KD Ubiq Summer School 2008 Behavioural Modelling of a Grid System

Michele Sebag
CNRS — INRIA — Université Paris-Sud
http://tao.lri.fr

March 8th, 2008

What is this about?

Grids for Machine Learning/Data Mining

NO marginally

Distributed-*Everything*:

- ► Feature construction/selection
- Model selection
- Reinforcement learning
- Optimization

Machine Learning/Data Mining for Grids

YES

- Grids are Complex Systems
- ► They work. Why? How?
- ► How: First principles ∨ Behavioural modelling
- Self-aware systems

Autonomic Computing

Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010.

Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006 Irina Rish & Gerry Tesauro.

Autonomic Computing

The need

► Main bottleneck of the deployment of complex systems: shortage of skilled administrators

Vision

- Computing systems take care of the mundane elements of management by themselves.
- ► Inspiration: central nervous system (regulating temperature, breathing, and heart rate without conscious thought)

Goal

Computing systems that manage themselves in accordance with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003

Autonomic Computing

Activity: A growing field

► IBM Manifesto for Autonomic Computing http://www.research.ibm.com/autonomic	2001
► ECML/PKDD Wshop on Autonomic Computing http://www.ecmlpkdd2006.org/workshops.html	2006
► JIC. on Measurement and Performance of Systems http://www.cs.wm.edu/sigm06/	2006
NIPS Wshop on Machine Learning for Systems http://radlab.cs.berkeley.edu/MLSys/	2007
Networked System Design and Implementation http://www.usenix.org/events/nsdi08/	2008

Overview of the Tutorial

Autonomic Computing

- ML & DM for Systems: Introduction, motivations, applications
- Zoom on an application: Performance management

Autonomic Grid

- ► EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

Modelling Jobs

- Exploratory Analysis and Clustering
- Standard approaches, stability, affinity propagation

ML & DM for Systems

Some applications

- ► Cohen et al., OSDI 2004, Performance management

 detailed next
- ▶ Palatin-Wolf-Schuster, KDD06. Find misconfigured CPUs in a grid system

find outliers

- Xiao et al. AAAI05, Active learning for game player modeling situations where it's too easy
- Zheng et al. NIPS03-ICML06, Use traces to identify bugs put probes, suggest causes for failures
- Baskiotis et al., IJCAI07, ILP07, Statistical Structural Software Testing

construct test cases for software testing

Advocated Attitude: Bounded rationality

H. Simon, 1958

In complex real-world situations, optimization becomes approximate optimization since the description of the real-world is radically simplified until reduced to a degree of complication that the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction, retaining more of the detail of the real-world situation, but settling for a satisfactory, rather than approximate-best, decision.

Performance management

The goal

Ensure that the system complies with performance level objectives

The problem: System Modelling

Large-scale system complex behavior depends on:

- Workload
- Software structure
- ▶ Hardware
- Traffic
- System goals

The approaches

- ► Prior knowledge set of (event condition action) rules
- Statistical learning

exploiting pervasive instrumentation / query facilities

Example: a 3-tier Web application with a Java middleware component, backed by a DB

Correlating instrumentation data to system states: A building block for automated diagnosis and control, Cohen et al. OSDI 2004

Supervised Learning, Notations

Training set, set of examples, data base

(iid sample $\sim P(\mathbf{x}, y)$)

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1 \dots N\}$$

- $\triangleright \mathcal{X}$: Instance space
 - lacktriangleright propositional (examples described after D attributes) \mathbb{R}^D

$$\mathbf{x}=(X_1(\mathbf{x}),\ldots X_D(\mathbf{x}))$$

- relational (examples described after objects in relation, e.g. events - see later on)
- \mathcal{Y}: Label space
 - ▶ Discrete: classification
 - ► Continuous: regression

(compliant, not-compliant)

(average response time)

Example

Instance space, set of attributes

Metric	Description
mean_AS_CPU_1_USERTIME	CPU time spent in user mode on the application server.
var_AS_CPU_1_USERTIME	Variance of user CPU time on the application server.
mean_AS_DISK_1_PHYSREAD	Number of physical disk reads for disk 1 on the application server,
	includes file system reads, raw I/O and virtual memory I/O.
mean_AS_DISK_1_BUSYTIME	Time in seconds that disk 1 was busy with pending I/O on the application server.
var_AS_DISK_1_BUSYTIME	Variance of time that disk 1 was busy with pending I/O on the application server.
mean_DB_DISK_1_PHYSWRITEBYTE	Number of kilobytes written to disk 1 on the database server,
	includes file system reads, raw I/O and virtual memory I/O.
var_DB_GBL_SWAPSPACEUSED	Variance of swap space allocated on the database server.
var_DB_NETIF_2_INPACKET	Variance of the number of successful (no errors or collisions) physical packets
	received through network interface #2 on the database server.
mean_DB_GBL_SWAPSPACEUSED	Amount of swap space, in MB, allocated on the database server.
mean_DB_GBL_RUNQUEUE	Approximate average queue length for CPU on the database server.
var_DB_NETIF_2_INBYTE	Variance of the number of KBs received from the network
	via network interface #2 on the database server. Only bytes in packets
	that carry data are included.
var_DB_DISK_1_PHYSREAD	Variance of physical disk reads for disk 1 on the database server.
var_AS_GBL_MEMUTIL	Variance of the percentage of physical memory in use on the application server,
	including system memory (occupied by the kernel), buffer cache, and user memory.
numReqs	Number of requests the system has served.
var_DB_DISK_1_PHYSWRITE	Variance of the number of writes to disk 1 on the database server.
var_DB_NETIF_2_OUTPACKET	Variance of the number of successful (no errors or collisions) physical packets
	sent through network interface #2 on the database server

Label space

Compliance with Service Level Objectives (SLO) YES / NO

Learning a model

Desiderata

- Efficient
- Compact
- ► Easy/Fast to train
- Interpretable

few prediction errors fast to use on further cases no expertise needed to use guide design/improvement

Learning — Hypothesis search space

Learning = finding h with good quality

$$h \in \mathcal{H} : \mathcal{X} \mapsto \mathcal{Y}$$

Loss function

 $\ell(y, y') = \text{Cost of predicting } y' \text{ instead of } y$

- $\ell(y, y') = 1_{[y=y']}$
- ▶ $\ell(y, y') = (y y')^2$

classification regression

Learning — Hypothesis search space, 2

Learning criterion

► Generalization error

(ideal, alas P(x, y) is unknown)

$$Err_{gen}(h) = E[\ell(y, h(\mathbf{x}))] = \int \ell(y, h(\mathbf{x})) dP(\mathbf{x}, y)$$

Empirical error

(known)

$$Err_{emp}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i))$$

The bias/variance tradeoff

 $d(\mathcal{H})$: dimension of Vapnik Cervonenkis

$$Err_{gen}(h) \leq Err_{emp}(h) + \mathcal{F}(n, d(\mathcal{H}))$$

Bayesian Learning

Bayes theorem

$$P(Y = y | X = \mathbf{x}) = P(X = \mathbf{x} | Y = y).P(Y = y) / P(X = \mathbf{x})$$

 $\propto P(X = \mathbf{x} | Y = y).P(Y = y)$

Let $\mathbf{x} = (X_1(\mathbf{x}), \dots, X_D(\mathbf{x})) \in \mathbb{R}^D$.

Assuming attributes are independent,

$$P(X = \mathbf{x}|Y = y) = \prod_{i=1}^{d} P(X_i = X_i(\mathbf{x})|Y = y)$$

Prediction: select class that maximizes the probability of \mathbf{x}

$$\hat{y}(\mathbf{x}) = argmax\{\prod_{i=1}^{d} P(X_i = X_i(\mathbf{x})|Y = y_j).P(Y = y_j), y_j \in \mathcal{Y}\}\$$

Tree-Augmented Naive Bayes

Learn probability of attribute X_i conditionally to

- * label Y:
- * at most one other attribute X_j .

Tree-Augmented Naive Bayes, 2

Friedman, Geiger, Goldszmidt, MLJ 1997

Algorithm

▶ For each pair of attributes (X_i, X_j) , compute $I(X_i, X_j) =$

$$\sum_{v_i, v_j, y} P(X_i = v_i, X_j = v_j, Y = y) \ln \frac{P(X_i = v_i, X_j = v_j | Y = y)}{P(X_i = v_i | Y = y) P(X_j = v_j | Y = y)}$$

- ▶ Define the complete graph \mathcal{G} with $I(X_i, X_j)$ on edge (X_i, X_j)
- lacktriangle Define the maximum weight spanning tree from ${\cal G}$

Complexity

D: number of attributes N: number of examples Complexity: $\mathcal{O}(D^2N)$

Results: 1. Accuracy

Balanced accuracy = $\frac{1}{2}$ (True Pos. rate + True Neg rate). Measured by 10 fold CV

Depending on performance threshold

- CPU: baseline predictor, use the CPU level only
- MOD: TAN trained with highest performance threshold
- ► TAN: TAN trained for each performance threshold

Results: 2. Using the model

Forecasting the failures

$$\ln \frac{P(X_{i,t+1} = v | X_{i,t} = v', Y = 0) P(Y = 0)}{P(X_{i,t+1} = v | X_{i,t} = v', Y = 1) P(Y = 1)} > 0$$

Interpreting the causes of failures

- ▶ Direct interpretation might be hindered by limited description.
- Learning would select an effect for a (missing) cause.
- Example: minute-average-load used as disk queue is missing.

Going ubiquitous -1. What can be distributed

The phenomenons

- Several instances of the process
- Confidentiality issues

The examples

- For scalability
- Sampling with prior knowledge: e.g. periodicity
- Sampling with posterior knowledge: e.g. boosting, anomalies

The attributes

- For scalability
- Feature selection
- Hidden causes
- Feature construction

Going ubiquitous -2. How to fuse/integrate partial results

Migrating the examples

- Distinguishing outliers from novelties
- ► False discovery rate

Migrating the models

- ► Claim: learning multiple models is GOOD.
- Exploration/Exploitation tradeoff.
 Island-model for Evolutionary Computation
- Confidentiality issues

Cascading the models

- ▶ Pattern: If (Condition) Then Conclusion
- ▶ Throw the Conclusion, keep the Condition
- Turn it into a new Feature

Exploration vs Exploitation

Exploitation

- Greedy optimization
- + Fast
- Local optima

Exploration

- ► Random walk
- + Finds global optimum with high probability
- Very slow

Evolutionary Computation

Preserving diversity

To be avoided

- ► Cloning: the best individual invades the population
- Diversity is lost, premature convergence

Heuristics

- Restricted mating
- Control selective pressure
- ► Island model