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Overview

Feature selection



Starting point: gathering the data

AGE SEX BMI BP «++ Serum Measurements - - - Response
Patient | 1 x2 x3 x4 x5 x6 x7 x8 x9 xI10 v
1 59 2 321 101 157 932 38 4 49 87 151
2 45 1 21.6 87 183 1032 70 3 39 69 s
3 72 2 305 93 156 936 41 4 47 85 141
4 24 1 253 84 198 1314 40 5 49 89 206
5 50 1 23.0 101 192 1254 52 4 43 80 135
G 23 | 226 89 139 648 61 2 42 68 a7
441 30 1 300 95 201 1252 42 5 51 &5 220
442 30 1 196 71 250 1332 97 3 46 02 57




Find features

Before learning: describe the examples

» Too poor a description = nothing possible
» Too rich = feature pruning is required
Why ?

» ML is not a well-posed problem

» — Adding useless features (the captain’s age) can
deteriorate the hypotheses



Feature Selection, Position of the problem

Context
» Too many features wrt number of examples
» Remove Feature Selection
> Build new features Feature Construction
» Project on few features Dimensionality Reduction
» A particular case, first-order logic: Propositionalisation

The hidden goal: select or build features ?
> Feature Construction : build good features
> .. makes learning easier...

» Best features: good hypotheses.



When learning boils down to feature selection
Bio-informatics

» 30 000 genes
» few samples (expensive)
» goal: find genes relevant to diseases, resilience, ...



Position of the problem

Goals
e Selection: find a subset of features
e Ranking: order features by increasing relevance

Formalization
Given A = {a1,..aq}. Define

F:PA ~R
AC A +— Err(A) = min error of hypotheses built from A

Find Argmin(F)
Challenge
e A combinatorial optimization problem (2¢)
e An unknown optimization function F



Feature selection: the filter approach

Univariate approach
Define score(a;); iteratively add features by decreasing score order
or iteratively remove features with increasing score
PROS simple, inexpensive
CONS very local optima
Backtrack possible

» Given current solution A
» Add a; to A
» Examine whether removing a; is relevant

Backtrack = less greedy, better optima, much more expensive



Feature selection: the wrapping approach

Multivariate approach
Measure the quality of a feature subset:
estimate F(aj1, ...aik)

CONS
Expensive: an estimate = solving an ML problem.

PROS
Better optima



Feature selection: embedded approach

Principle (beforehand)
An ML criterion which favors hypotheses with few features
For instance: find w, h(x) =< w,x >, = argmin

> (h(xi) = yi)? + [Iwl[y

1

data fitting favor w with many null coordinates

Principle — a posteriori

Given
d

h(x) =< W,X>:ZWJ'XJ‘
j=1

If |wj| small, the j-th feature is unimportant
Remove and restart the learning.



Filter approaches, 1

Notations
Training set: €& = {(x;,yi),i = l..n,y; € {—=1,1}}
a(x;)= value of feature a for example (x;)

Correlation

corr(a) = 2. 3(xi)-¥i - o Z a(x;).yi= <ay>

Limitations
Correlated features
Non linear dependencies



Filter approaches, 2

Correlation and projection Stoppiglia et al. 2003
Repeat

> select a* = feature most correlated to target

a* = argmax{z a(x;)yi, a€ A}

» Project all other features on orthogonal space:

Vbe A b— b— =222 o
22 a* (x)b(x) "
b(Xi) - b(Xi) - \/Zj ai(xj)zj\/zj b(xj)2a (Xi)




Correlation and projection, cont

» Project y on orthogonal space too

<a*y> _x
y_>y_ <a*,a* >a

yi = yi - — SR (%)

» Until stopping criterion

» Add random features (r(x;) = 1) probe
» When probes are selected, stop.

Limitations
does not work well when there are more than 6-7 relevant
features (numerical noise).



Filter approaches, 3

Information gain decision trees

p(la=v]) = Pr(y = 1a(x;) = v)
Q/([a = v]) = —p([a = v]) log p([a = v])
Ql(a) =) Pr(a(x) = v)QI(la = v])
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Information gain, contd

Age
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Limitations
Myopic criterion the XOR case
Favors many-valued features
Not well-suited to numerical features



Scores

in text mining, supervised learning
Notations : ¢; a class ai a word or term

Criteria
1. Conditional probability P(cilak)
2. Mutual information P(c;,ak)Log(%)
. (P(t‘,C)P(-d.‘,-m.‘)7,‘3(1',—%‘)P(-d.‘,c))2
3. Chi-2 POP-OP(E)P(-c)
P(t,c)+d

4. Relevance m



Wrapper approaches

Principle: Generate and test
Given a list of candidate subsets £ = {Aq1,..,Ap}
e Generate a new candidate A
e Compute F(A)
e learn ha from &4
e test hy on a test set
e Update L.

Algorithms

e hill-climbing / multiple restart
e genetic algorithms

e genetic programming



Embedded approaches, 2

Principle

e Build a hypothesis

e Detect irrelevant features

e Prune them

e [terate

Algorithm : SVM Recursive Feature Elimination Guyon et al.
03

e Linear SVM — h(x) = sign(>_ wj.ai(x) + b)
e relevance(a;) approx |w;]

e Prune the bottom-k features

e [terate.



Overview

Linear Change of Representation
Principal Component Analysis
Random projection
Linear Semantic Analysis



Dimensionality Reduction — Intuition

Degrees of freedom

> Image: 4096 pixels; but not independent

» Robotics: (# camera pixels + # infra-red) x time; but not
independent

Goal

Find the (low-dimensional) structure of the data:
> Images
» Robotics

» Genes



Dimensionality Reduction

In high dimension

» Everybody lives in the corners of the space

Volume of Sphere V, = 27;’2 V,_»

» All points are far from each other

Approaches

» Linear dimensionality reduction

» Principal Component Analysis
» Random Projection

» Non-linear dimensionality reduction

Criteria

» Complexity/Size

» Prior knowledge e.g., relevant distance



Linear Dimensionality Reduction

Training set unsupervised

E={(xk),xxk €RP k=1...N}

Projection from R” onto R?

xcRP - h(x)eRY d<<D
h(x) = Ax

s.t. minimize Zle ||k — h(xx)]||?



Principal Component Analysis

Covariance matrix S 5
Mean MHi = % val X,'(Xk) <
N u /\,3
ZX(xk — )X (xx) — 1) s
k:
symmetric = can be diagonalized
S= UAU’ A= Diag()\l,...)\D)
Thm: Optimal projection in dimension d
projection on the first d eigenvectors of S
Let u; the eigenvector associated to eigenvalue \; AP > Ay
h:]RD|—>]Rd,h(x) =< XU >+ ...+ < XUy > Uy



Sketch of the proof

1. Maximize the variance of h(x) = Ax

e i = (i)l = 2o il [ = i [

Minimize > [[x, — h(x,)||* = Maximize » [|h(xc)|[?
k k

Var(h(x)) = % (Z [1ACx) 2 =11 h(Xk)H2)
k k

As
1D AP = 1A xil > = N?[|Aul?
P

k

where © = (p1,....up).
Assuming that x, are centered (u; = 0) gives the result.



Sketch of the proof, 2

2. Projection on eigenvectors u; of S
Assume h(x) = Ax = 39, < x,v; > v; and show v; = u;.

Var(AX) = (AX)(AX) = A(XX)A = ASA' = A(UAU)A'

Consider d =1, v =Y wiu; > Wi2 =1
remind \j > \j11

Var(AX) = > aiw?

maximized for vy = 1L, wnr =...=wy =0
that is, vy = u;.



Principal Component Analysis, Practicalities

Data preparation

» Mean centering the dataset

pi= ey Xi(xk)

oi = \/% ZLV:I Xi(xk)? — N%
z0= (R0600) — )2,

Matrix operations

» Computing the covariance matrix

1
Sij = 7 2 XizK) Xj(2«)

I

» Diagonalizing S = U'AU Complexity O(D?)
might be not affordable...



Random projection

Random matrix

A:RP—R? Ad,D] Aj;~N(01)
define

h(x) = \/lan

Property: h preserves the norm in expectation
E[IlhGI1P] = [1x]1?
With high probability 1 — 2exp{—(e2 — £%)¢}

(L= o)lIx|® < [[Ax)|[* < (1 +)lIx|?



Random projection

Proof

2

E(lh)IP) = FE [Z?’—l (57 40%(0)
- e [(5P A0)’
= 3 20 Xk EIATJELX(x)°]

_1d D [IX|?

= [x[]



Random projection, 2

Johnson Lindenstrauss Lemma

For d > 2™ with high probability

(1= &)llxi —xi[1> < [[h(xi) — h(x;)[[* < (1+&)l[x; — ;||

More:

http://www.cs.yale.edu/clique/resources/RandomProjectionMethod.pdf



Overview

Linear Change of Representation
Principal Component Analysis
Random projection
Linear Semantic Analysis



Latent Semantic Analysis

1. Motivation
2. Algorithm

3. Discussion



Example

¢1: Human machine interface for ABC computer applications

c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system

c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement

*| m1: The generation of random, binary, ordered trees

*| m2: The intersection graph of paths in trees

*| m3: Graph minors IV: Widths of trees and well-quasi-ordering
*| m4: Graph minors: A survey




Example, cont

cl ¢2 ¢3 ¢4 ¢35 ml m2 ml m4
fhuman 1 0 0 1 0 0 0 0 0 |
interface 1 0 1 0 0 0 1] 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 |
trees 0 0 0 0 0 1 | I 0
graph 0 0 0 0 0 0 1 I l
Iminors 0 0 0 0 0 0 0 I ]




LSA, 2

Motivations
» Context : bag of words
» Curse of dimensionality RP
» Synonymy / Polysemy
Goals
» Dimensionality reduction R
» A good topology (distance, similarity)
Remark
> First solution: cosine similarity
» Why not ?

More
http://1lsa.colorado.edu



LSA, 3

Input
Matrix X = words x documents

Principle

1. Change of coordinates from words and documents to
concepts

2. Dimensionality reduction

Difference with Principal Component Analysis



LSA = Singular Value Decomposition

Input

Matrix X = words x documents mxd
X=USV

with e U: change of word basis mxr

e V: change of document basis rxd

e S: diagonal matrix rxr

Dimensionality reduction
e S Order by decreasing eigenvalue
e S’ =S cancel out all eigenvalues but the first (300) ones.

X =USV



Intuition

mpy mp m3 Mg
X=|d 0 1 1 1
d 1 1 1 0

my and my are not present in the same documents, but are
together with same words; “hence” they are somewhat related’...
After SVD + Reduction,

my mp m3 Mg
X=| d € 1 1 1
d 1 1 1 €



Algorithm

Singular value
Decomposition of the
words by contexts matrix

022 -0.11 0.29  -0.41  -0.

0 -0.34 0.52 -0.06 -0.41
0.20 -0.07 0.14  -0.55 0
0

11
.28 0.50 -0.07 -0.01 -0.11
! . . 1 -0.25 -0.30 0.06 049
0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01
0.04 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 027
0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02  -0.05
0.27 011 -0.43 0.07 0.08 -0.17 028 0,02 -0.05
0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02  -0.17
0.21 0.27 -0.18  -0.03  -0.54 0.08 -047 -0.04  -0.58
0.01 0.49 0.2 0.03 0.539 -0.39 -0.29 0.25 -0.23
0.04 (.62 0.22 (.00 -0.07 0.11 0.16 -0.68 023
0.03 045 0.14  -0.01 -0.30 0.28 0.34 0.68 0.18



Algorithm, 2

Singular value
Decomposition of the

3.34
2.54
2.35
1.64

words by contexts matrix

1.31
0.85

0.36



Algorithm, 3

0.20
-0.06
0.11
-0.95
0.05
-0.08
0.18
-0.01
-0.06

0.61
0.17
-0.50
-0.03
-0.21
-0.26
-0.43
0.05
0.24

0.46
-0.13
0.21
0.04
0.38
0.72
-0.24
0.01
0.02

0.54
-0.23
0.57
0.27
-0.21
-0.37
0.26
-0.02
-0.08

0.28
0.11
-0.51
0.15
0.33
0.03
0.67
-0.06
-0.26

Singular value
Decomposition of the

words by contexts matrix

0.00
0.19
0.10
0.02
0.39
-0.30
-0.34
(.45
-0.62

0.01
0.44
0.19
0.02
0.35
-0.21
-0.15
-0.76
0.02

0.02
0.62
0.25
0.01
0.15
0.00
0.25
0.45
0.52

0.08
0.53
0.08
-0.03
-0.60
0.36
0.04
-0.07
-0.45



Algorithm, 4

Singular value
Decomposition of the
words by contexts matrix

2.54



Algorithm, 5

E Il Singular value

Decomposition of the
words by contexts matrix




Algorithm, 6

E Il Singular value

Decomposition of the
words by contexts matrix

¢l ¢2 3 v (5] m | m2 m3 m4
L human 0. 16 040 .33 .47 0. 1% 0,05 -0.12 -0.16 -0.09 |
mlerluce 0.14 0.37 0.33 .40 0.1¢ -0.03 -0.07 =10 -0.04
computer 0.13 0.51 0.36 .41 0.24 0.02 0.06 0.0% 0.12
uscr 0.26 084 06l 0.70 0.39 0.03 0.08 02 019
svslerm 0.43 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
response 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
time 016 0 58 038 .42 0.2 .06 013 0y 022
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11
survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42
tre -0.06 023 -1.14 -0.27 0.14 .24 .55 0.77 0.66
graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
[minors -0.04 0.25 —().10 -0.21 0.13 .22 (.50 0.71 Doz |
cl <2 <3 < 4 cS m 1 m2 m3 <4
fhuman 1 O O 1 Q [5] [5] O 0Q 1
interface 1 (4] 1 (4] (8] [¥] Q [&] 0
computenr 1 1 (8] o 8] 0 Lo Lo} 0
user (8] 1 1 o] 1 (0] (0] 6] 0
system [¢] 1 1 2 O (0] (o] O 0
response o 1 8] O 1 0 0 8] 0
time o] 1 (e} Lo 1 0 0 (8} 0
EFPS o le] 1 1 Q O O O 0
¥ 1 (8] (1] (] L] Ly o I
(8] (8] (8] o o | | 1 (]
o] &) 8] O O o) 1 1 1
Lminors [&] (5] [§] [4] [5] [¥] ) 1 1 | |




Discussion

An application

Synonymy test TOEFL
-
== 0.6
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o 0.4
=
(=]
5 0.3
2
‘§ 0.2
5
= 0.1
(=3
(=8
=] 0.0 —
o 1 10 100 1000 100DOD

Number of Dimensions in LSA (log)

Setting the number of dimensions
Trial and error :-(
Remarks
Negation apparently does not matter
More: Google hits P. Turney



Some applications

Educational Text Selection

v

v

Essay Scoring

v

Summary Scoring & Revision

v

Cross Language Retrieval



LSA — Principal Component Analysis

Similarities
> Input: matrix
» Diagonalizing
> Cancel all eigenvalues but the highest ones

» Projection on the corresponding eigenvectors

Differences
ACP LSA

Matrix | covariance attributs words x documents
d 2-3 100-300



Overview

Non-linear Change of Representation



Non-Linear Dimensionality Reduction

Conjecture
Examples live in a manifold of dimension d << D

Goal: consistent projection of the dataset onto R?
Consistency:
> Preserve the structure of the data

> e.g. preserve the distances between points



Multi-Dimensional Scaling

Position of the problem

» Given {xi,...,xy, x; € RP}
» Given sim(x;,x;) € R

» Find projection ® onto IRY

x€RP = o(x)eR?
sim(x;, x;) ~  sim(®(x;), P(x;))

Optimisation
Define X, X;; = sim(x;,x;); X®, X = sim(®(x;), d(x;))
Find ® minimizing || X — X'||
Rq : Linear & = Principal Component Analysis
But linear MDS does not work: preserves all distances, while
only local distances are meaningful



Non-linear projections

Approaches

» Reconstruct global structures from local ones
and find global projection

» Only consider local structures

Intuition: locally, points live in RY

Isomap

LLE



Isomap

Tenenbaum, da Silva, Langford 2000
http://isomap.stanford.edu

Estimate d(x;, x;)

» Known if x; and x; are close

» Otherwise, compute the shortest path between x; and x;
geodesic distance (dynamic programming)

Requisite
If data points sampled in a convex subset of RY,
then geodesic distance ~ Euclidean distance on IRY.
General case

> Given d(x;,x;), estimate < x;,x; >

» Project points in RY



Wit rofafion
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Locally Linear Embedding

Roweiss and Saul, 2000
http://www.cs.toronto.edu/~roweis/1le/

Principle

» Find local description for each point: depending on its

neighbors
. °. 0, (3 Select neighbors
° o
o ° o
X;
° e °
o
0% o °
(=] o

Reconstruct with | o
linear weights ©



Local Linear Embedding, 2

Find neighbors

For each x;, find its nearest neighbors A/(/)
Parameter: number of neighbors

Change of representation
Goal Characterize x; wrt its neighbors:

Xj = Z Wi jX;j with Z W,'j:].

JEN(i) JEN(i)

Property: invariance by translation, rotation, homothety
How Compute the local covariance matrix:

Cj,k =< Xj — Xj, Xk — Xj >

Find vector w; s.t. Cw; =1



Local Linear Embedding, 3

Algorithm
Local description: Matrix W such that > wij=1
N
W = argmin{) _ [Ix; = > wixj[|’}
i=1 j
Projection: Find {z,...,z,} in R minimizing

N
D ollzi =D wiyzl?
i—1 ;i

Minimize (I — W)ZY/((I = W)Z) = Z'(1 — W)'(I — W)Z
Solutions: vectors z; are eigenvectors of (I — W)'(I — W)

> Keeping the d eigenvectors with lowest eigenvalues > 0



Example, Texts
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Example, Images

LLE



Overview

Reinforcement learning for Feature Selection



Feature Selection as a one-player game

Romaric Gaudel' 3 and Michéle Sebag'3

1 Univ. Paris-Sud, LRI, UMR8623
2 CNRS 3 INRIA-Saclay




Feature Selection

F: Set of features
@ Optimization problem F: Feature subset
argmin Err (A (F, D)) D: Training data set
FCF A: Machine Learning algorithm
Err: Generalization error

@ Feature Selection (FS)

» Minimize the Generalization Error
» Decrease the learning/use cost of models
» Lead to more understandable models

@ Bottlenecks

» Combinatorial optimization problem: find F C F
» Unknown objective function: generalization error

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 2/25



Feature Selection: state of the art / drawbacks

@ Filter approaches [1]
* No account for all feature interdependencies

@ Wrapper approaches
» Tackling combinatorial optimization [2,3,4]
* Tractability vs. exhaustivity tradeoff

@ Embedded approaches

» Using the learned hypothesis [5,6]
» Using a regularization term [7,8]
* Restricted to linear models [7] or linear combinations of kernels [8]

[1] K. Kira, and L. A. Rendell A practical approach to feature selection. ML'92

[2] D. Margaritis Toward provably correct Feature Selection in arbitrary domains. NIPS’09

[38] T. Zhang Adaptive forward-backward greedy algorithm for sparse learning with linear models. NIPS’'08
[4] M. Boullé Compression-based averaging of selective Naive Bayes classifiers. J. Mach. Learn. Res. 07

[5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using Support Vector Machines.
Mach. Learn. 2002

[6] J. Rogers, and S. R. Gunn Identifying feature relevance using a Random Forest. SLSFS’05
[7]1 R. Tibshirani Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society 94
[8] F. Bach Exploring large feature spaces with hierarchical Multiple Kernel Learning. NIPS’08
R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 3/25



The one-player game approach

@ Goal

» Find argmin Err (A (F, D))
FCF

@ Exploration vs Exploitation tradeoff
» Virtually explore the whole lattice
» Gradually focus the search on most
promising Fs
» Use a frugal, unbiased assessment of F

@ How? tractability vs. optimality tradeoff
» Upper Confidence Tree (UCT) [1]
* UCT c Monte-Carlo Tree Search
* UCT tackles tree-structured
optimization problems

[1] L. Kocsis, and C. Szepesvari Bandit based Monte-Carlo planning. ECML06

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game

ICML, June 2010

4/25



Outline

0 Feature Selection as a one-player game
e Upper Confidence Tree
© Extend UCT for Feature Selection: FUSE

@ Experimental validation

R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game



Feature Selection as a one-player game

A Markov Decision Process

Set of features F

Set of states S =27

Initial state @

Set of actions A= {add f, f € F}
Final state any state

Reward function V:S§ — [0, 1]

o Ideally : V(F) = Err (A(F, D))

@ In practice: Fast unbiased estimate of
Err (A(F,D))

R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010 6/25



Optimal Policy

Policy 7: § — A
Final state following a policy F;

Optimal policy
7 = argmin Err (A (F, D))

™

Bellman’s optimality principle
7 (F) = argmin V*(F U {f})
feF

with f
Err(A(F)) it final(F) \ /

V*(F) = { o \/x i
rf)gl]rrr V*(FuU{f}) otherwise @

7 intractable = approximation using UCT

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 7125



@ Upper Confidence Tree

R. Gaudel & M. Sebag (LRI)

Feature Selection as a one-player game



Upper Confidence Tree

@ Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree

» Building Blocks
* Select next action (bandit-based phase)
* Add a node (leaf of the search tree)
* Select next action bis (random phase)
* Compute instant reward
* Update information in visited nodes

» Returned solution
* Path visited most often

[1] L. Kocsis, and C. Szepesvari Bandit based Monte-Carlo planning. ECML06
R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010 9/25
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Upper Confidence Tree

@ Upper Confidence Tree (UCT) [1]
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Multi-Arm Bandit-based phase

@ Upper Confidence Bound (UCB1-tuned) [1]

» Select argmax fi, + Mmm( 52+ /% 'C;Q(T))
acA a

* T Total number of trials in current node
* t;: Number of trials for action a

* [ia: Empirical average reward for action a

* 42: Empirical variance of reward for action a

Search Tree

[1] P Auer, N. Cesa-Bianchi, and P. Fischer Finite-time analysis of the Multiarmed Bandit Problem. ML02
R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 10/25



© Extend UCT for Feature Selection: FUSE
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FUSE: bandit-based phase

Dealing with many arms

@ Bottleneck

» A many-armed problem (hundreds of features)
= need to guide UCT

@ Ingredient 1: controlling the number of arms
» Continuous heuristics [1]
* Use a small exploration constant ce
» Discrete heuristics [2,3]: Progressive Widening
* Consider only | T°| actions

Number of
allowed arms

Number of iterations

[1] S. Gelly, and D. Silver Combining online and offline knowledge in UCT. ICML07
[2] R. Coulom Efficient selectivity and backup operators in Monte-Carlo tree search. Computer and Games 2006

[8] P. Rolet, M. Sebag, and O. Teytaud Boosting Active Learning to optimality: a tractable Monte-Carlo, Billiard-based
algorithm. ECML09
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FUSE: bandit-based phase

Sharing information among nodes

@ Ingredient 2: sharing information among
nodes
» Rapid Action Value Estimation (RAVE) [1]
* RAVE(f) = average reward when f € F

E F
A K

‘ | (-RAVE |
g-RAVE

[1] S. Gelly, and D. Silver Combining online and offline knowledge in UCT. ICML07
R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 13/25



FUSE: random phase

Dealing with an unknown horizon

@ Unknown best size of the feature subset

@ Random phase policy
' With probability 1 — g/l stop
| Else e add a uniformly selected feature

| o |Fl=|F|+1
| Ilterate \.
Random
Phas'e': \\'s
Explored Tree

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 14 /25



FUSE: reward(F)

Generalization error estimate

@ Requisite

» fast (to be computed 10* times)
» unbiased

@ Proposed reward R
» Kk-NN like L S
» + AUC criterion * . -

@ Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

), (X" ¥ NEVE, NEk()<NE k(X)) y<y'}|
H((x), (! y")eVe, y<y'}

* Mann Whitney Wilcoxon test: V/(F) = [

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010
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» k-NN like
» + AUC criterion *

@ Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

Y NEVE, NEk()<Ne k(X)) y<y'}|

* Mann Whitney Wilcoxon test: V(F) = H(x
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FUSE: update

@ Explore a graph
= Several paths to the same node

@ Update only current path

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 16/25



From UCT to Feature Selection

@ The algorithm
Follow a path

/!

» N iterations: each iteration N
Evaluate a final node

@ = Build
Search tree — RAVE score
\ \
FUSE FUSE"R
Wrapper approach Filter approach
Most visited path Based on RAVE

@ End learner

» Any Machine Learning algorithm
» Support Vector Machine with Gaussian kernel in experiments

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010
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° Experimental validation

R. Gaudel & M. Sebag (LRI)

Feature Selection as a one-player game



Experimental setting

@ Questions

FUSE vs FUSEFR

Continuous vs discrete exploration heuristics

FS performance w.r.t. complexity of the target concept
Convergence speed

@ Experiments on

v

vVvyy

DATA SET SAMPLES FEATURES PROPERTIES
MADELON [1] 2,600 500 XOR-LIKE
ARCENE [1] 200 10,000 REDUNDANT FEATURES

COLON 62 2,000 “EASY”

[1] Feature Selection Challenge. NIPS’03
R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010 19/25



Experimental setting

@ Baselines

CFS (Constraint-based Feature Selection) [1]

Random Forest [2]

Lasso [3]

RANDF: RAVE obtained by selecting 20 random features at each
iteration

vV v vYyy

@ Results averaged on 50 splits (10 x 5 fold cross-validation)

@ End learner
» Hyper-parameters optimized by 5 fold cross-validation

[1] M. A. Hall Correlation-based Feature Selection for discrete and numeric class Machine Learning. ICML00
[2] J. Rogers, and S. R. Gunn Identifying feature relevance using a Random Forest. SLSFS’05
[38] R. Tibshirani Regression shrinkage and selection via the Lasso. Journal of the:Royal Statistical Society 94
R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010 20/25



Results on Madelon after 200,000 iterations

0.4

0.35

0.3

0.25

D-FUSER ——

Lasso
R

0.2

Test error

0.15

0.1

0.05

0
0

5

10

15

20 25 30

Number of used top-ranked features

@ Remark: FUSE" = best of both worlds
» Removes redundancy (like CFS)
» Keeps conditionally relevant features (like Random Forest)

R. Gaudel & M. Sebag (LRI)

Feature Selection as a one-player game

ICML, June 2010
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Results on Arcene after 200,000 iterations

0.4 =
D-FUSER —
0.35 C-FUSE™ —
_ CFS e
0.3 Random Forest -
Lasso
§ 0-25 RANDR ............ a
b 0.2 — :
g S e B L
[ 0.15 A = [
0.1
0.05
0
0 50 100 150 200

Number of used top-ranked features

@ Remark: FUSEFR = best of both worlds

» Removes redundancy (like CFS)
» Keeps conditionally relevant features (like Random Forest)

T-test “CFS vs. FUSER” with 100 features: p-value=0.036
R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010
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Results on Colon after 200,000 iterations

0.4 ‘ R
\ D-FUSEZ ——
0.35 C-FUSE™ ——
CFS -oreee
03 ¢ andom Forest -
§ 0.25 i Lasso
E 0.2 Y
3
[ 0.15
0.1
0.05
0
0 50 100 150 200
Number of used top-ranked features
@ Remark

» All equivalent

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 23/25



NIPS 2003 Feature Selection challenge

@ Test error on the NIPS 2003 Feature Selection challenge

» On an disjoint test set

DATABASE ALGORITHM CHALLENGE SUBMITTED | IRRELEVANT
ERROR FEATURES | FEATURES
MADELON FSPP2[1] 6.22% (1) 12 0
D-FUSE” 6.50% (24! 18 0
BAYES-NN-RED [2] 7.20% (1) 100 0
ARCENE | D-FUSEf(ON ALL) 8.42% (3™) 500 34
D-FUSE” 9.42% 500 (8™) 500 0
@ Remarks

» Selected features: accurate

» Promising results

[1] K.Q. Shen, C.J. Ong, X. P. Li, E. P. V. Wilder-Smith Feature selection via sensitivity analysis of SVM probabilistic
outputs. Mach. Learn. 2008

[2] R. M. Neal, and J. Zhang Chap. High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion
Trees. Feature extraction, foundations and applications, Springer 2006

R. Gaudel & M. Sebag (LRI)
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Conclusion and Perspectives

@ Contributions
» Formalization of Feature Selection as a Markov Decision Process
» Efficient approximation of the optimal policy (based on UCT)
= Any-time algorithm
» Experimental results

* State of the art
* High computational cost (45 minutes on Madelon)

@ Perspectives

» Other end learners
» Extend to Feature construction

* Inspired by [1]

[1] F de Mesmay, A. Rimmel, Y. Voronenko, and M. Plschel Bandit-based optimization on graphs with application to
library performance tuning. ICML09

R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010 25/25
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Filter approaches for Feature Selection

@ Score features
@ Select the best ones

Pro
@ Cheap

Cons
@ Cannot tackle all inter-dependencies between features

@ Filter approaches

» ANOVA (Analysis of Variance)
» RELIEFF [1]

[1] K. Kira, and L. A. Rendell A practical approach to feature selection. ML'92
R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010 27/25



Wrapper approaches for Feature Selection

@ Test feature subsets
Really tackle the combinatorial problem

Pro
@ Look for the best solution

Cons
@ Computationally expensive

@ Wrapper approaches
» Look ahead [1]
» Mix forward/backward search [2]
» Mix global/local search [3]

[1] D. Margaritis Toward provably correct Feature Selection in arbitrary domains. NIPS’09
[2] T. Zhang Adaptive forward-backward greedy algorithm for sparse learning with linear models. NIPS'08
[8] M. Boullé Compression-based averaging of selective Naive Bayes classifiers.d. MachiLearn.-Res. 07
R. Gaudel & M. Sebag (LRI) Feature Selection as a one-player game ICML, June 2010
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Embedded approaches for Feature Selection

@ Exploit the learned hypothesis
@ And/Or modify the learning criterion to induce sparsity

Pro
@ Based on relevance of features in the learned model

Cons
@ Limited to linear models [1] or a linear combination of kernels [2]
@ Possibly misled by feature interdependencies

@ Embedded approaches
» Lasso [1]
» Multiple Kernel Learning [2]
» Gini score on Random Forest [3]

[1] R. Tibshirani Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society 94
[2] F. Bach Exploring large feature spaces with hierarchical Multiple Kernel Learning. NIPS’'08
[38] J. Rogers, and S. R. Gunn Identifying feature relevance using a Random Forest. SLSFS'05
R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 29/25



FUSE: bandit-based phase

Dealing with many arms Bandit-Bg

Phasg -7/ %\

@ Bottleneck
» A many-armed problem (hundreds of features)
= need to guide UCT

@ Ingredient 1: controlling the number of arms
» Discrete heuristics [1,2]: Progressive Widening
* Consider only | T?| actions
» Continuous heuristics [3]

* Use a small exploration constant ce £ F E\E
Fe
@ Ingredient 2: sharing information among nodes o
» Rapid Action Value Estimation (RAVE) [3] o RAvE

[1] P Rolet, M. Sebag, and O. Teytaud Boosting Active Learning to optimality: a tractable Monte-Carlo, Billiard-based
algorithm. ECML09

[2] R. Coulom Efficient selectivity and backup operators in Monte-Carlo tree search. Computer and Games 2006
[8] S. Gelly, and D. Silver Combining online and offline knowledge in UCT. ICML07
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FUSE: bandit-based phase

Sharing information among nodes

@ Use of RAVE
» Discrete heuristics [1]

* When a new action allowed, add argmax RAVE(f)
feF

» Continuous heuristics [2]
* Tradeoff UCB-RAVE

(1—a)-frs+a((1—B)-t-RAVE(F,f) + 3 - g-RAVE(f)) + exploration term

* «a \, when ter /
* ﬁ\When#{f@Ft,FWFt}/

[1] P. Rolet, M. Sebag, and O. Teytaud Boosting Active Learning to optimality: a tractable Monte-Carlo, Billiard-based
algorithm. ECML09

[2] S. Gelly, and D. Silver Combining online and offline knowledge in UCT. ICML07
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Feature stop

Dealing with an unknown horizon

@ Any state can be final or not
» Final(F)="fs € F”
» fs: A virtual stopping feature

@ RAVE(fy)
» g-RAVE(£?) = average {V(F.), |F:| = d+1}

* V(F:): Reward of Feature Subset F;
selected at iteration ¢

* d: When RAVE(fs) is used, d is set to
the number of features in current state

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 32/25



Sensitivity of FUSE to the Computational Effort

Madelon

0.5 —
0.4
§ 0.3 \ ‘%“\ § 20 D-FUSE ——
@ Y T C-FUSE
@ ; N -
8 o2 ; 5 15
D-FUSE —— \\% HE.
D-FUSE g P 8
0.1 =
0 2 3 4 5
1 10 10 10 10 10 2
Iteration Iteration
@ Remarks

» FUSE: not enough features
» FUSEF: 10 times faster than RAND”
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Experimental setting

@ FUSE Hyperparameters

How TO RESTRICT EXPLORATION
DISCRETE CONTINUOUS
HEURISTICS HEURISTICS
PARAMETER || k-NN q b Ce C, C
VALUE 5-NN 1-10 1/2 10' 10'
i {-1,-3,-5} {-4,-2,0,2} {—00,2,4}

@ Plot best results for FUSEFR
@ Preliminary results

» FUSE is limited to deal with deep search tree
» FUSE coincides with the beginning of the FUSE" curve

R. Gaudel & M. Sebag (LRlI) Feature Selection as a one-player game ICML, June 2010 34/25



Best hyperparameters

HEURISTICS ANY Disc. CONTINUOUS
PARAMETER q b Ce C, C
TESTED VALUE 1-10' 1/2 10’ 10’
i {-1,-3,-5} {-4,-2,0,2} {—00,2,4}
110" 1/2
ARCENE 110" 1072 ANY
1-107% 10~* ALMOST ANY
MADELON 1-107° 1/2
1-107" 1072 {(102,0), (10%,0)}
COLON 1-107° 1/2
1-107° ANY ALMOST ANY

R. Gaudel & M. Sebag (LRI)
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