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Overview of the Tutorial

Autonomic Computing

I ML & DM for Systems:
Introduction, motivations, applications

I Zoom on an application: Performance management

Autonomic Grid

I EGEE: Enabling Grids for e-Science in Europe

I Data acquisition, Logging and Bookkeeping files

I (change of) Representation, Dimensionality reduction

Modelling Jobs

I Exploratory Analysis and Clustering

I Standard approaches, stability, affinity propagation



Part 3: Clustering

I Approaches
I K-Means
I EM
I Selecting the number of clusters

I Clustering the EGEE jobs
I Dealing with heterogeneous data
I Assessing the results



Clustering

http://www.ofai.at/ elias.pampalk/music/



Clustering Questions

Hard or soft ?

I Hard: find a partition of the data

I Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

I Parametric: number K of clusters is known

I Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

I Complexity

I Outliers

I Validation



Formal Background

Notations

E {x1, . . . xN} dataset
N number of data points
K number of clusters given or optimized

Ck k-th cluster Hard clustering
τ(i) index of cluster containing xi

fk k-th model Soft clustering
γk(i) Pr(xi |fk)

Solution

Hard Clustering Partition ∆ = (C1, . . . Ck)
Soft Clustering ∀i

∑
k γk(i) = 1



Formal Background, 2

Quality / Cost function

Measures how well the clusters characterize the data

I (log)likelihood soft clustering

I dispersion hard clustering

K∑
k=1

1

|Ck |2
∑

xi ,xj in Ck

d(xi , xj)
2

Tradeoff
Quality increases with K ⇒ Regularization needed

to avoid one cluster per data point



Clustering vs Classification

Marina Meila

http://videolectures.net/

Classification Clustering

K # classes (given) # clusters (unknown)
Quality Generalization error many cost functions

Focus on Test set Training set
Goal Prediction Interpretation

Analysis discriminant exploratory
Field mature new



Non-Parametric Clustering
Hierarchical Clustering

Principle

I agglomerative (join nearest clusters)

I divisive (split most dispersed cluster)

CONS: Complexity O(N3)



Hierarchical Clustering, example



Influence of distance/similarity

d(x , x ′) =



√∑
i (xi − x ′i )

2 Euclidean distance

1−
P

i xix
′
i

||x ||.||x ′|| Cosine angle

1−
P

i (xi−x̄)(x ′
i −x̄ ′)

||x−x̄ ||.||x ′−x̄ ′|| Pearson



Parametric Clustering

K is known

Algorithms based on distances

I K -means

I graph / cut

Algorithms based on models

I Mixture of models: EM algorithm



K -Means

Algorithm

1. Init:
Uniformly draw K points xij in E
Set Cj = {xij}

2. Repeat

3. Draw without replacement xi from E
4. τ(i) = argmink=1...K{d(xi ,Ck)} find best cluster for xi

5. Cτ(i) = Cτ(i)

⋃
xi add xi to Cτ(i)

6. Until all points have been drawn

7. If partition C1 . . .CK has changed Stabilize
Define xik = best point in Ck , Ck = {xik}, goto 2.

Algorithm terminates



K -Means, Knobs

Knob 1 : define d(xi , Ck) favors

I min{d(xi , xj), xj ∈ Ck} long clusters

* average{d(xi , xj), xj ∈ Ck} compact clusters

I max{d(xi , xj), xj ∈ Ck} spheric clusters

Knob 2 : define “best” in Ck

I Medoid argmini{
∑

xj∈Ck
d(xi , xj)}

* Average 1
|Ck |

∑
xj∈Ck

xj

(does not belong to E)



No single best choice



K -Means, Discussion

PROS

I Complexity O(K × N)

I Can incorporate prior knowledge initialization

CONS

I Sensitive to initialization

I Sensitive to outliers

I Sensitive to irrelevant attributes



K -Means, Convergence

I For cost function

L(∆) =
∑
k

∑
i ,j / τ(i)=τ(j)=k

d(xi , xj)

I for d(xi ,Ck) = average {d(xi , xj), xj ∈ Ck}
I for “best” in Ck = average of xj ∈ Ck

K -means converges toward a (local) minimum of L.



K -Means, Practicalities

Initialization

I Uniform sampling

I Average of E + random perturbations

I Average of E + orthogonal perturbations

I Extreme points: select xi1 uniformly in E , then

Select xij = argmax{
j∑

k=1

d(xi , xik )}

Pre-processing

I Mean-centering the dataset



Model-based clustering

Mixture of components

I Density f =
∑K

k=1 πk fk
I fk : the k-th component of the mixture

I γk(i) = πk fk (x)
f (x)

I induces Ck = {xj / k = argmax{γk(j)}}

Nature of components: prior knowledge

I Most often Gaussian: fk = (µk ,Σk)

I Beware: clusters are not always Gaussian...



Model-based clustering, 2

Search space

I Solution : (πk , µk ,Σk)Kk=1 = θ

Criterion: log-likelihood of dataset

`(θ) = log(Pr(E)) =
N∑

i=1

log Pr(xi ) ∝
N∑

i=1

K∑
k=1

log(πk fk(xi ))

to be maximized.



Model-based clustering with EM

Formalization

I Define zi ,k = 1 iff xi belongs to Ck .

I E [zi ,k ] = γk(i) prob. xi generated by πk fk
I Expectation of log likelihood

E [`(θ)] ∝
∑N

i=1

∑K
k=1 γi (k) log(πk fk(xi ))

=
∑N

i=1

∑K
k=1 γi (k) log πk +

∑N
i=1

∑K
k=1 γi (k) log fk(xi )

EM optimization

E step Given θ, compute

γk(i) =
πk fk(xi )

f (x)

M step Given γk(i), compute

θ∗ = (πk , µk ,Σk)∗ = argminE [`(θ)]



Maximization step

πk : Fraction of points in Ck

πk =
1

N

N∑
i=1

γk(i)

µk : Mean of Ck

µk =

∑N
i=1 γk(i)xi∑N
i=1 γk(i)

Σk : Covariance

Σk =

∑N
i=1 γk(i)(xi − µk)(xi − µk)′∑N

i=1 γk(i)



Choosing the number of clusters

K -means constructs a partition whatever the K value is.

Selection of K

I Bayesian approaches
Tradeoff between accuracy / richness of the model

I Stability
Varying the data should not change the result

I Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

BIC (θ) = `(θ)− #θ

2
log N

Select K = argmax BIC (θ)
where #θ = number of free parameters in θ:

I if all components have same scalar variance σ

#θ = K − 1 + 1 + Kd

I if each component has a scalar variance σk

#θ = K − 1 + K (d + 1)

I if each component has a full covariance matrix Σk

#θ = K − 1 + K (d + d(d − 1)/2)



Gap statistics

Principle: hypothesis testing

1. Consider hypothesis H0: there is no cluster in the data.
E is generated from a no-cluster distribution π.

2. Estimate the distribution f0,K of L(C1, . . . CK ) for data
generated after π. Analytically if π is simple

Use Monte-Carlo methods otherwise

3. Reject H0 with confidence α if the probability of generating
the true value L(C1, . . . CK ) under f0,K is less than α.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm

Assume E extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample E according to this distribution

2. Apply K -means on this sample

3. Measure the associated loss function

Repeat : compute the average L̄0(K ) and variance σ0(K )
Define the gap:

Gap(K ) = L̄0(K )− L(C1, . . . CK )

Rule Select min K s.t.

Gap(K ) ≥ Gap(K + 1)− σ0(K + 1)

What is nice: also tells if there are no clusters in the data...



Stability

Principle

I Consider E ′ perturbed from E
I Construct C ′

1, . . . C
′
K from E ′

I Evaluate the “distance” between (C1, . . . CK ) and (C ′
1, . . . C

′
K )

I If small distance (stability), K is OK

Distortion D(∆)

Define S Sij = < xi , xj >
(λi , vi ) i-th (eigenvalue, eigenvector) of S

X Xi ,j = 1 iff xi ∈ Cj

D(∆) =
∑

i

||xi − µτ(i)||2 = tr(S)− tr(X ′SX )

Minimal distortion D∗ = tr(S)−
∑K−1

k=1 λk



Stability, 2

Results

I ∆ has low distortion ⇒ (µ1, . . . µK ) close to space (v1, . . . vK ).

I ∆1, and ∆2 have low distortion ⇒ “close”

I (and close to “optimal” clustering)

Meila ICML 06

Counter-example



From K-Means to K-Centers

Assumptions for K-Means

I A distance or dissimilarity

I Possibility to create artefacts barycenters

I Not applicable in some domains average molecule?
average sentence?

K-Centers, position of the problem

I A combinatorial optimization problem.
Find σ : {1, . . . ,N} 7→ {1, . . . ,N} minimizing:

E [σ] =
N∑

i=1

d(xi , xσ(i))

(What is missing here ?)



Affinity Propagation

Frey and Dueck 2007

Find σ maximizing:

E [σ] =
N∑

i=1

S(xi , xσ(i))−
N∑

i=1

χi [σ]

Where

S(xi , xj) =

{
−d(xi , xj) if i 6= j
−s∗ otherwise

χi [σ] =

{
∞ if σ(σ(i)) 6= σ(i)
0 otherwise

Remark: K is not fixed.
Instead, fix s∗ usual: median {d(xi , xj)}



Affinity Propagation, Principle

Algorithm: Message propagation

I Responsibility r(i , k) could xk be examplar for xi

I Availability a(i , k).



Affinity Propagation, cont’d



Affinity Propagation, cont’d



Algorithm

Iterate

r(i , k) = S(i , k)−maxk ′,k ′ 6=k{a(i , k ′) + S(i , k ′)}
r(k, k) = S(k, k)−maxk ′,k ′ 6=k{S(k, k ′)}

a(i , k) = min{0, r(k, k) +
∑

i ′,i ′ 6=i ,k max{0, r(i ′, k)}}
a(k, k) =

∑
i ′,i ′ 6=k max{0, r(i ′, k)}

Solution

σ(i) = argmax{r(i , k) + a(i , k), k = 1 . . .N}

Stop criterion

I After a maximal number of iterations

I After a maximal number of iterations with no change.


