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I Balazs Kégl, machine learning TAO, LAL
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Exam

Final: same as for TC2:

I Questions

I Problems

Volunteers

I Some pointers are in the slides

I Volunteers: read material, write one page, send it
(sebag@lri.fr)

Tutorials/Videolectures

I http://www.iro.umontreal.ca/∼bengioy/talks/icml2012-YB-
tutorial.pdf (slides
1-56;79-133).



Questionaire

Admin: Ouassim Ait El Hara

Debriefing

I What is clear/unclear

I Pre-requisites

I Work organization



Hypothesis Space H / Navigation

H navigation operators

Version Space Logical spec / gen
Decision Trees Logical specialisation

Neural Networks Numerical gradient
Support Vector Machines Numerical quadratic opt.

Ensemble Methods − adaptation E

This course

I Neural Nets
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Bio-inspired algorithms

Facts

I 1011 neurons

I 104 connexions per neuron

I Firing time: ∼ 10−3 second 10−10 computers



Bio-inspired algorithms, 2

Human beings are the best !
I How do we do ?

I What matters is not the number of neurons
as one could think in the 80s, 90s...

I Massive parallelism ?
I Innate skills ? = anything we can’t yet explain
I Is it the training process ?



Beware of bio-inspiration

I Misleading inspirations (imitate birds to build flying machines)

I Limitations of the state of the art

I Difficult for a machine 6= difficult for a human



Synaptic plasticity

Hebb 1949 Conjecture
When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

Learning rule
Cells that fire together, wire together
If two neurons are simultaneously excitated, their connexion weight
increases.

Remark: unsupervised learning.
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History of artificial neural nets (ANN)

1. Non supervised NNs and logical neurons

2. Supervised NNs: Perceptron and Adaline algorithms

3. The NN winter: theoretical limitations

4. Multi-layer perceptrons.



History

1960

1950

1940

1970

1980

1990
Support Vector Machines

2010
Deep Learning

2000

Mc Culloch & Pu

Hebb

Hinton; Bengio

Vapnik

Hopfield
Rumelhart & Mc Clelland, Le Cun

RosenblattPerceptron
Adaline Widrow

Neural Nets

Formal neurons

Reinforcement law

Networks of
Multi−layer perceptrons

Radius−based functions Moody & Darken



Thresholded neurons Mc Culloch et Pitt 1943

Ingredients

I Input (dendrites) xi
I Weights wi

I Threshold θ

I Output: 1 iff
∑

i wixi > θ

Remarks

I Neurons → Logics → Reasoning → Intelligence

I Logical NNs: can represent any boolean function

I No differentiability.



Perceptron Rosenblatt 1958

y = sign(
∑

wixi − θ)

x = (x1, . . . , xd) 7→ (x1, . . . , xd , 1).
w = (w1, . . . ,wd) 7→ (w1, . . .wd ,−θ)

y = sign(〈w, x〉)



Learning a Perceptron

Given

I E = {(xi , yi ), xi ∈ IRd , yi ∈ {1,−1}, i = 1 . . . n}

For i = 1 . . . n, do

I If no mistake, do nothing
no mistake ⇔ 〈w, x〉 same sign as y

⇔ y〈w, x〉 > 0

I If mistake
w← w + y .xi

Enforcing algorithmic stability:

wt+1 ← wt + αty .x`

αt decreases to 0 faster than 1/t.



Convergence: upper bounding the number of
mistakes

Assumptions:

I xi belongs to B(IRd ,C ) ||xi || < C

I E is separable, i.e.
exists solution w∗ s.t. ∀i = 1 . . . n, yi 〈w∗, xi 〉 > δ > 0

with ||w∗|| = 1.

Then The perceptron makes at most (Cδ )2 mistakes.



Convergence: upper bounding the number of
mistakes

Assumptions:

I xi belongs to B(IRd ,C ) ||xi || < C

I E is separable, i.e.
exists solution w∗ s.t. ∀i = 1 . . . n, yi 〈w∗, xi 〉 > δ > 0
with ||w∗|| = 1.

Then The perceptron makes at most (Cδ )2 mistakes.



Convergence: upper bounding the number of
mistakes

Assumptions:

I xi belongs to B(IRd ,C ) ||xi || < C

I E is separable, i.e.
exists solution w∗ s.t. ∀i = 1 . . . n, yi 〈w∗, xi 〉 > δ > 0
with ||w∗|| = 1.

Then The perceptron makes at most (Cδ )2 mistakes.



Bouding the number of misclassifications

Proof
Upon the k-th misclassification for some xi

wk+1 = wk + yixi
〈wk+1,w

∗〉 = 〈wk ,w
∗〉 + yi 〈xi ,w∗〉

≥ 〈wk ,w
∗〉 + δ

≥ 〈wk−1,w
∗〉 + 2δ

≥ kδ

In the meanwhile:

||wk+1||2 = ||wk + yixi ||2 ≤ ||wk ||2 + C 2

≤ kC 2

Therefore: √
kC > kδ



Going farther...

Remark: Linear programming: Find w, δ such that

Max δ, subject to
∀ i = 1 . . . n, yi 〈w, xi 〉 > δ

gives the floor to Support Vector Machines...



Adaline Widrow 1960

Adaptive Linear Element
Given

E = {(xi , yi ), xi ∈ IRd , yi ∈ IR, i = 1 . . . n}

Learning Minimization of a quadratic function

w∗ = argmin{Err(w) =
∑

(yi − 〈w, xi 〉)2}

Gradient algorithm

wi = wi−1 + αi∇Err(wi )



The NN winter

1960
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2010
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Limitation of linear hypotheses Minsky Papert 1969
The XOR problem.



Multi-Layer Perceptrons, Rumelhart McClelland
1986

Issues

I Several layers, non linear separation, addresses the XOR
problem

I A differentiable activation function

ouput(x) =
1

1 + exp{−〈w, x〉}



The sigmoid function

I σ(t) = 1
1+exp(−a .t) , a > 0

I approximates step function (binary decision)

I linear close to 0

I Strong increase close to 0

I σ′(x) = aσ(x)(1− σ(x))



Back-propagation algorithm, Rumelhart
McClelland 1986; Le Cun 1986

I Given (x, y) a training sample uniformly randomly drawn

I Set the d entries of the network to x1 . . . xd
I Compute iteratively the output of each neuron until final

layer: output ŷ ;

I Compare ŷ and y Err(w) = (ŷ − y)2

I Modify the NN weights on the last layer based on the gradient
value

I Looking at the previous layer: we know what we would have
liked to have as output; infer what we would have liked to
have as input, i.e. as output on the previous layer. And
back-propagate...

I Errors on each i-th layer are used to modify the weights
used to compute the output of i-th layer from input of i-th
layer.



Back-propagation of the gradient

Notations
Input x = (x1, . . . xd)
From input to the first hidden layer

z
(1)
j =

∑
wjkxk

x
(1)
j = f (z

(1)
j )

From layer i to layer i + 1

z
(i+1)
j =

∑
w

(i)
jk x

(i)
k

x
(i+1)
j = f (z

(i+1)
j )

(f : e.g. sigmoid)



Back-propagation of the gradient

Input(x, y), x ∈ IRd , y ∈ {−1, 1}
Phase 1 Propagate information forward

I For layer i = 1 . . . `
For every neuron j on layer i

z
(i)
j =

∑
k w

(i)
j ,k x

(i−1)
k

x
(i)
j = f (z

(i)
j )

Phase 2 Compare the target output (y) to what you get (x
(`)
1 )

NB: for simplicity one assumes here that there is a single output
(the label is a scalar value).

I Error: difference between ŷ = x
(`)
1 and y .

Define
esortie = f ′(z`1)[ŷ − y ]

where f ′(t) is the (scalar) derivative of f at point t.



Back-propagation of the gradient

Phase 3 retro-propagate the errors

e
(i−1)
j = f ′(z

(i−1)
j )

∑
k

w
(i)
kj e

(i)
k

Phase 4: Update weights on all layers

∆w
(k)
ij = αe

(k)
i x

(k−1)
j

where α is the learning rate (< 1.)



Overview

Bio-inspired algorithms

Classical Neural Nets
History
Structure

Applications

Advances
Deep NN: Why does it work ?
Deep NN: Drop-out
Echo State Networks



Neural nets

Ingredients

I Activation function

I Connexion topology = directed graph
feedforward (≡ DAG, directed acyclic graph) or recurrent

I A (scalar, real-valued) weight on each connexion

Activation(z)

I thresholded 0 if z < threshold , 1 otherwise

I linear z

I sigmoid 1/(1 + e−z)

I Radius-based e−z
2/σ2



Neural nets
Ingredients

I Activation function
I Connexion topology = directed graph

feedforward (≡ DAG, directed acyclic graph) or recurrent
I A (scalar, real-valued) weight on each connexion

Feedforward NN

(C) David McKay - Cambridge Univ. Press



Neural nets

Ingredients

I Activation function

I Connexion topology = directed graph
feedforward (≡ DAG, directed acyclic graph) or recurrent

I A (scalar, real-valued) weight on each connexion

Recurrent NN

I Propagate until stabilisation

I Back-propagation does not apply

I Memory of the recurrent NN: value of hidden neurons
Beware that memory fades exponentially fast

I Dynamic data (audio, video)



Structure / Connexion graph / Topology

Prior knowledge

I Invariance under translation, rotation,.. op

I → Complete E consider (op(xi ), yi )

I or use weight sharing: convolutionnal networks

100,000 weights → 2,600 parameters
Details

I http://yann.lecun.com/exdb/lenet/ Demos

I http://deeplearning.net/tutorial/lenet.html



Hubel & Wiesel 1968

Visual cortex of the cat

I cells arranged in such a way that

I ... each cell observes a fraction of the visual field
receptive field

I the union of which covers the whole field

Characteristics

I Simple cells check the presence of a pattern

I More complex cells consider a larger receptive field, detect the
presence of a pattern up to translation/rotation



Sparse connectivity

I Reducing the number of weights

I Layer m: detect local patterns

I Layer m + 1: non linear aggregation, more global field



Convolutional NN: shared weights

I Reducing the number of weights

I through adapting the gradient-based update: the update is
averaged over all occurrences of the weight.



Max pooling: reduction and invariance

I Partitioning

I Return the max value in the subset invariance

Global scheme



Properties

Good news

I MLP, RBF: universal approximators

For every decent function f (= f 2 has a finite integral on every
compact of IRd)
for every ε > 0,
there exists some MLP/RBF g such that ||f − g || < ε.

Bad news

I Not a constructive proof (the solution exists, so what ?)

I Everything is possible → no guarantee (overfitting).



Key issues

Model selection

I Selecting number of neurons, connexion graph

I Which learning criterion overfitting
More 6⇒ Better

Algorithmic choices a difficult optimization problem

I Initialisation w small !

I Decrease the learning rate with time

I Enforce stability through relaxation

wneo ← (1− α)wold + αwneo

I Stopping criterion

Start by normalization of data
x 7→ x − average

variance



The curse of NNs

http://videolectures.net/eml07 lecun wia/



Pointers

URL

I course:
http://neuron.tuke.sk/math.chtf.stuba.sk/pub/

vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf

I FAQ: http://www.faqs.org/faqs/ai-faq/neural-nets/
part1/preamble.html

I applets
http://www.lri.fr/~marc/EEAAX/Neurones/tutorial/

I codes: PDP++/Emergent (www.cnbc.cmu.edu/PDP++/);
SNNS http:

//www-ra.informatik.uni-tuebingen.de/SgNNS/...

Also see

I NEAT & HyperNEAT Stanley, U. Texas
When no examples available: e.g. robotics.

http://neuron.tuke.sk/math.chtf.stuba.sk/pub/vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf
http://neuron.tuke.sk/math.chtf.stuba.sk/pub/vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/preamble.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/preamble.html
http://www.lri.fr/~marc/EEAAX/Neurones/tutorial/
www.cnbc.cmu.edu/PDP++/
http://www-ra.informatik.uni-tuebingen.de/SgNNS/
http://www-ra.informatik.uni-tuebingen.de/SgNNS/
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Applications

1. Pattern recognition
I Signs (letters, figures)
I Faces
I Pedestrians

2. Control (navigation)

3. Language



Intuition

Design, the royal road

I Decompose a system into building blocks

I which can be specified, implemented and tested independently.

Why looking for another option ?

I When the first option does not work or takes too long (face
recognition)

I when dealing with an open world

Proof of concept

I speech & hand-writing recognition: with enough data,
machine learning yields accurate recognition algorithms.

I hand-crafting → learning
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Recognition of letters

Features

I Input size d : +100

I → large weight vectors :-(

I Prior knowledge: invariance through (moderate) translation,
rotation of pixel data



Convolutionnal networks

Lecture http://yann.lecun.com/exdb/lenet/

I Y. LeCun and Y. Bengio. Convolutional networks for images,
speech, and time-series. In M. A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks. MIT Press,
1995.



Face recognition



Face recognition

Variability

I Pose

I Elements: glasses, beard...

I Light

I Expression

I Orientation

Occlusions
http://www.ai.mit.edu/courses/6.891/lectnotes/lect12/lect12-

slides-6up.pdf



Face recognition, 2

I One equation → 1 NN

I NN are fast



Face recognition, 3



Navigation, control

Lectures, Video
http://www.cs.nyu.edu/∼yann/research/dave/index.html



Continuous language models

Principle

I Input: 10,000-dim boolean input (words)

I Hidden neurons: 500 continuous neurons
I Goal: from a text window (wi . . .wi+2k), predict

I The grammatical tag of the central word wi+k

I The next word wi+2k+1

I Rk: Hidden layer: maps a text window on IR500

Bengio et al. 2001



Continuous language models, Collobert et al. 2008

videolectures



Continuous language models, Collobert et al. 2008
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Continuous language models, Collobert et al. 2008
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Why does it work ?

Erhan et al, 2010

Possible explanations

I Reduces overfitting = regularization

I Unsupervised learning yields a better starting point for
gradient → better local optimum.

How to test ?

I If it’s regularization, the effect should decrease as the amount
of data increases.
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The regularization effect

Claim
Representation good for P(x) are also good for P(y |x).

Experimental setting

I 3 layers, [800,1200] units per layer

I Unsupervised pre-training (Infinite MNIST) of no layers, 1st
layer, 1-2 layers, all layers (other random)

I Supervised training

I Test



The regularization effect, 2

Results

I Overfitting (left)

I Limiting top-layer size (20 units) helps.



The regularization effect, 2

Results

I Overfitting (left)

I Limiting top-layer size (20 units) helps.



Unsupervised pre-training supports gradient
optimization

Experimental setting

I At each iteration during supervised training,
map the 800×800×3 -dimensional weight vector on IR2

I Plot the trajectory of the stochastic gradient (points darker
for later iterations)



Unsupervised pre-training and gradient initialization

Results
I Not the same region
I Variance much decreased
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Limitation ?

Literature: Very effective prediction == ensemble learning

I Learn many hypotheses

I Average them (we’ll see random forests, ensemble of decision
trees, next week)

Ensemble of Deep NNs ?

I Takes for ever to learn...

I Takes long to test.



An efficient way to average Deep Nets

Hinton et al. 2012

I Consider a NN with 1 hidden layer

I When an example is presented, omit each hidden neuron with
probability .5

I == randomly sampling from 2h NNs

I Note that all architectures share weights



An efficient way to average Deep Nets, 2

Principle

I One samples from 2h NNs

I Few NNs get trained, and if trained, from very few examples

I Sharing the weights = regularization (but biasing the weights
toward a mean value; not toward 0 as in L2 regularization)

Good practice

I If Deep NN overfits, dropout will reduce errors

I If does not overfit, you should be using a bigger NN (!!!)

Analogy

I More synapses (1014) than experiences

I Synapses are cheap, experiences are costly.

Improving neural networks by preventing co-adaptation of feature detectors, 2012
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Echo State Networks

NIPS 2005 Wshop, Reservoir Computing
= Echo State Network, Jaeger 2001⋃

Liquid State Machine, Maas 2002

Structure

I N neurones cachés

I Connexions: aléatoires matrice G

p(xi , xj) connectés = r , r << 1

I Poids: aléatoires: 1, -1, 0.

I Stabilité: max. valeur propre de G (damping factor) < 1

I Neurones de sortie: combinaison linéaire.



Echo State Networks, 2

A revolution

I The end of micro-management for NN (only ρ and λ)

I Training (e.g. for regression) through quadratic optimization

More:
On computational power and the Order Chaos: Phase Transition in

Reservoir Computing, Benjamin Schrauder, Lars Büsing and Robert

Legenstein, NIPS 2008.



The competence region of Echo State Networks

Task

I Input: a random sequence of bits

I Desired output: same sequence with a delay (the ESN must
memorize the input.

I K: number of connexions of a neuron

I σ: Gaussian weights, drawn from N (0, σ).
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