
Apprentissage par Renforcement: Plan du cours
Contexte

Algorithms
Value functions
Optimal policy
Temporal differences and eligibility traces
Q-learning

Playing Go: MoGo

Feature Selection as a Game
Position du problème
Monte-Carlo Tree Search
Feature Selection: the FUSE algorithm
Experimental Validation

Active Learning as a Game
Position du problème
Algorithme BAAL
Validation expérimentale

Constructive Induction

Active Learning, position of the problem

Supervised learning, the setting

I Target hypothesis h∗

I Training set E = {(xi , yi), i = 1 . . . n}
I Learn hn from E

Criteria

I Consistency: hn → h∗ when n→∞.

I Sample complexity: number of examples needed to reach the
target with precision ε

ε→ nε s.t. ||hn − h∗|| < ε

Motivations

Active Learning, definition

Passive learning iid examples

E = {(xi , yi), i = 1 . . . n}

Active learning
xn+1 selected depending on {(xi , yi), i = 1 . . . n}
In the best case, exponential improvement:

State of the art

Let H be the hypothesis space.
Realizable assumption: h∗ ∈ H
Then, exponential improvements. Freund et al. 1997; Dasgupta
2005; Balcan et al. 2010.

Noisy case: improvement depends on noise model
Balcan et al. 2006; Hanneke 2007; Dasgupta et al. 2008.

Realizable batch case
PhD Philippe Rolet, 23 dec. 2010.

How it works

Principle

I Design a measure of the information brought by an instance

I Iteratively select the best instance

Example: query by committee Seung et al. 92

Active Learning

Optimization problem

I T : time horizon (number of instances to select)

I States st = {(xi , h
∗(xi)), i = 1 . . . t}

I Action: select xt+1

I A: Machine Learning algorithm

I Err: Generalization error

Find Sampling strategy S minimizing IEErr(A(ST (h∗), h∗)

Bottlenecks

I Combinatorial optimization problem - in a continuous space

I Generalization error unknown

Optimal Strategy for AL

Learner A Target Concept h*
(a.k.a. Oracle)

selects x1

selects x2

answers h*(x1)

answers h*(x2)

. .
 .

T-size training set S
T
(h*)

{(x
1
,h*(x

1
)), ... , (x

T
,h*(x

T
))}

 Learning algorithm A
 Finite Horizon T

 Sampling strategy S
T

 Target concept h*

 Goal: argmin E[Err(A(S
T
(h*)), h*)]

Optimal Strategy for AL

 AL modeled as a Markov decision process:
 State space: all possible training sets of size ≤T
 Action space: instances x available for query

 Transition function: P(s
t+1

| s
t
 , x)

 Reward function: gen. err. Err(A(S
T
(h)),h)

 Optimal policy π* → Optimal AL strategy

Active Learning: a 1-Player Game

 Bottlenecks:
 Large state space
 Large action space
 Cannot use h* directly

 Approx. sol. inspired
from Go: AL as a game

 Browse game tree
 Estimate move values

with Monte-Carlo

Coulom 06, Chaslot et al. 06,
Gelly&Sliver 07

simulations

Apprentissage par Renforcement: Plan du cours
Contexte

Algorithms
Value functions
Optimal policy
Temporal differences and eligibility traces
Q-learning

Playing Go: MoGo

Feature Selection as a Game
Position du problème
Monte-Carlo Tree Search
Feature Selection: the FUSE algorithm
Experimental Validation

Active Learning as a Game
Position du problème
Algorithme BAAL
Validation expérimentale

Constructive Induction

The BAAL Algorithm

=> Bandit-based
Active Learner

 Simulation planning
with Multi-armed
bandits

 Asymetric tree growth

More exploration for
promising moves

BAAL: Exploration v. Exploitation

 UCB: balance
exploration and
exploitation

 UCT = UCB for trees

Auer, 2002

Kocsis&Szepesvari, 2006

BAAL: Outline

s
0

s
11

s
01

s
00

 x
0

x
1

… x
P

s
10

s
11

s
10

s
01

s
00

s
T

 0 1 h(x
1
)=0 1 0 1

Baal: Continuous action space

 UCB is designed for finite action spaces
 AL: action space = RD

 Control the number of arms:
progressive widening # instances ~ (# visits)¼

 Select new instances
 In a random order
 Following a given heuristic (e.g. QbC heuristic)

Coulom, 2007
Wang, Audibert, Munos, 2008

Baal: draw surrogate hypotheses

 Billiard algorithms

Constraints = labeled
instances

Point = hypothesis

Domain = version
space

 Sound: provably converges to uniform draw
 Scalable w.r.t. dimension, # constraints

Rujan 97,
Comets et. al. 09, ...

Apprentissage par Renforcement: Plan du cours
Contexte

Algorithms
Value functions
Optimal policy
Temporal differences and eligibility traces
Q-learning

Playing Go: MoGo

Feature Selection as a Game
Position du problème
Monte-Carlo Tree Search
Feature Selection: the FUSE algorithm
Experimental Validation

Active Learning as a Game
Position du problème
Algorithme BAAL
Validation expérimentale

Constructive Induction

Some results

 Setting:
- Linear sep. of RD

- Dimension : 4, 8
- # queries: 15, 20

 X-axis: log(# sims)
Y-axis: Gen. Error

D=4, # =15

D=8, # =20

Passive learning

Almost optimal AL
(QbC-based)

Some results

 Combining with AL
criteria (inspired from
QbC)

 Best of both worlds!

D=4, # =15

D=8, # =20Almost optimal AL
(QbC-based)

Partial Conclusion on BAAL

 A new approach to AL: AL as a Game
 Boosts heuristic to optimal strategy (provably)
 Anytime algorithm
 Straightforward extension to Optimization

 Perspectives:
- Kernelized Baal
- Numerical engineering
 application

Rolet, Sebag, Teytaud, 2009b

Apprentissage par Renforcement: Plan du cours
Contexte

Algorithms
Value functions
Optimal policy
Temporal differences and eligibility traces
Q-learning

Playing Go: MoGo

Feature Selection as a Game
Position du problème
Monte-Carlo Tree Search
Feature Selection: the FUSE algorithm
Experimental Validation

Active Learning as a Game
Position du problème
Algorithme BAAL
Validation expérimentale

Constructive Induction

KDD 2009 − Orange

Targets

1. Churn

2. Appetency

3. Up-selling

Core Techniques

1. Feature Selection

2. Bounded Resources

3. Parameterless methods

