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Overview of the Tutorial

Autonomic Computing

» ML & DM for Systems:
Introduction, motivations, applications

» Zoom on an application: Performance management

Autonomic Grid

» EGEE: Enabling Grids for e-Science in Europe
» Data acquisition, Logging and Bookkeeping files
» (change of) Representation, Dimensionality reduction

Modelling Jobs

» Exploratory Analysis and Clustering
» Standard approaches, stability, affinity propagation



Part 3: Clustering

» Approaches
» K-Means
» EM
» Selecting the number of clusters
» Clustering the EGEE jobs
» Dealing with heterogeneous data
> Assessing the results



Clustering

http://www.ofai.at/ elias.pampalk/music/




Clustering Questions

Hard or soft 7

» Hard: find a partition of the data

> Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

» Parametric: number K of clusters is known

» Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

» Complexity
» Outliers

» Validation



Formal Background

Notations
& {x1,...xn} dataset
N number of data points
K number of clusters given or optimized
Cx k-th cluster Hard clustering

7(i)  index of cluster containing x;

fx k-th model Soft clustering
"yk(l) PF(X,'|fk)

Solution

Hard Clustering  Partition A = (Cy, ... Ck)
Soft Clustering Vi Y, (i) =1



Formal Background, 2

Quality / Cost function
Measures how well the clusters characterize the data

> (log)likelihood soft clustering
» dispersion hard clustering
o
2
Sids X des)
k=1 X;,X; in Ck
Tradeoff

Quality increases with K = Regularization needed
to avoid one cluster per data point



Clustering vs Classification

Classification

K # classes (given)
Quality  Generalization error
Focus on Test set
Goal Prediction
Analysis discriminant

Field mature

Marina Meila

http://videolectures.net/

Clustering

# clusters (unknown)
many cost functions
Training set
Interpretation
exploratory
new



Non-Parametric Clustering

Hierarchical Clustering

Principle

> agglomerative (join nearest clusters)

» divisive (split most dispersed cluster)

| n,m%

CONS: Complexity O(N3)



Hierarchical Clustering, example
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Influence of distance/similarity

b s ————

—

- L L5 L

Euclidean Vector angle Pearson
> oilxi —xI)? Euclidean distance
!
N 1oz Cosine angle
d(x,x') = IIAIE] g

1 Si-R)(=x)

| 1= Toamr—=y  Pearson



Parametric Clustering

K is known

Algorithms based on distances

» K-means

» graph / cut

Algorithms based on models

» Mixture of models: EM algorithm



K-Means

Algorithm

1.

No o e

Init:
Uniformly draw K points x;, in &
Set G = {x;;}
Repeat
Draw without replacement x; from &
7(7) = argmink=1. k{d(x;, Cx)} find best cluster for x;
CT(,-) = CT(,-) UX,‘ add x; to CT(,-)
Until all points have been drawn

If partition C ... Cx has changed Stabilize
Define xj, = best point in Cx, Cx = {x;, }, goto 2.

Algorithm terminates



K-Means, Knobs

Knob 1 : define d(x;, Cx)

> min{d(x;,x;),x; € Cx}
* average{d(xi,x;),x; € Cx}
> max{d(x,-,xj),xj S Ck}

Knob 2 : define “best” in Cx
» Medoid

* Average
(does not belong to &)

favors

long clusters
compact clusters

spheric clusters

argmin;{zxjeck d(x,x;)}

1 )
TCA ijeck Xj



No single best choice

Fig. 1. Optimizing the diameter produces B while A is clearly more desirable.

Fic. 2. The inferior clustering B is found by optimizing the 2-median measure.



K-Means, Discussion

PROS
» Complexity O(K x N)

» Can incorporate prior knowledge

CONS
» Sensitive to initialization
» Sensitive to outliers

» Sensitive to irrelevant attributes

initialization



K-Means, Convergence

» For cost function
L) =Y > d(xi, x;)

» for d(x;, Cx) = average {d(x;,x;),x; € Cx}
> for "best” in C = average of x; € Cj

K-means converges toward a (local) minimum of L.



K-Means, Practicalities

Initialization

» Uniform sampling
> Average of £ 4+ random perturbations
> Average of £ + orthogonal perturbations

» Extreme points: select x;, uniformly in &, then

J
Select x;, = argmax{z d(xi, %)}
k=1

Pre-processing

» Mean-centering the dataset



Model-based clustering

Mixture of components

» Density f = Z,’le Ty Fi
» fi: the k-th component of the mixture
i fie(x)

> 7k(i) = Tf(x)
» induces Cx = {x; / k = argmax{v«(j)}}

Nature of components: prior knowledge

» Most often Gaussian: fx = (uk, Xk)

» Beware: clusters are not always Gaussian...
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Model-based clustering, 2

Search space

» Solution : (ﬂk,ﬂk,zk) 1 =10

Criterion: log-likelihood of dataset

to be maximized.



Model-based clustering with EM
Formalization

» Define z; , = 1 iff x; belongs to Cx.
> Ezj k] = (i) prob. x; generated by 7 fy
» Expectation of log likelihood

E[(0)] o< oy iy vilk) log(mifi(xi))

=N Sk (k) log m + Sy ST (k) log fi(x;)

EM optimization

E step Given 6, compute

M step Given (i), compute

0* = (mx, ik, L) = argminE[0(0)]



Maximization step

m: Fraction of points in Cj

1 N
k= ;’yk(/)

i Mean of Cy

e ZI,V:]_ Yk (7)

Y . Covariance

s ity ) — ) (xi — ju)
k

- S i)



Choosing the number of clusters

K-means constructs a partition whatever the K value is.
Selection of K

» Bayesian approaches
Tradeoff between accuracy / richness of the model

» Stability
Varying the data should not change the result

» Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

mcw)zewy—ﬁ?mgN

Select K = argmax BIC(0)
where #6 = number of free parameters in 6:

» if all components have same scalar variance o
#9=K—-1+1+ Kd
» if each component has a scalar variance o
#0=K -1+ K(d+1)
» if each component has a full covariance matrix %,

#0=K—1+K(d+d(d —1)/2)



Gap statistics

Principle: hypothesis testing

1. Consider hypothesis Hp: there is no cluster in the data.
& is generated from a no-cluster distribution 7.

2. Estimate the distribution fy x of L(Cy, ... Ck) for data
generated after 7. Analytically if 7 is simple
Use Monte-Carlo methods otherwise

3. Reject Hy with confidence « if the probability of generating
the true value £(Cy, ... Ck) under fy k is less than a.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm

Assume & extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample & according to this distribution
2. Apply K-means on this sample
3. Measure the associated loss function

Repeat : compute the average Lo(K) and variance oo(K)
Define the gap:

Gap(K) = Lo(K) — L(Cy, ... Ck)
Rule Select min K s.t.

Gap(K) > Gap(K + 1) —oo(K + 1)

What is nice: also tells if there are no clusters in the data...



Stability
Principle

» Consider &£ perturbed from £

» Construct i, ... Cj from &'

> Evaluate the “distance” between (Cy,...Ck) and (Cf,... Cy)
> If small distance (stability), K is OK

Distortion D(A)

Define S S, = <x;,x; >
(Mi,vi) i-th (eigenvalue, eigenvector) of S
X X,',J': 1iffX,’€C,’
D(A) =Y |Ixi — ur(i|I? = tr(S) — tr(X'SX)

Minimal distortion D* = tr(S) — S K Ay



Stability, 2
Results

» A has low distortion = (p1, ... uk) close to space (v, ... vk).
» Aj, and Ay have low distortion = ‘“close”

» (and close to “optimal” clustering)

Meila ICML 06

Counter-example

©




From K-Means to K-Centers

Assumptions for K-Means

» A distance or dissimilarity
» Possibility to create artefacts barycenters

» Not applicable in some domains average molecule?
average sentence?

K-Centers, position of the problem

» A combinatorial optimization problem.
Find o:{1,...,N}— {1,..., N} minimizing:

N
E[U] = Z d(X,’, Xa(i))
i=1

(What is missing here ?)



Affinity Propagation

Frey and Dueck 2007

Find o maximizing:

Elo] = Z S(xi,x fo [o]

Where ( )
vl —d Xi, Xj if i 75]
S(xi, %) = —s* otherwise
PR oo if a(o(i)) # o(i)
xilo] = { 0 otherwise

Remark: K is not fixed.
Instead, fix s* usual: median {d(x;,x;)}



Affinity Propagation, Principle

Algorithm: Message propagation

» Responsibility r(i, k)
> Availability a(i, k).

B
Sending respensibilities
Canclidats
exernplar k s+l
. exemplar &’
i k) /ﬂl.i..fi')
o —_ ®
Data paint i

could x,x be examplar for x;

c

Sending availabilities

Candidate
axemplar k£

Supporting
data point ¢




Affinity Propagation, cont'd
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Affinity Propagation, cont'd
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Algorithm

[terate

a(i7 k) = min{07 r(kv k) + Ei’,i’;ﬁi,k max{O, I’(i’, k)}}
a(k, k) = Zi’,i/;ék maX{O, r(i/, k)}

Solution
o(i) = argmax{r(i, k) + a(i,k),k =1...N}

Stop criterion

» After a maximal number of iterations

» After a maximal number of iterations with no change.



