Master Recherche IAC Option 2 Apprentissage Statistique & Optimisation Avancés

Anne Auger – Balazs Kégl – Michèle Sebag LRI – LAL

Feb. 5th, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clustering

Input

$$\mathcal{E} = {\mathbf{x}_1, \ldots, \mathbf{x}_n} \sim P(x)$$

Output

- Models
- Clusters
- Representatives

Assumptions, contexts

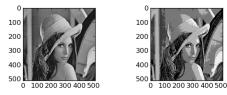
Clusters are separated by a low-density region

æ

Motivations

Compression.

Ex, vector quantization in images.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Divide and conquer; preliminary for classification.
 Ex, different types of diseases.
- Check data.

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

Clustering Questions

Hard or soft ?

- Hard: find a partition of the data
- Soft: estimate the distribution of the data as a mixture of components.

Parametric vs non Parametric ?

- Parametric: number K of clusters is known
- Non-Parametric: find K

(wrapping a parametric clustering algorithm)

Caveat:

- Complexity
- Outliers
- Validation

Formal Background

Notations

${\mathcal E}$	$\{\mathbf{x}_1,\ldots,$. x _N }	dataset
----------------	--------------------------	---------------------------	---------

- *N* number of data points
- K number of clusters given or optimized
- C_k k-th cluster Hard clustering
- $\tau(i)$ index of cluster containing \mathbf{x}_i
- Soft clustering

- $\begin{array}{ll} f_k & k\text{-th model} \\ \gamma_k(i) & \Pr(\mathbf{x}_i \sim f_k) \end{array}$
- **Solution** Hard Clustering Partition $\Delta = (C_1, \dots, C_k)$ Soft Clustering $\forall i \sum_k \gamma_k(i) = 1$

Formal Background, 2

Quality / Cost function Measures how well the clusters characterize the data

- (log)likelihood
- dispersion

soft clustering hard clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} d(\mathbf{x}_i, \mathbf{x}_j)^2$$

Formal Background, 2

Quality / Cost function Measures how well the clusters characterize the data

- (log)likelihood
- dispersion

soft clustering hard clustering

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} d(\mathbf{x}_i, \mathbf{x}_j)^2$$

Tradeoff Quality increases with $K \Rightarrow$ Regularization needed to avoid one cluster per data point

Exercize

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} ||\mathbf{x}_i - \mathbf{x}_j||^2 = \sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} ||\mathbf{x}_i - \bar{\mathbf{x}}_k||^2$$

with $\bar{\mathbf{x}}_k$ = average $\mathbf{x}_i, \mathbf{x}_i \in C_k$.

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Clustering vs Classification

Marina Maila

Marina Mella		http://videolectures.	
	Classification	Clustering	
K	# classes (given)	 # clusters (unknown)	
Quality	Generalization error	many cost functions	
Focus on	Test set	Training set	
Goal	Prediction	Interpretation	
Analysis	discriminant	exploratory	
Field	mature	new	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

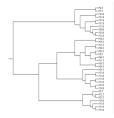
http://wideolestumes.met/

Non-Parametric Clustering

Hierarchical Clustering

Principle

- agglomerative (join nearest clusters)
- divisive (split most dispersed cluster)



Algorithm

Init: Each point is a cluster (*n* clusters)

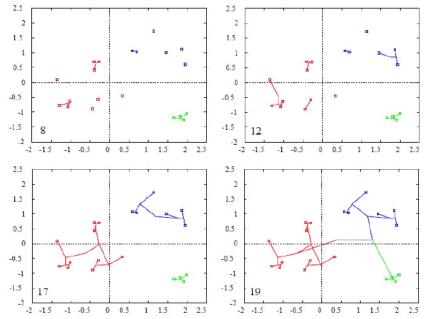
Loop

Select two most similar clusters

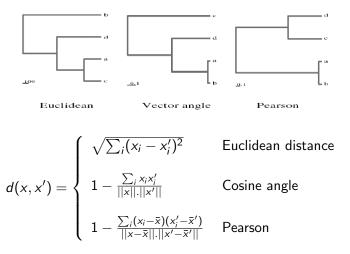
Merge them

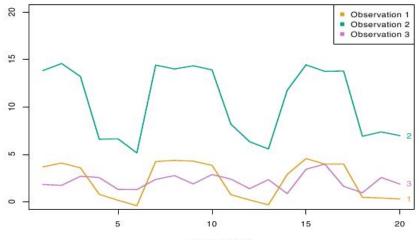
Until there is only 1 cluster

Hierarchical Clustering, example



Key point 1: choice of distance





Variable Index

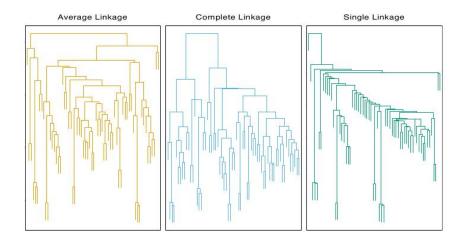
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Key point 2: choice of aggregation

Compute distance between two clusters

- Complete linkage:Largest distance between points
- Single linkage: Smallest distance between points
- Average linkage: Average distance between points
- Centroid: distance between centroids of the points

Centroid of points: point closest to their average.



Parametric Clustering

Parametric: K is known

Algorithms based on distances

- K-means
- graph / cut

Algorithms based on models

Mixture of models: EM algorithm

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

K-Means

Algorithm

1. Init:

Uniformly draw K points \mathbf{x}_{i_j} in \mathcal{E} Set $C_j = {\mathbf{x}_{i_j}}$

2. Repeat

3. Draw without replacement \mathbf{x}_i from \mathcal{E}

4.
$$\tau(i) = \operatorname{argmin}_{k=1...K} \{ \mathbf{d}(\mathbf{x}_i, \mathbf{C}_k) \}$$
 find best cluster for \mathbf{x}_i

5.
$$C_{\tau(i)} = C_{\tau(i)} \bigcup \mathbf{x}_i$$
 add \mathbf{x}_i to $C_{\tau(i)}$

6. Until all points have been drawn

7. If partition $C_1 \dots C_K$ has changed **Stabilize** Define $\mathbf{x}_{i_k} =$ **best point** in C_k , $C_k = \{x_{i_k}\}$, goto 2.

Algorithm terminates

K-Means, Knobs

Knob 1 : define $d(\mathbf{x}_i, C_k)$

- $min\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$
- average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$
- $max\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$

Knob 2 : define "best" in C_k

- Medoid
- * Average

(does not belong to \mathcal{E})

favors

long clusters compact clusters spheric clusters

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$\begin{aligned} \underset{i \in C_k}{\operatorname{argmin}} \{\sum_{\mathbf{X}_j \in C_k} d(\mathbf{x}_i, \mathbf{x}_j)\} \\ \frac{1}{|C_k|} \sum_{\mathbf{X}_j \in C_k} \mathbf{x}_j \end{aligned}$$

No single best choice

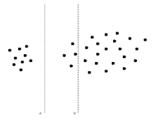


FIG. 1. Optimizing the diameter produces B while A is clearly more desirable.

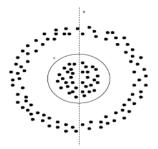


FIG. 2. The inferior clustering B is found by optimizing the 2-median measure.

K-Means, Discussion

PROS

- **Complexity** $\mathcal{O}(K \times N)$
- Can incorporate prior knowledge

initialization

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

CONS

- Sensitive to initialization
- Sensitive to outliers
- Sensitive to irrelevant attributes

K-Means, Convergence

For cost function

$$\mathcal{L}(\Delta) = \sum_{k} \sum_{i,j \neq \tau(i) = \tau(j) = k} d(\mathbf{x}_i, \mathbf{x}_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ for
$$d(\mathbf{x}_i, C_k) =$$
 average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$

▶ for "best" in
$$C_k$$
 = average of $\mathbf{x}_j \in C_k$

K-means converges toward a (local) minimum of \mathcal{L} .

K-Means, **Practicalities**

Initialization

- Uniform sampling
- Average of \mathcal{E} + random perturbations
- Average of \mathcal{E} + orthogonal perturbations
- Extreme points: select \mathbf{x}_{i_1} uniformly in \mathcal{E} , then

Select
$$x_{i_j} = argmax\{\sum_{k=1}^{j} d(\mathbf{x}_i, x_{i_k})\}$$

Pre-processing

Mean-centering the dataset

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

Model-based clustering

Mixture of components

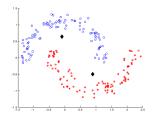
- Density $f = \sum_{k=1}^{K} \pi_k f_k$
- *f_k*: the *k*-th component of the mixture

•
$$\gamma_k(i) = \frac{\pi_k f_k(x)}{f(x)}$$

• induces $C_k = \{\mathbf{x}_j \mid k = argmax\{\gamma_k(j)\}\}$

Nature of components: prior knowledge

- Most often Gaussian: $f_k = (\mu_k, \Sigma_k)$
- Beware: clusters are not always Gaussian...



Model-based clustering, 2

Search space

• Solution :
$$(\pi_k, \mu_k, \Sigma_k)_{k=1}^K = \theta$$

Criterion: log-likelihood of dataset

$$\ell(\theta) = \log(\Pr(\mathcal{E})) = \sum_{i=1}^{N} \log \Pr(\mathbf{x}_i) \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \log(\pi_k f_k(\mathbf{x}_i))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

to be maximized.

Model-based clustering with EM

Formalization

- Define $z_{i,k} = 1$ iff \mathbf{x}_i belongs to C_k .
- $E[z_{i,k}] = \gamma_k(i)$ prob. **x**_i generated by $\pi_k f_k$
- Expectation of log likelihood

$$E[\ell(\theta)] \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log(\pi_k f_k(\mathbf{x}_i))$$
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log f_k(\mathbf{x}_i)$$

EM optimization

E step Given θ , compute

$$\gamma_k(i) = \frac{\pi_k f_k(\mathbf{x}_i)}{f(x)}$$

M step Given $\gamma_k(i)$, compute

$$\theta^* = (\pi_k, \mu_k, \Sigma_k)^* = \operatorname{argminE}[\ell(\theta)]$$

Maximization step

 π_k : Fraction of points in C_k

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k(i)$$

 μ_k : Mean of C_k

$$\mu_k = \frac{\sum_{i=1}^N \gamma_k(i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_k(i)}$$

 Σ_k : Covariance

$$\Sigma_k = \frac{\sum_{i=1}^N \gamma_k(i)(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)'}{\sum_{i=1}^N \gamma_k(i)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

Choosing the number of clusters

K-means constructs a partition whatever the K value is. Selection of K

Bayesian approaches

Tradeoff between accuracy / richness of the model

Stability

Varying the data should not change the result

Gap statistics

Compare with null hypothesis: all data in same cluster.

Bayesian approaches

Bayesian Information Criterion

$${\it BIC}(heta) = \ell(heta) - rac{\# heta}{2} \log N$$

Select $K = \operatorname{argmax} BIC(\theta)$ where $\#\theta = \operatorname{number}$ of free parameters in θ :

 \blacktriangleright if all components have same scalar variance σ

$$\#\theta = K - 1 + 1 + Kd$$

• if each component has a scalar variance σ_k

$$\#\theta = K - 1 + K(d+1)$$

• if each component has a full covariance matrix Σ_k

$$\#\theta=K-1+K(d+d(d-1)/2)$$

Gap statistics

Principle: hypothesis testing

- 1. Consider hypothesis H_0 : there is no cluster in the data. \mathcal{E} is generated from a no-cluster distribution π .
- Estimate the distribution f_{0,K} of L(C₁,...C_K) for data generated after π. Analytically if π is simple Use Monte-Carlo methods otherwise
- 3. Reject H_0 with confidence α if the probability of generating the true value $\mathcal{L}(C_1, \ldots, C_K)$ under $f_{0,K}$ is less than α .

Beware: the test is done for all K values...

Gap statistics, 2

Algorithm Assume \mathcal{E} extracted from a no-cluster distribution, e.g. a single Gaussian.

- 1. Sample ${\mathcal E}$ according to this distribution
- 2. Apply K-means on this sample
- 3. Measure the associated loss function

Repeat : compute the average $\overline{\mathcal{L}}_0(K)$ and variance $\sigma_0(K)$ Define the gap:

$$Gap(K) = \overline{\mathcal{L}}_0(K) - \mathcal{L}(C_1, \dots C_K)$$

Rule Select min K s.t.

$$Gap(K) \ge Gap(K+1) - \sigma_0(K+1)$$

What is nice: also tells if there are no clusters in the data...

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

Stability

Principle

- Consider \mathcal{E}' perturbed from \mathcal{E}
- Construct $C'_1, \ldots C'_K$ from \mathcal{E}'
- ▶ Evaluate the "distance" between (C_1, \ldots, C_K) and (C'_1, \ldots, C'_K)
- ▶ If small distance (stability), K is OK

Distortion $D(\Delta)$

$$D(\Delta) = \sum_{i} ||\mathbf{x}_i - \mu_{\tau(i)}||^2 = tr(S) - tr(X'SX)$$

Minimal distortion $D^* = tr(S) - \sum_{k=1}^{K-1} \lambda_k$

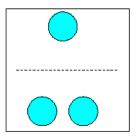
Stability, 2

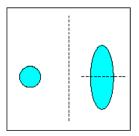
Results

- Δ has low distortion $\Rightarrow (\mu_1, \dots \mu_K)$ close to space $(v_1, \dots v_K)$.
- Δ_1 , and Δ_2 have low distortion \Rightarrow "close"
- (and close to "optimal" clustering)

Meila ICML 06

Counter-example





Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Learning distances

Kleinberg's axiomatic framework for clustering

Kleinberg 2002 Given $\mathcal{E} = {\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}_i \in X}$, a clustering builds a partition Γ depending on distance d. Let denote $\Gamma = f(d)$.

$$\left(\begin{array}{rrrr}1 & 10 & 10\\ 10 & 0 & 1\\ 10 & 1 & 0\end{array}\right)$$

 $\Gamma = (\{1\}, \{2, 3\}).$

Kleinberg's axiomatic framework for clustering Properties

Scale invariance

$$\forall \alpha > 0, f(\alpha d) = f(d)$$

Richness

$$Range(f) =$$
 Power set of \mathcal{E}

Consistency

If $f(d) = \Gamma$ and d' is a Γ -enhancing transformation of d, then

$$f(d') = \Gamma$$

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

where d' is Γ -enhancing if

• $d'(\mathbf{x}_i, \mathbf{x}_j) \leq d(\mathbf{x}_i, \mathbf{x}_j)$ if \mathbf{x}_i and \mathbf{x}_j in same cluster of Γ

•
$$d'(\mathbf{x}_i,\mathbf{x}_j) \geq d(\mathbf{x}_i,\mathbf{x}_j)$$
 otherwise

Examples

Run single linkage till you get k clusters

Scale invariance Yes, consistency Yes, richness No

Run single linkage while distances $\leq c \cdot max_{i,j}d(\mathbf{x}_i, \mathbf{x}_j)$, c > 0

Examples

Run single linkage till you get k clusters

Scale invariance Yes, consistency Yes, richness No

Run single linkage while distances $\leq c \cdot max_{i,j}d(\mathbf{x}_i, \mathbf{x}_j)$, c > 0

Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances \leq some threshold r

Examples

Run single linkage till you get k clusters

Scale invariance Yes, consistency Yes, richness No

Run single linkage while distances $\leq c \cdot max_{i,j}d(\mathbf{x}_i, \mathbf{x}_j)$, c > 0

Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances \leq some threshold r

Scale invariance No, consistency Yes, richness Yes

Impossibility result

Thm

- There is no consistent way of choosing a level of granularity
- There exists no f satisfying all three axioms

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Learning distances

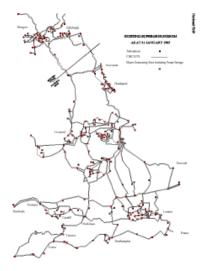
Part 2. Data Streaming

- When: data, specificities
- What: goals
- How: algorithms

More: see Joao Gama's tutorial,

http://wiki.kdubiq.org/summerschool2008/index.php/Main/Materials

Motivations



Electric Power Network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data

Input

- Continuous flow of (possibly corrupted) data, high speed
- Huge number of sensors, variable along time (failures)
- Spatio-temporal data

Output

- Cluster: profiles of consumers
- Prediction: peaks of demand
- Monitor Evolution: Change detection, anomaly detection

Where is the problem ?

Standard Data Analysis

- Select a sample
- Generate a model (clustering, neural nets, ...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where is the problem ?

Standard Data Analysis

- Select a sample
- Generate a model (clustering, neural nets, ...)

Does not work ...

- World is not static
- Options, Users, Climate, ... change

Specificities of data

Domain

- Radar: meteorological observations
- Satellite: images, radiation
- Astronomical surveys: radio
- Internet: traffic logs, user queries, ...
- Sensor networks
- Telecommunications

Features

- Most data never seen by humans
- Need for REAL-TIME monitoring, (intrusion, outliers, anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically distributed)

Data streaming Challenges

Maintain Decision Models in real-time

incorporate new information

comply with speed

- forget old/outdated information
- detect changes and adapt models accordingly

Unbounded training sets Prefer fast approximate answers...

- Approximation: Find answer with factor $1 \pm \epsilon$
- Probably correct: $Pr(answer correct) = 1 \delta$
- PAC: ϵ, δ (Probably Approximately Correct)
- Space $\approx \mathcal{O}(1/\epsilon^2 \log(1/\delta))$

Data Mining vs Data Streaming

	Traditional	Stream
Nr. of Passes	Multiple	Single
Processing Time	Unlimited	Restricted
Memory Usage	Unlimited	Restricted
Type of Result	Accurate	Approximate
Distributed	No	Yes

What: queries on a data stream

Sample

- Count number of distinct values / attribute
- Estimate sliding average (number of 1's in a sliding window)
- Get top-k elements

Application: Compute entropy of the stream

$$H(x) = \sum p_i \log_2(p_i)$$

useful to detect anomalies

Sampling

Uniform sampling: each one out of n examples is sampled with probability 1/n. What if we don't know the size ? Standard

- Sample instances at periodic time intervals
- Loss of information

Reservoir Sampling

- Create buffer size k
- Insert first k elements
- Insert *i*-th element with probability k/i
- Delete a buffer element at random

Limitations

- Unlikely to detect changes/anomalies
- Hard to parallelize

Count number of values

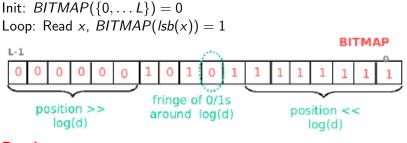
Problem

Domain of the attribute is $\{1, \ldots, M\}$ Piece of cake if memory available... What if the memory available is log(M) ? Flajolet-Martin 1983

Based on hashing: $\{1, \ldots, M\} \mapsto \{0, \ldots, 2^L\}$ with L = log(M).

 $x \rightarrow hash(x) = y \rightarrow position least significant bit, lsb(x)$

Count number of values, followed



Result

R = position of rightmost 0 in H $M \approx 2^R / .7735$

Decision Trees for Data Streaming

Principle

Grow the tree if evidence best attribute > second best

Algorithm

parameter: confidence δ (user-defined)

While true

Read example, propagate until a leaf

If enough examples in leaf

Compute IG for all attributes;

 $\begin{aligned} \epsilon &= \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}\\ \text{Keep best if IG(best) - IG(second best }) > \epsilon \end{aligned}$

Mining High Speed Data Streams, Pedro Domingos, Geoffrey Hulten, KDD-00

Open issues

What's new

Forget about iid;

Forget about more than linear complexity (and log space)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Challenges

Online, Anytime algs Distributed alg. Criteria of performance Integration of change detection

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

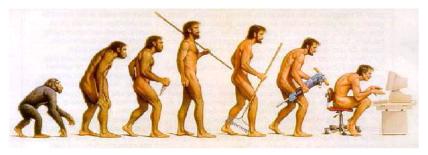
Data Streaming

Application: Autonomic Computing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Learning distances

Autonomic Computing



Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010.

Gartner 6/2001 in Autonomic Computing Wshop, ECML / PKDD 2006 Irina Rish & Gerry Tesauro.

・ロト ・聞ト ・ヨト ・ヨト

Autonomic Computing

The need

Main bottleneck of the deployment of complex systems: shortage of skilled administrators

Vision

- Computing systems take care of the mundane elements of management by themselves.
- Inspiration: central nervous system (regulating temperature, breathing, and heart rate without conscious thought)

Goal

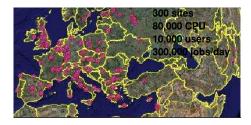
Computing systems that manage themselves in accordance with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003

Toward Autonomic Grid

EGEE, Enabling Grids for E-sciencE 2001-2011

- 50 countries
- 300 sites
- 180,000 CPUs
- 5Petabytes storage
- 10,000 users
- 300,000 jobs/ day



http://public.eu-egee.org/

EGEE-III : WP Grid Observatory

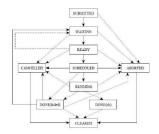
- Job scheduling
- Job profiling

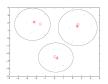
Data Streaming for Job Profiling

X. Zhang, C. Furtlehner, M.S., ECML 08; KDD 09

Position of the problem

- Jobs arrive and are processed
- Want to detect outliers and anomalies
- Want to predict the traffic / dimension the system
- The job distribution is non-stationary





Preliminary step: Clustering the jobs

Clustering with Message Passing Algorithm: Affinity Propagation

Frey and Dueck, Science 2007 Affinity Propagation w.r.t. State of art

	K-means	K-centers	AP
exemplar	artefact	actual point	actual point
parameter	K	K	s [*] (penalty)
algorithm	greedy search	greedy search	message passing
performance	not stable	not stable	stable
complexity	N imes K	N imes K	$N^2 log(N)$

WHEN ? WHY ? CONS When averages don't make sense Stable, minimal distortion Computational complexity

Affinity Propagation

Given $\mathcal{E} = \{e_1, e_2, ..., e_N\}$ elements $d(e_i, e_i)$ their dissimilarity Find $\sigma : \mathcal{E} \mapsto \mathcal{E}$ $\sigma(e_i)$, exemplar representing e_i such that: $\sigma = \operatorname{argmax} \sum_{i=1}^{N} S(e_i, \sigma(e_i))$ where $\begin{cases} S(e_i, e_j) = -d^2(e_i, e_j) & \text{if } i \neq j \\ S(e_i, e_i) = -s^* \end{cases}$ **s***: penalty parameter

Particular cases

 $s^* = \infty$, only one exemplar
 $s^* = 0$, every point is an exemplar
 N clusters

Affinity Propagation, 2

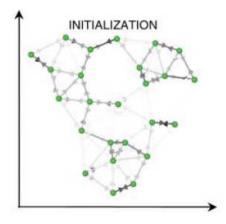
Two types of messages

- a(i, k): Availability of i as examplar for k
- r(i,k) : Responsibility of *i* to *k*

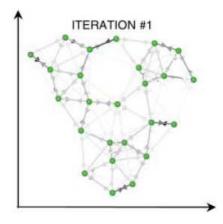
Rules of propagation

$$\begin{array}{rcl} r(i,k) &=& S(e_i,e_k) - \max_{k',k' \neq k} \{ a(i,k') + S(e_i,e_k') \} \\ r(k,k) &=& S(e_k,e_k) - \max_{k',k' \neq k} \{ S(e_k,e_k') \} \end{array}$$

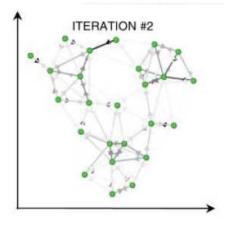
$$\begin{array}{lll} a(i,k) &=& \min\{0,r(k,k) + \sum_{i',i' \neq i,k} \max\{0,r(i',k)\}\}\\ a(k,k) &=& \sum_{i',i' \neq k} \max\{0,r(i',k)\} \end{array}$$

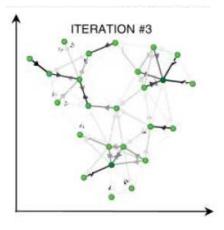


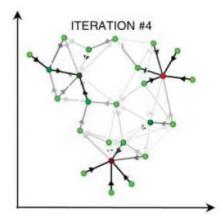
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

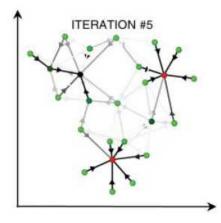


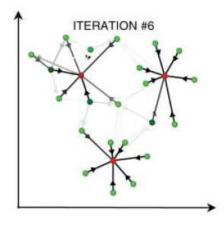
・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

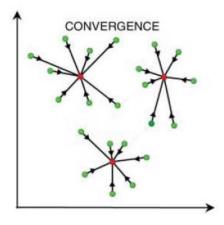






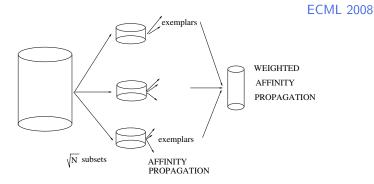






◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hierarchical Affinity Propagation



Thm

Let *h* be the height of the tree, *b* the branching factor, N_0 the size of each subproblem, *K* the average number of examplars for each sub problem. Then

$$C(h) \propto N^{rac{h+2}{h+1}}$$

Extending AP to Data Streaming

StrAP : sketch

- 1. Job j_t arrives
- 2. Does it fit the current model \mathcal{M}_t ?
 - YES: update M_t
 - NO:

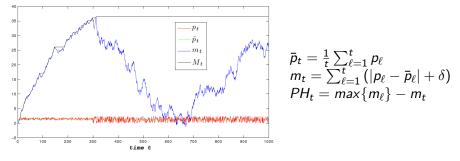
 $j_t \rightarrow \mathsf{Reservoir}$

- 3. Has the distribution changed ?
 - YES: build \mathcal{M}_{t+1} from \mathcal{M}_t and the reservoir

Stream Model: $\mathcal{M}_t = \{(j_i, n_i, \Sigma_i, t_i)\}$

- ▶ *j_i* examplar job
- *n_i* number of jobs represented by *j_i*
- Σ_i sum of distortions incurred by j_i
- t_i last time step when a job was affected to j_i

Has the distribution changed ?



Page-Hinkley statistical change detection test

D. Hinkley. Inference about the change-point in a sequence of random variables. Biometrika, 1970

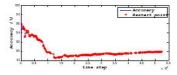
・ロト ・四ト ・ヨト ・ヨト ・ヨ

E. Page. Continuous inspection schemes. Biometrika, 1954

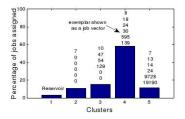
EGEE Job Streaming

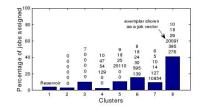
Dynamics of the distribution: schedule of restarts

Accuracy (succ/failed jobs)



Snapshots





(日)、

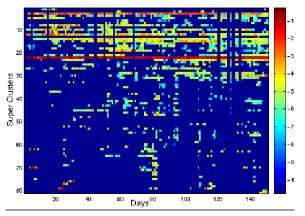
æ

The EGEE traffic: months at a glance

A posteriori

build super-examplars from examplars aggregate the traffic

each s.e. a row along time



◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● ● の Q ()・

EGEE Job Streaming, end

Further work

- List / Interpret outliers. Build a catalogue of situations
- 2. From job clustering to day clustering A day is a histogram of job clusters
- 3. Sequence modelling Caveat: nature of random variables
- 4. Fueling Job scheduling with realistic distribution models.

Overview

Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Learning distances