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What is this about?

Grids for Machine Learning/Data Mining NO
Distributed-Everything: marginally
» Feature construction/selection
» Model selection
» Reinforcement learning

» Optimization

Machine Learning/Data Mining for Grids YES

» Grids are Complex Systems
» They work. Why 7 How ?
» How: First principles VV Behavioural modelling

» Self-aware systems



Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.
Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006
Irina Rish & Gerry Tesauro.



Autonomic Computing

The need

» Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision
» Computing systems take care of the mundane elements of
management by themselves.

» Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance with
high-level objectives from humans

Kephart & Chess, IEEE Computer 2003



Autonomic Computing

Activity: A growing field
» IBM Manifesto for Autonomic Computing

http://www.research.ibm.com /autonomic

» ECML/PKDD Wshop on Autonomic Computing
http://www.ecmlpkdd2006.org/workshops.html

» JIC. on Measurement and Performance of Systems
http://www.cs.wm.edu/sigm06/

» NIPS Wshop on Machine Learning for Systems
http://radlab.cs.berkeley.edu/MLSys/

» Networked System Design and Implementation
http://www.usenix.org/events/nsdi08/
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Overview of the Tutorial

Autonomic Computing

» ML & DM for Systems:
Introduction, motivations, applications

» Zoom on an application: Performance management

Autonomic Grid

» EGEE: Enabling Grids for e-Science in Europe
» Data acquisition, Logging and Bookkeeping files
» (change of) Representation, Dimensionality reduction

Modelling Jobs

» Exploratory Analysis and Clustering
» Standard approaches, stability, affinity propagation



ML & DM for Systems

Some applications

» Cohen et al., OSDI 2004, Performance management
detailed next

» Palatin-Wolf-Schuster, KDD06. Find misconfigured CPUs in a
grid system
find outliers
» Xiao et al. AAAIO5, Active learning for game player modeling
situations where it's too easy
» Zheng et al. NIPS03-ICMLO06, Use traces to identify bugs
put probes, suggest causes for failures
» Baskiotis et al., [JCAIO7, ILP07, Statistical Structural
Software Testing
construct test cases for software testing



Advocated Attitude: Bounded rationality

H. Simon, 1958

In complex real-world situations, optimization becomes
approximate optimization since the description of the real-world is
radically simplified until reduced to a degree of complication that
the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction,
retaining more of the detail of the real-world situation, but settling
for a satisfactory, rather than approximate-best, decision.



Performance management

The goal
Ensure that the system complies with performance level objectives

The problem: System Modelling
Large-scale system complex behavior depends on:
Workload

Software structure

v

>

» Hardware
» Traffic
>

System goals

The approaches

» Prior knowledge set of (event - condition - action) rules

» Statistical learning
exploiting pervasive instrumentation / query facilities



Example: a 3-tier Web application with a Java middleware
component, backed by a DB

Load generators Web server App server Database server

» —
- Apache - " | BEA WebLogic] 4 Oracle
* * -
W2K Server W2K Server W2K Server
logs i
metries
SLO compliance indicator | | HP OpenView

—Fl Statistical analysis engine / model induction I—D

Correlating instrumentation data to system states: A building block for
automated diagnosis and control, Cohen et al. OSDI 2004



Supervised Learning, Notations

Training set, set of examples, data base
(iid sample ~ P(x,y))

E={(xiy)xi €X,yi €¥,i=1...N}

» X' Instance space
» propositional (examples described after D attributes) RP

x = (X1(x), ... Xp(x))

> relational (examples described after objects in relation, e.g.
events - see later on)
» V. Label space

» Discrete: classification (compliant, not-compliant)
» Continuous: regression (average response time)



Example

Instance space, set of attributes

Metre

Description

mean_ AS_CPU_1_USERTIME
var_AS_CPU_1_USERTIME
mean_AS_DISK_1_ PHYSREAD

mean_AS_DISK_1_ BUSYTIME
var AS_DISK_1_ BUSYTIME
mean_ DB_DISK_1_ PHYSWRITEBYTE

var DB_GBL_SWAPSPACEUSED
var DB NETIF_2_ INPACKET

mean_DB_GBL_SWAPSPACEUSED
mean_ DB_GBL_RUNQUEUE
var DB NETIF 2 INBYTE

var_DB_DISK_I_PHYSREAD
var_AS_GBL_ MEMUTIL

numBeqs

var_DB_DISK_1_PHYSWRITE
var DB NETIF 2 OUTPACKET

Label space

Compliance with Service Level Objectives (SLO)

CPU time spent in user mode on the application server.

Variance of user CPU time on the application server.

Number of physical disk reads for disk 1 on the application server,
includes file system reads, raw 1O and virtual memory /0.

Time in seconds that disk 1 was busy with pending /O on the appli
Variance of time that disk 1 was busy with pending /O on the application server.
Number of kilobytes writlen to disk 1 on the database server,

includes file system reads, raw O and virtual memory O,

Variance of swap space allocated on the database server.

Variance ol the number of successful (no errors or collisions) physical packets
received through network interface #2 on the database server.

Amount of swap space, in MB, allocated on the database server.

Approximate average queue length for CPU on the database server.

Variance of the number of KBs received from the network

tion server.

via network interface #2 on the database server. Only bytes in packets

that carry data are included.

Variance of physical disk reads for disk 1 on the database server.

Variance of the percentage of physical memory in use on the application server,
including system memory (occupied by the kernel), buffer cache, and user memory.
Number of requests the system has served.

Variance of the number of writes to disk 1 on the database server.

Variance of the number of successtul (no errors or collisions) physical packets

sent through network interface #2 on the database server.

YES / NO



Learning a model

Desiderata
» Efficient few prediction errors
» Compact fast to use on further cases
» Easy/Fast to train no expertise needed to use
» Interpretable guide design/improvement



Learning — Hypothesis search space

Learning = finding h with good quality
heH: XY

Loss function

U(y,y") = Cost of predicting y’ instead of y

> Uy, y') = 1=y classification

> Uy,y)=(y =) regression



Learning — Hypothesis search space, 2
Learning criterion

» Generalization error (ideal, alas P(x,y) is unknown)

Errgen(h) = E[((y, h(x))] = / Uy, h(x))dP(x,y)

» Empirical error (known)

Errama(h) = 1 3 (i, ()
=1

Empirical error

The bias/variance tradeoff
d(H): dimension of Vapnik Cervonenkis

Variance

Errgen(h) < Erfemp(h) + F(n, d(H))

da(r)



Bayesian Learning

Bayes theorem

P(Y=y|X=x) = PX=x|Y=y)P(Y=y)/PX=x)
x P(X=x|Y=y)P(Y=y)

Let x = (Xi(x),...,Xp(x)) € RP.
Assuming attributes are independent,

d
PIX =xY = y) = [[ P(X; = Xi(x)| Y = y)
i=1
Prediction: select class that maximizes the probability of x

d
y(x) = argmax{H P(Xi = Xi(x)|Y = yj).P(Y =yj),y; € Y}
i=1



Tree-Augmented Naive Bayes

Learn probability of attribute X; conditionally to
* label Y;
* at most one other attribute X;.

SLO state

Var_DB_NEm.
) ®.

mean_DB_GBL_swapspaceused var_DB_DISK_1_physIO



Tree-Augmented Naive Bayes, 2

Friedman, Geiger, Goldszmidt, MLJ 1997
Algorithm
> For each pair of attributes (Xj, Xj), compute /(X;, X;) =

P(X,’—V,, _V_/|Y .y)

Y. PXi=viXj=v,Y =y)In 5

Vi, Visy

(Xi = vi|Y = Y)P( = vilY =)

» Define the complete graph G with /(X;, X;) on edge (X, X))

» Define the maximum weight spanning tree from G

Complexity
D : number of attributes

N : number of examples
Complexity: O(D?N)



Results: 1. Accuracy

Balanced accuracy = %(True Pos. rate + True Neg rate ).
Measured by 10 fold CV

Depending on performance threshold

1

= = =
e L 8 P o
P

Balance accuracy
False Alarm rate

SLO Threshald (ssec) o ? slotmesnollsee) | o
Balanced accuracy False alarm rate

» CPU: baseline predictor, use the CPU level only

» MOD: TAN trained with highest performance threshold

» TAN: TAN trained for each performance threshold



Results: 2. Using the model

Forecasting the failures

n P(Xit+1 =v|Xit =V, Y =0)P(Y =0)
1

P(X,',H_]_ = V’X,'7t = V,, Y =

Interpreting the causes of failures

» Direct interpretation might be hindered by limited description.
» Learning would select an effect for a (missing) cause.

» Example: minute-average-load used as disk queue is missing.



Going ubiquitous — 1. What can be distributed

The phenomenons

» Several instances of the process

» Confidentiality issues

The examples

» For scalability
» Sampling with prior knowledge: e.g. periodicity

» Sampling with posterior knowledge: e.g. boosting, anomalies

The attributes

For scalability
Feature selection

Hidden causes

vV v v Yy

Feature construction



Going ubiquitous — 2. How to fuse/integrate partial results

Migrating the examples

» Distinguishing outliers from novelties

» False discovery rate

Migrating the models

» Claim: learning multiple models is GOOD.

» Exploration/Exploitation tradeoff.
Island-model for Evolutionary Computation

» Confidentiality issues

Cascading the models

» Pattern: If (Condition) Then Conclusion
» Throw the Conclusion, keep the Condition

» Turn it into a new Feature



Exploration vs Exploitation

Exploitation

» Greedy optimization
+ Fast
— Local optima

Exploration

» Random walk

+ Finds global optimum with

high probability

— Very slow

20

10

-10

20




Evolutionary Computation

Hy H#H H#Hu —=  Parents

Best individual

— Stop 7 —>
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Stochastic operators

SRR

WY "Darwinism" (stochastic or determinist)

(I Main CPU cost



Preserving diversity

To be avoided

» Cloning: the best individual invades the population

» Diversity is lost, premature convergence

Heuristics

» Restricted mating
» Control selective pressure

» Island model



