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Revisiting the art of programming

1970s Specifications Languages & thm proving

1990s Programming by Examples Pattern recognition & ML

2010s Interactive Learning and Optimization

» Optimizing coffee taste Herdy, 96
» Visual rendering Brochu et al., 10
» Choice query Viappiani et al., 10
» Information retrieval Joachims et al., 12
» Robotics

Akrour et al., 12; Wilson et al., 12; Knox et al. 13; Saxena et al 13

Programming with the Human in the Loop

Interaction, Learning, Optimization
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Centennial + 3

Computing Machinery and Intelligence
. the problem is mainly one of programming.

brain estimates: 1010 to 101° bits

Turing 1950
Fruit Fly 10°
Cockroach 10°
Cat 10°
Chimpanzee 710°
Elephant 23 10°
Human 89 107

I can produce about a thousand digits of program lines a day

[Therefore] more expenditious method seems desirable.

= Machine Learning
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Overview

Machine Learning: All you need is...
...logic
...data
...optimization
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ML: All you need is logic

Perception — Symbols — Reasoning — Symbols — Actions

Let’s forget about perception and actions for a while...
Symbols — Reasoning — Symbols

Requisite
» Strong representation
» Strong background knowledge

» Strong optimization tool
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The Robot Scientist

King et al, 04, 11

Adam: generate hypotheses from background knowledge and
experimental data, design experiments to confirm/infirm
hypotheses

Eve: drug screening, hit conformation, and cycles of QSAR
hypothesis learning and testing.
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ML: The logic era

So efficient

» Search: Reuse constraint solving, graph pruning,..

Requirement / Limitations
» Initial conditions: critical mass of high-order knowledge
» ... and unified search space

» Symbol grounding, noise

Of primary value: intelligibility
» (A means: for debugging)

» An end: to keep the expert involved.
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All you needed was data

Ast. series Pierre de Rosette
World
Natural Human-related
phenomenons phenomenons
Data / Principles
Maths. Common
Modelling Sense

You are here
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All you need is big data

Google

Sc. data &
World
Natural Human-related
phenomenons phenomenons
Data / Principles
Maths. Common
Modelling Sense

You are here
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Big data

IBM Watson defeats human champions at the quiz game Jeopardy
i . 1 2 3 4 5 6 7 8

1000" kilo mega giga tera peta exa zetta yotta bytes
» Google: 24 petabytes/day
» Facebook: 10 terabytes/day; Twitter: 7 terabytes/day
» Large Hadron Collider: 40 terabytes/seconds
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The Higgs boson ML Challenge

Balazs Kégl, Cécile Germain et al.
Run: 204153
Event: 356369265
2012-05-30 20:31:28 UTC

https://www.kaggle.com/c/higgs-boson September 2014, 15th
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Overview

Machine Learning: All you need is...
...logic
...data
...optimization
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ML: All you need is optimization

Old times
» Find the best hypothesis

» Find the best optimization criterion

» statistically sound
» a well-posed optimization problem
> tractable
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SVMs and Deep Learning

Episode 1
» NNs are universal approximators,...
> ... but their training yields non-convex optimization problems

> ... and some cannot reproduce the results of some others...

C3:1. maps 16@10x10
INPUT C1:feature maps S4: 1. maps 18@5x5

bk 8@28x28

S2:f. maps

Full canJec&icn ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Comwolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whese weights are constrained to be identical.
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SVMs and Deep Learning

Episode 2
» At last, SVMs arrive ! Vapnik 92; Cortes &Vapnik 95
» Principle
> Min ||A]2
» subject to Constraint on h(x)
h(xi).yi > 1, |h(x;) — yi| <, h(x;) < h(x!), h(x;) > 1...

Convex optimization ! (well, except for hyper-parameters)

v

v

More sophisticated optimization (alternate, upper bounds)...

Hastie 04; Bach 04; Srebro 11; ...
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SVMs and Deep Learning

Episode 3

» Did you forget our Al goal ?
(learning <> learning representation)

> At last Deep learning arrives !

Principle

» We always knew that many-layered NNs offered compact
representations Hasted 87

level log N
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SVMs and Deep Learning

Episode 3

» Did you forget our Al goal ?
(learning <> learning representation)

> At last Deep learning arrives !

Principle

» We always knew that many-layered NNs offered compact
representations Hasted 87

» But, so many local optima ! (poor optima)

» Breakthrough: unsupervised layer-wise learning
Hinton 06; Bengio 06
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SVMs and Deep Learning

From prototypes to features
> n prototypes — n regions

» n features — 2" regions

NS TN TEED PARTITICN
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SVMs and Deep Learning

Last Deep news
» Supervised training works, after all Glorot Bengio 10

> Does not need to be deep, after all
Ciresan et al. 13, Caruana 13
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SVMs and Deep Learning

Last Deep news
» Supervised training works, after all Glorot Bengio 10
» Does not need to be deep, after all
Ciresan et al. 13, Caruana 13

» Ciresan et al: use prior knowledge (non linear invariance
operators) to generate new examples

» Caruana: use deep NN to label hosts of examples; use them to
train a shallow NN.
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Overview

All you need is expert's feedback
Reinforcement learning
Programming by Feedback
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Interactive optimization

Optimizing the coffee taste Herdy et al., 96
Black box optimization:

F:Q— R Find arg max F 3

The user in the loop replaces F
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Interactive optimization

Optimizing the coffee taste Herdy et al., 96
Black box optimization:

F:Q— R Find arg max F 3

The user in the loop replaces F

Optimizing visual rendering Brochu et al., 07
Optimal recommendation sets Viappiani & Boutilier, 10
Information retrieval Shivaswamy & Joachims, 12
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Interactive optimization

Features
» Search space X C R4 (recipe x: 33% arabica, 25% robusta, etc)
» A non-computable objective
» Expert can (by tasting) emit preferences x < x’.

Scheme
1. Alg. generates candidates x, x’, x", ..

2. Expert emits preferences

3. goto 1.

Issues
» Asking as few questions as possible = active ranking
» Modelling the expert’s taste surrogate model

> Enforce the exploration vs exploitation trade-off



Overview

All you need is expert's feedback
Reinforcement learning
Programming by Feedback
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Reinforcement Learning

Environment

Generalities
» An agent, spatially and temporally situated

Stochastic and uncertain environment

v

v

Goal: select an action in each time step,

> ... in order maximize expected cumulative reward over a time
horizon

What is learned 7
A policy = strategy = { state — action }
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Reinforcement Learning, formal background

troams Notations
4 hallways

£unciabe » State space S

primitive actions

up

eft right

_— » Action space A

down

v

Transition p(s, a,s’) — [0, 1]
Reward r(s)
Goal states are given A\lreswards zero

aterminalvalue of 1 DiSCOunt O < Y < 1
Goal: a policy m mapping states onto actions

& multi-step options
(10 cach room’'s 2 hallways)

v

Given goal location,
quickly plan shortest rotte

v

T:S— A

s.t.

Maximize E[r|syp] = Expected discounted cumulative reward
= r(s0) + 20,7 pstsa = 7m(se), Se+1)r(Se41)
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Find the treasure

Single reward: on the treasure.
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Wandering robot

Nothing happens...
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The robot finds it




Robot updates its value function

V(s,a) == "distance" to the treasure on the trajectory.

29 /50



Reinforcement learning
* Robot most often selects a = arg max V(s, a)
* and sometimes explores (selects another action).
* Lucky exploration: finds the treasure again
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Updates the value function

* Value function tells how far you are from the treasure given the
known trajectories.

3
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Finally

* Value function tells how far you are from the treasure




Finally

Let's be greedy: selects the action maximizing the value function




Reinforcement learning

Three tasks
» Learn values
» Learn transition model

» Explore

Issues
» Exploration / Exploitation dilemma
» Representation, approximation, scaling up
» REWARDS

designer's duty

34 /50



Relaxing Expertise Requirements
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Relaxing Expertise Requirements in RL

Expert

| 2

v

v

Associates a reward to each state

Demonstrates a (nearly) optimal behavior

Compares and revises agent demonstrations

Compares demonstrations

Agent

» Computes optimal policy based on rewards

> Imitates verbatim expert’'s demonstration

v

v

v

v

Imitates and modifies
Learns the expert’s utility
Learns, and selects demonstrations

Accounts for the expert’s mistakes

RL

Inverse RL
Co-active PL
Preference PL, PF
RL

IRL

IRL

IRL, CPL

CPL, PPL, PF
PF

Ex-
per-
tise

ton-
omy
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Programming by feedback

Akrour &al. 14
Loop

1. Computer presents the expert with a pair of behaviors yi, y»
2. Expert emits preferences y1 > y»

3. Computer learns expert’s utility function (w,y)
4. Computer searches for behaviors with best utility

Critical issues
» Asks few questions

> Be robust wrt noise (expert makes mistakes & changes his
mind)
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Programming by Feedback

Ingredients

» Modelling the expert’'s competence
> Learning the expert’s utility

> Selecting the next best behaviors

» Which optimization criterion
» How to optimize it
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Modelling the expert's competence

Noise model

§ ~ U[0, M]

Given preference margin z = (w*,y —y/)

if z< =4

0
Ply <y |wd)=<¢ 1 ifz>46
14z

Prob of error

5 otherwise

—delta

delta
Preference margin Z
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Experimental validation

> Sensitivity to expert competence
Simulated expert, grid world

» Continuous case, no generative model
The cartpole

» Continuous case, generative model
The bicycle

> Training in-situ

The Nao robot
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Sensitivity to (simulated) expert incompetence
Grid world: discrete case, no generative model

25 states, 5 actions, horizon 300, 50% transition noise

Mg Expert incompetence
Ma > Mg Computer estimate of expert's incompetence

/411727 1

1/4|1/2

1/64 1/4

1/128(1/64

1/256|1/128|1/64

True w* on gridworld
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Sensitivity to simulated expert incompetence, 2
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True utility of x; expert's mistakes

Two notions
» The true human’'s competence
» The learner's confidence in the human competence

What is best: trusting a (mildly) competent human, or (mildly)
distrusting a competent human ?
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Sensitivity to simulated expert incompetence, 3
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True utility of x; expert's mistakes

A cumulative (dis)advantage phenomenon:

The number of expert’s mistakes increases as the computer
underestimates the expert's competence.

For low My, the computer learns faster, submits more relevant demonstrations
to the expert, thus priming a virtuous educational process.
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Overview

Programming, An Al Frontier
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Conclusion

Feasibility of Programming by Feedback for simple tasks

Back on track:

One could carry through the organization of an
intelligent machine with only two interfering inputs,
one for pleasure or reward, and the other for pain or
punishment.
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Programming by Feedback

About interaction: as designer; as user

» No need to debug if you can just say: No !
and the computer reacts (appropriately).

» | had a dream: a world where | don’t need to read the fucking
manual...
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Future: Tackling the Under-Specified

Knowledge-constrained Computation, memory-constrained
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