Reinforcement Learning

Michèle Sebag ; TP : Herilalaina Rakotoarison TAO, CNRS – INRIA – Université Paris-Sud

Jan. 7th, 2019 Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

 MDP Main Building block

General settings

		Model-based	Model-free
Finite		Dynamic Programming	Discrete RL
	Infinite	(optimal control)	Continuous RL

This course: Function approximation

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

4 ロ ト 4 部 ト 4 画 ト 4 画 ト 画 の Q (や
3/41

Why function approximation ?

Exploration needed: in each state, try every action. **Impossible**

In continuous state space

Why function approximation ?

Exploration needed: in each state, try every action. **Impossible**

In large finite state space

More *Playing Atari with Deep Reinforcement Learning*, Mnih et al., 2015. https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

<ロト < 部ト < 言ト < 言ト 差 の Q (~ 6/41

A learning problem (1/2)

Notations

- State space $\mathcal{S} \subset \mathbb{R}^{\lceil}$
- \blacktriangleright Action space ${\cal A}$
- ▶ Transition model $p(s, a, s') \mapsto [0, 1]$

▶ Reward *r*(*s*)

bounded

Goal

Build $V : S \mapsto \mathbb{R}$

Remind: Supervised Machine Learning

 $\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathcal{X} \text{ (instance space) }, y_i \in \mathcal{Y} \text{ (label space) }, i = 1 \dots n\}$

- Classification: $\mathcal{Y} = \{-1, 1\}$ or $\{1, \dots, k\}$
- Regression $\mathcal{Y} = \mathbb{R}$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 7/41

A learning problem (2/2)

Assume we have the training set

$$\mathcal{E} = \{(s_i, V^*(s_i)), i = 1 \dots n\}$$

Then

- \blacktriangleright Find a hypothesis space ${\cal H}$
- Find an optimization criterion \mathcal{L} (data fitting)
- Solve the optimization problem

$$\hat{V}^* = \mathop{arg opt}_{V \in \mathcal{H}} \left[\mathcal{L}(V)
ight]$$

8/41

A learning problem (2/2)

Assume we have the training set

$$\mathcal{E} = \{(s_i, V^*(s_i)), i = 1 \dots n\}$$

Then

- \blacktriangleright Find a hypothesis space ${\cal H}$
- Find an optimization criterion \mathcal{L} (data fitting + regularization)
- Solve the optimization problem

$$\hat{V}^{*} = \mathop{arg \ opt}\limits_{V \in \mathcal{H}} \left[\mathcal{L}(V)
ight]$$

8/41

Not a standard learning problem (1/2)

Standard supervised ML criteria

$$\mathcal{L}(V) = \sum_{i=1}^n \left(V^*(s_i) - V(s_i)\right)^2 + \mathcal{R}(V)$$

Minimize the average error.

But

In RL, one error is enough to lose the game... to fall down from the cliff... to kill the robot...

Not a standard learning problem (1/2)

Standard supervised ML criteria

$$\mathcal{L}(V) = \sum_{i} \left(V^*(s_i) - V(s_i)
ight)^2 + \mathcal{R}(V)$$

Minimize the average error with respect to independent identically distributed s_i .

But

A wrong move, or the transition error can send you off the road... and then the error might be cumulative.

Optimizing a pseudo-value: TD-Gammon, 1

The game of Backgammon

Gerald Tesauro, 89-95

- State: vector of handcrafted features (e.g., number of White or Black checkers at each location) $\mathcal{S} \subset \mathbb{R}^D$
- Data: set of games
- ► A game: sequence of states *x*₁,...*x*_T

TD-Gammon, 2.

Where does the value come from ?

12/41

value of initial state

Assumptions

$$y_0 = .5$$

$$y_T = \begin{cases} 1 & \text{if } x_T \text{ is a winning state} \\ 0 & \text{if } x_T \text{ is a losing state} \end{cases}$$

And for other states ?

Value is supposed to be continuous

TD-Gammon, 3.

Learning the value

Search space \mathcal{H} Neural Nets

W, weight vector in \mathbb{R}^d

Learning criterion

Minimize
$$(V(x_T) - y_T)^2 + \sum_{\ell} (V(x_{\ell}) - V(x_{\ell+1})^2)^2$$

Learning procedure: weight update

$$\Delta w = \alpha \left(V(x_{\ell+1}) - V(x_{\ell}) \right) \sum_{k=1}^{\ell} \lambda^{\ell-k} \nabla_w V(x_k)$$

Learning by Self-play: Iteratively,

200,000 games

13/41

- > Play using V_i as value function
- Use games to retrain weight vector W_i
- Increment i

Example: TD-Gammon

Tesauro, 1992-1995

estimated state value (≈ prob of winning)

Action selection by a shallow search

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it's the best player of backgammon in the world Originally used expert handcrafted features, later repeated with raw board positions When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

< □ > < 部 > < 書 > < 書 > 差 > うへで 15/41

Finding a representation

Using basis functions

$$\phi_1 \dots \phi_K : \mathcal{S} \mapsto \mathbb{R}$$

• Usually ϕ are normalized,

$$\sum_{i=1}^{K}\phi(s)=1$$

Radius-basis functions

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

16/41

And then, back to Dynamic Programming.

Fuzzy memberships

RoboCup soccer keepaway Stone, Sutton & Kuhlmann, 2005

How is the state encoded? In 13 continuous state variables

11 distances among the players, ball, and the center of the field

2 angles to takers along passing lanes

The Feature-Construction Pipeline

Parametric action-value function

Find

$$egin{aligned} & \mathsf{v}(s, heta) pprox \mathsf{V}^*(s) \ & q(s,a, heta) pprox Q^*(s,a) \end{aligned}$$

Search spaces

- Linear approximation: (many) handcrafted features, and then find linear weights
- NN approximation

Deep Reinforcement Learning

What matters

- Linear Learning complexity required to scale up to large problems
- Self-play to acquire examples in critical regions
- Online learning; dealing with non-stationary target value function

Optimization problem

$$\mathcal{L}(heta) = \sum_{oldsymbol{s}\in\mathcal{S}} ig(oldsymbol{v}(oldsymbol{s}, heta) - oldsymbol{V}^*(oldsymbol{s})ig)^2$$

Any difficulties with this formulation ?

Optimization problem

$$\mathcal{L}(\theta) = \sum_{s \in S} \mathsf{P}(s) (v(s, \theta) - V^*(s))^2$$

22/41

Optimization problem

$$\mathcal{L}(\theta) = \sum_{s \in \mathcal{S}} \mathsf{P}(\mathsf{s}) \left(\mathsf{v}(s, \theta) - \mathsf{V}^*(s) \right)^2$$

Why using distribution P?

- $v(s, \theta)$ is an approximation: it has to make errors
- ▶ Not all errors are equally harmful: harmful errors must weight more.
- P might reflect a uniform distribution; or the distribution associated to the current policy π (on-policy learning); or to another policy used to acquire data (off-policy learning)
- Most generally, a new point $(s_t, V_t(s_t))$ is drawn and θ_t is updated using stochastic gradient.

$$\begin{aligned} \theta_{t+1} &= \theta_t - \frac{1}{2} \alpha \nabla_{\theta_t} \left(V_t(s_t) - v(s, \theta_t) \right)^2 \\ &= \theta_t + \alpha \left(V_t(s_t) - v(s, \theta_t) \right) . \nabla_{\theta_t} v(s, \theta_t) \end{aligned}$$

Requirements

- $v(s, \theta_t)$ must be an unbiased estimate of the desired $V_t(s_t)$.
- not the case in general (except for Monte-Carlo); but practical.
- The approximation of the value function must allow for optimization, to define the policy by greedification:

$$\hat{\pi}(s) = \mathop{argmax}_{a \in \mathcal{A}} (\hat{q}(s, a, heta^*))$$

23/41

Notations

For state s, push value toward backed-up value v $s \mapsto v$

Backed-up value

Dynamic programming

$$s \mapsto \mathbb{E}\left[r(s) + \gamma V(s')\right]$$

Monte-Carlo

$$s \mapsto r(s) + \sum_{t=1}^{T} \gamma^t r_t$$

TD(0)

$$s_t \mapsto r(s_t) + \gamma V(s_{t+1})$$

4 □ ▶ 4 □ ■ 0 ■ 0 ■ 0 ■

$$s \mapsto \mathbb{E}\left[r(s) + \gamma V(s')\right]$$

Dynamic programming

E ∽ Q (~ 26 / 41

・ロト ・回ト ・ヨト ・ヨト

$$s_t \mapsto r(s_t) + \gamma V(s_{t+1})$$

Semi-gradient Q-learning

Loss function

Watkins 89 Bellman optimality equation

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(\underbrace{\frac{R_{t+1} + \gamma \max_{a \in \mathcal{A}} q(S_{t+1}, a, \theta)}_{a \in \mathcal{A}} - q(S_t, A_t, \theta)}_{target value}\right)^2\right]$$

- target depends on θ , let us ignore this and
- only take the derivative wrt $q(S_t, A_t, \theta)$:

$$\Delta \theta_t = \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q(S_{t+1}, a, \theta_t) - q(S_t, A_t, \theta_t) \right) \cdot \frac{\partial q(S_t, A_t, \theta_t)}{\partial \theta_t}$$

28 / 41

Semi-gradient SARSA

Loss function

Sutton 89, Rummery 94 Bellman expectation equation

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(\underbrace{\frac{R_{t+1} + \gamma q(S_{t+1}, A_{t+1}, \theta)}{target \ value}}_{q(S_t, A_t, \theta)} - q(S_t, A_t, \theta)\right)^2\right]$$

- \blacktriangleright again target depends on θ and we ignore this,
- taking the derivative wrt $q(S_t, A_t, \theta)$:

$$\Delta \theta_t = (R_{t+1} + \gamma q(S_{t+1}, A_{t+1}, \theta_t) - q(S_t, A_t, \theta_t)) \cdot \frac{\partial q(S_t, A_t, \theta_t)}{\partial \theta_t}$$

Remark

- This is an on-policy algorithm: it approximates q^{π} not Q^* .
- Therefore π should incorporate some exploration (be ϵ -greedy)

https://www.youtube.com/watch?v=ggqnxyjaKe4: on-policy performs better but finds poorer policies. (next slide).

Cliff-walking example (on-policy vs off-policy)

Cliff-walking example (on-policy vs off-policy)

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fitted Q iteration

Principle

Ernst et al. 2005 iterating over the time horizon

- Given a set of four-tuples (s, a, r, s')
- ► First iteration:

$$\hat{q}_1(s,a) \approx r(s,a)$$

▶ iteration *N*:

$$\hat{q}_n(s_t, a_t) \approx r(s_t, a_t) + \gamma \max_{a \in \mathcal{A}} \hat{q}_{n-1}(s_{t+1}, a)$$

Successive calls to the supervised learning algorithm are independent: possible to adapt the resolution/complexity depending on the iteration and the available sample.

Search space: Decision trees

- Non parametric; flexible
- Scalability wrt high-dimensional spaces
- Robustness wrt irrelevant features, noise, outliers.

Trees in Fitted Q iteration

Decision tree

- Select cutting feature and cutting threshold to maximize the average variance reduction of the output variable
- Select hyper-parameter (min number of examples in a leaf) by cross-validation

Bagged trees

- M times
- Bootstrap the training set
- Grow a decision tree from the bootstrapped data

KD-tree

- ▶ In each node at depth *d*: cutting feature is *i*-th feature if d < # features
- cutting threshold: median of the f_i value in the training set
- (does it change among iterations ?)

Random Forests

- Like Bagged trees, except
- Sample a number K of (cutting feature, cutting threshold), return the best one
 - 34 / 41

Quinlan 89; Breiman 86

M hyper-parameter

Breiman 96

Breiman 01; Geurts 04

Trees in Fitted Q iteration, 2

Note I a leaf in a tree

$$q(s,a) = \sum_{trees} \sum_{l} k(s,a,l) v(l)$$

with

$$k(s,a,l) = \frac{\mathbf{1}_{(s,a)\in l}}{\sum_{i} \mathbf{1}_{(s_i,a_i)\in l}}$$

Property

$$||\hat{q}_n(s,a)||_{\infty} \leq B + \gamma ||\hat{q}_{n-1}(s,a)||_{\infty}$$

with $\hat{q}_0(s, a) = 0$. Therefore

$$|\hat{q}_n(s,a)||_{\infty} \leq rac{B}{1-\gamma}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

35 / 41

with B a bound on the reward.

The RiverSwim

Ernst et al, 05

・ロ と ・ 日 と ・ 日 と ・ 日 と ・ 日

36 / 41

The problem

11 states $(0, 1, \dots 10)$ 2 actions, right or left rewards on terminal states 0 or 10.

The results

1. Bellman residuals wrt number $\#\mathcal{F}$ of 4-tuples.

Tree-based	# <i>F</i>		
method	720	2010	6251
Pruned CART Tree	2.62	1.96	1.29
Pruned Kd-Tree	1.94	1.31	0.76
Pruned Tree Bagging	1.61	0.79	0.67
Pruned Extra-Trees	1.29	0.60	0.49
Pruned Tot. Rand. Trees	1.55	0.72	0.59

2. But the score is about the same for all methods

The Acrobot

Ernst et al, 05

The problem

state in \mathbb{R}^4 : $(\theta_1, \theta_2, \dot{\theta_1}, \dot{\theta_2})$ action: torque u = -5 or 5 reward: distance to up-equilibrium position, if < 1 (then terminates)

> < □ > < 部 > < 差 > < 差 > 差 の Q (~ 37/41)

The Acrobot

The results

 $\# \mathcal{F} \approx$ 150,000 tuples

1. The return

2. Comparative performances

Tree-based	Policy which generates $\mathcal F$		
method	ε-greedy	Random	
Pruned CART Tree	0.0006	0.	
Kd-Tree (Best nmin)	0.0004	0.	
Tree Bagging	0.0417	0.0047	
Extra-Trees	0.0447	0.0107	
Totally Rand. Trees	0.0371	0.0071	

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal

Learn an approximation \hat{v} of the value function; define $\hat{\pi}$ from \hat{v}

40/41

- Data
- Learning criterion
- Learning procedure

Goal

Learn an approximation \hat{v} of the value function; define $\hat{\pi}$ from \hat{v}

40/41

- Data off-line; online
- Learning criterion
- Learning procedure

Goal

Learn an approximation \hat{v} of the value function; define $\hat{\pi}$ from \hat{v}

40/41

- Data off-line; online
- Learning criterion data fitting; Bellman residual
- Learning procedure

Goal

Learn an approximation \hat{v} of the value function; define $\hat{\pi}$ from \hat{v}

- Data off-line; online
- Learning criterion data fitting; Bellman residual
- Learning procedure knn; decision trees; gradient (linear or NN)

Comments

- 1. Required to scale up
- 2. Pitfalls:
 - Sufficient representation needed (if large representation, robust learning required, e.g. decision trees)

41/41

- Self-play / replay mandatory
- A further stage of optimization is required to define $\hat{\pi}$
- Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

Comments

- 1. Required to scale up
- 2. Pitfalls:
 - Sufficient representation needed (if large representation, robust learning required, e.g. decision trees)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

41 / 41

- Self-play / replay mandatory
- A further stage of optimization is required to define $\hat{\pi}$
- ▶ Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

After all

- Value is a means for building a policy
- Can we build the policy directly ? next course