2. Contour plots of the Gaussian mixture �&U������ Z , the best
classification boundary of the form � \	��
� , the linear boundary
obtained from labeled data (middle line) and the linear boundary
obtained from unlabeled data (upper line).

between the “labeled” and the “unlabeled” boundaries, and
examples where the “unlabeled” boundary is between the
other two. Different examples of degradation can be easily
produced, including examples with univariate models; the
interested reader may consult a longer version of this paper
(Cozman & Cohen, 2003).

Conclusions The obvious conclusion of the previous re-
sults is that unlabeled data can in fact degrade performance
even in simple situations. For degradation to occur, mod-
eling errors must be present — unlabeled data are always
beneficial in the absence of modeling errors. The most im-
portant fact to understand is that estimation bias depends
on the ratio of labeled to unlabeled data; this is somewhat
surprising as bias is usually taken to be a property of the
assumed and the “true” models, and not to be dependent
on the data. If the performance obtained with the available
labeled data is better than the performance with infinitely
many unlabeled samples, then at some point the addition
of unlabeled data will decrease performance.

5. A brief look at Bayesian network
semi-supervised learning

To avoid an excessively negative and theoretical tone,
we would like to briefly summarize our experience with
semi-supervised learning of Bayesian network classifiers.
Bayesian networks form an interesting class of genera-
tive classifiers, including Naive-Bayes and TAN classifiers
(Friedman et al., 1997).

We have observed that Naive Bayes and TAN classifiers
(learned with the EM algorithm) are often plagued by per-
formance degradation, for example in the datasets found in
the UCI repository, with TAN classifiers having an edge

over Naive Bayes.4

At the same time, it is not trivial to find uniformly bet-
ter ways to handle unlabeled data — it is actually inter-
esting to use our techniques to analyze proposals made in
the literature. We briefly discuss here the class of estima-
tors proposed in (Nigam et al., 2000). Nigam et al’s es-
timators maximize a modified log-likelihood of the form
: ��� 3'� � �>= �'� * : � � � 5 � � � (where � 3 is the “likelihood” for
labeled data and � 5 is the “likelihood” for unlabeled data)
while searching for the best possible : � . There is no reason
why this procedure would improve performance, but it may
work sometimes: In the Gaussian example in Section 4, if
the boundary from labeled data and the boundary from un-
labeled data are in different sides of the best linear bound-
ary, then we can find the best linear boundary by changing
: � — we can improve on both supervised and unsupervised
learning in such a situation!5 In any case, one cannot ex-
pect to find the best possible boundary just by changing
: � ; as an example, take the Shuttle dataset from the UCI
repository. Using only 100 labeled samples, a Naive Bayes
classifier produced classification error of about �5��� ; with
100 labeled samples and 43400 unlabeled samples, a Naive
Bayes learned with the EM algorithm produced classifica-
tion error of about ����� . The notable fact is that there is a
monotonic increase in the classification as we move from
fully labeled data ( : � ��� � to fully unlabeled data ( : � � � ).
Still, Nigam et al report beneficial effects from unlabeled
data, using Naive Bayes classifiers. One explanation is that
Naive Bayes is the “correct model” in text classification.
A more plausible explanation is that the classifiers built by
Nigam et al contain such a large number of observables the
variance of estimators is very large for the number of avail-
able labeled samples — the reduction in variance offsets
increases in bias. We have consistently observed that prob-
lems with very large numbers of features and not so large
labeled datasets tend to benefit from unlabeled data. Prob-
lems in text classification and image understanding typi-
cally fit this pattern, and the best results in the literature are
exactly in these applications. This agrees with the empiri-
cal findings of (Shahshahani & Landgrebe, 1994b), where
unlabeled data are useful as more observables are used in
classifiers — while Nigam et al suggest that adding observ-
ables can worsen the effect of unlabeled data, the opposite
should be expected.

What else can be done with unlabeled data? We have actu-
ally a variety of new approaches to semi-supervised learn-

4The combination of TAN with EM to handle unlabeled data
is described in (Meila, 1999).

5Some authors have argued that labeled data should be given
more weight (Corduneanu & Jaakkola, 2002), but this example
shows that there are no guarantees concerning the supposedly su-
perior effect of labeled data.



ing; due to lack of space, we simply state a few observa-
tions here, in an attempt to motivate the reader to further
pursue the topic.

First we have noticed that feature selection can have an
enormous impact on semi-supervised learning: sometimes
the removal of a feature “improves the model” and leads to
performance improvements with unlabeled data.

Second, we suggest that performance degradation can be
used as a “signal” that modeling assumptions are incorrect;
we have used techniques that allow us to monitor the classi-
fication error and to detect when degradation is statistically
significant — indicating the need for modeling changes.

Third, we observe that the most natural way to go beyond
Naive Bayes and TAN classifiers is to look for an arbi-
trary Bayesian network that can represent the relevant dis-
tributions; we have had significant success in this direction.
Given the many possible approaches for Bayesian network
learning, we just mention two interesting ideas. We have
developed an stochastic structure search algorithm (named
SSS) that essentially performs Metropolis-Hastings runs in
the space of Bayesian networks; we have observed that
this method, while demanding huge computational effort,
can improve on TAN classifiers (algorithm and applica-
tion to image understanding are described in paper sub-
mitted to CVPR2003). We have also developed an algo-
rithm that combines EM iterations and dependency tests,
allowing for some restricted forms of feature selection; we
have observed performance comparable to SSS (algorithm
and results are described in companion paper submitted to
ICML2003).

Fourth, we suggest that, when possible, it should be prof-
itable to consider exchanging all unlabeled data in ex-
change for a few additional labeled samples. It may be
better to use a few hundred actively labeled samples than
to process thousands of unlabeled samples.

To illustrate the points made in the last two paragraphs, take
again the Shuttle dataset from the UCI repository. With 100
labeled samples, classification error is �5��� ; with 43500 la-
beled samples, classification error is � ? ��� � (on indepen-
dent test set with 14500 labeled samples). Now, consider
obtaining a classifier from 100 labeled samples and 30000
unlabeled samples. Naive Bayes leads to classification er-
ror of about ����� , and TAN leads to classification error of
about �53�� (great gains from using more complex struc-
ture). SSS does much better, leading to classification error
of only � ? � � � . Dependency tests produce a classifier with
classification error of XXXX. Finally, we could obtain clas-
sification error of just YYYY if we discarded the whole
unlabeled dataset, selected 100 additional labeled samples
randomly, and produced a Naive Bayes classifier.

6. Conclusion

In this paper we have derived and studied the asymptotic
behavior of semi-supervised learning based on maximum
likelihood estimation (Theorem 1), using results from the
theory of robust statistics. We have also presented a de-
tailed analysis of performance degradation from unlabeled
data, and explained this phenomenon as a consequence of
asymptotic bias effects.

In view of the results presented here, several statements
in the literature must be properly ammended. Overly op-
timistic statements concerning semi-supervised learning
must be taken in conditional terms. Also, statements that
reduce the difference between labeled and unlabeled data
to mere labeling of decision regions are incomplete (in
particular, Algorithm M would not enjoy a clean motiva-
tion in the presence of modeling errors). As discussed
in Section 3, there have been previous statements argu-
ing that modeling errors and numerical problems are the
causes of performance degradation. We have focused on
the quite broad possibility of modeling errors. The term
“modeling error” is conveniently vague to allow for al-
most any kind of behavior, but it is not free of content in
the semi-supervised setting. For modeling errors must be
present for performance degradation to occur. Comments
by Nigam and Shahshahani on the effect of modeling errors
in semi-supervised learning, discussed in Section 3, how-
ever vague, were in the right direction. One of our contri-
butions is to connect in a very precise way modeling errors
to performance degradation. The connection, as we have
argued, comes from an understanding of asymptotic bias.

Despite these sobering comments, we note that our tech-
niques can lead to better semi-supervised classifiers in a
variety of situations, as argued in Section 5.

We have on purpose not dealt with two types of model-
ing errors. First, we have avoided the possibility that la-
beled and unlabeled data are sampled from different dis-
tributions. Such a form of selection bias is quite serious
and can obviously have a deleterious effect on classification
error (McLachlan, 1992, pages 42-43). Second, we have
avoided the possibility that more classes are represented in
the unlabeled data than in the labeled data, perhaps due to
the scarcity of labeled samples ((Nigam et al., 2000) dis-
cuss techniques to address this issue). We believe that, by
constraining ourselves to simpler modeling errors, we have
forcefully indicated that performance degradation must be
prevalent in practice.

The list of possible extensions of the current work is long
and reflects the richness of the subject. It should be in-
teresting to find necessary and sufficient conditions for a
model to suffer performance degradation with unlabeled
data. Also, the analysis of bias should be much enlarged,



with the addition of finite sample results. Another possi-
ble avenue is to look for optimal estimators in the presence
of modeling errors (Kharin, 1996). Finally, it would be
important to investigate performance degradation in other
frameworks, such as support vector machines, co-training,
or entropy based solutions (Jaakkola et al., 1999). We con-
jecture that any approach that incorporates unlabeled data
(so as to improve performance when the model is correct)
may suffer from performance degradation when the model
is incorrect. We note that co-training results in the literature
seem to corroborate this hypothesis (Ghani, 2001, Hoovers-
255 dataset). If we could in fact find an universally robust
semi-supervised learning method, such a method would in-
deed be a major accomplishment.

Regardless of the approach that is used, semi-supervised
learning is affected by modeling assumptions in rather
complex ways. The present paper should be helpful as a
first step in understanding unlabeled data and their pecu-
liarities in machine learning.

Acknowledgements

This work has received continued and substantial support
from HP Labs. We thank Alex Bronstein and Marsha Duro
for proposing the research on labeled-unlabeled data and
for many suggestions and comments during the course of
the work, as their help was critical to the results described
here. We thank Tom Huang for substantial support to this
research; Moises Goldszmidt for suggesting important im-
provements; George Forman for telling us about an IJCAI
workshop; Kevin Murphy for the freely available BNT sys-
tem; Marina Meila for useful comments in a preliminary
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