Deep Learning

Michele Sebag
TAO

Université Paris-Saclay

Jan. 21st, 2016
Credit for slides: Yoshua Bengio, Yann Le Cun, Nando de Freitas, Christian
Perone, Honglak Lee, Ronan Collobert, Tomas Mikolov, Rich Caruana

UNIVERSITE

- SPARIS

Crzia— SU>

NDE NUMERIQUE

Overview

Neural Nets
Main ingredients
Invariances and convolutional networks

Neural Nets

Inputs

(C) David McKay - Cambridge Univ. Press

History

1943 A neuron as a computable function y = f(x Pitts, McCullough
ntelf)gence — Reasoning — g%oolean functions

1960 Connexionism + learning algorithms Rosenblatt

1969 Al Winter Minsky-Papert

1989 Back-propagation Amari, Rumelhart & McClelland, LeCun

1995 Winter again Vapnik

2005 Deep Learning Bengio, Hinton

One neuron: input, weights, activation function

Activation Functions

tanh
— == sigmoid
rectified linear

x € RY

zZ=) WX f(z) e R

Activation functions
> Thresholded
> Linear
» Sigmoid
» Tanh

Radius-based
Rectified linear (ReLU)

v

v

0 if z < threshold, 1 otherwise
z

1/(1+e7%)
ef—e”*
e?te?
2 2

e~ % /o

max(0, z)

Learning the weights

An optimization problem: Define a criterion

» Supervised learning classification, regression
E={(x,y),x € R, yieR,i=1...n}
» Reinforcement learning
7 . State space R? — Action space R
Mnih et al., 2015
Main issues

> Requires a differentiable / continuous activation function

> Non convex optimization problem

Back-propagation, 1

Notations
Input x = (x, ... xq) Outpu
From input to the first hidden layer
= 3 wio
W) _ £, ,
X =77 Hidde:

From layer i to la (yer i+1

l+1 Z W Xk

X I+1 f(/+1)

J

(f: eg. S|gm0|d)

YOO

AN InplltS

Back-propagation, 2

Input(x,y), x € R, y € {-1,1}
Phase 1 Propagate information forward
» Forlayeri=1...¢
For every neuron{ on Iayer i
= 2k Wik k
:ﬁfﬁ
Phase 2 Compare the target output (y) to what you get (X:f[))
assuming scalar output for simplicity

» Error: difference between y = x1) and y.
Define

output

e = f(z)[y —]
where f'(t) is the (scalar) derivative of f at point t.

Back-propagation, 3

Phase 3 retro-propagate the errors
i—1) i—1)
((¢)Z Wi ek)

Phase 4: Update weights on all layers

AWI-E-k) _ Oéei(k)xj(kfl)

where « is the learning rate < 1.

Adjusting the learning rate is a main issue

Properties of NN

Good news
» MLP, RBF: universal approximators
For every decent function f (= f2 has a finite integral on every compact of]Rd)

for every € > 0,
there exists some MLP/RBF g such that ||f — g|| < e.

Bad news
» Not a constructive proof (the solution exists, so what ?)

» Everything is possible — no guarantee (overfitting).

Very bad news
> A non convex (and hard) optimization problem
> Lots of local minima

> Low reproducibility of the results

The curse of NNs

Le Cun 2007

@ The NIPS community has suffered of an acute convexivitis epidemic
» ML applications seem to have trouble moving beyond logistic
regression, SVMs, and exponential-family graphical models.

P For a new ML model, convexity is viewed as a virtue
» Convexity is sometimes a virtue
b But it is often a limitation

» ML theory has essentially never moved beyond convex models
% the same way control theory has not really moved beyond linear systems

b Often, the price we pay for insisting on convexity is an
unbearable increase in the size of the model, or the scaling
properties of the optimization algorithm [O(n”2), O(n"3)...]

http://videolectures.net/eml07_lecun_wia/

Old Key Issues (many still hold)

Model selection

> Selecting number of neurons, connexion graph More # Better
» Which learning criterion avoid overfitting
Algorithmic choices a difficult optimization problem

> Enforce stability through relaxation
W peo (1 - Oé)WoId + aWeo

> Decrease the learning rate a with time

» Stopping criterion early stopping

Tricks
» Normalize data

» |nitialize W small !

Overview

Neural Nets
Main ingredients
Invariances and convolutional networks

Toward deeper representations

Invariances matter

» The label of an image is invariant through small translation, homothety,
rotation...

» Invariance of labels — Invariance of model

y(x) = y(o(x)) = h(x) = h(a(x))

Enforcing invariances
> by augmenting the training set:

€ = {(xi, y)} Lo (x), 1)}

> by structuring the hypothesis space

Convolutional networks

Hubel & Wiesel 1968

Visual cortex of the cat
» cells arranged in such a way that
» ... each cell observes a fraction of the visual field

» ... their union covers the whole field
layer m+1

layer m

layer m-1

» Layer m: detection of local patterns
feature m

I

layer m

layer m-1

» Layer m 4+ 1: non linear aggregation of output of layer m

receptive field

(same weights)

Ingredients of convolutional networks

1. Local receptive fields (aka kernel or filter)

Carvtar slormarn of the semel & placed over the 4o 4
Snred piasl Tha source plesl s Pes ieplaced T
-t @ wanghiiadd wom ol Pea ' ad neaily pash

2. Sharing weights

through adapting the gradient-based update: the update is averaged over all
occurrences of the weight.

Reduces the number of parameters by several orders of magnitude

u]
o)
I
i
it

Ingredients of convolutional networks, 2

3. Pooling: reduction and invariance

Max pooling

Detection units

Max pooling

Detection units

Spectrogram

» Overlapping / non-overlapping regions
> Return the max / the sum of the feature map over the region

> Larger receptive fields (see more of input)

Convolutional networks, summary

Local Receptive Weight
Fields sharing

Pooling

Sub-sampling
layer

Input image Convolutional layer

LeCun 1998
Properties

» Invariance to small transformations (over the region)

» Reducing the number of weights

INPUT
32x32

Convolutional networks, summar

C3: f. maps 16@10x10
Sl:ézlg:;ure maps S4: . maps 16@5x5
§2: f. maps
6@14x14

Convolutions

Subsampling

Convolutions

|
Full cunAedion ‘
Subsampling

Full connection

|

f dvam

! Y
{ dneq genze

Properties

pL

Boaing

2040 mes

Kryzhevsky et al. 2012
» Invariance to small transformations (over the region)
» Reducing the number of weights

» Usually many convolutional layers

Gaussian connections

LeCun 1998

Overview

Neural Nets
Main ingredients

Invariances and convolutional networks

Deep Learning

Deep Learning Applications
Computer vision

Natural language processing
Deep Reinforcement Learning

The importance of being deep, revisited

Take-home message

«O» «F»

a

DA

Manifesto for Deep

Bengio, Hinton 2006
1. Grand goal: Al

2. Requisites

> Computational efficiency
> Statistical efficiency
> Prior efficiency: architecture relies on human labor

3. Abstraction is mandatory

Manifesto for Deep

Bengio, Hinton 2006
1. Grand goal: Al

2. Requisites

> Computational efficiency
> Statistical efficiency
> Prior efficiency: architecture relies on student labor

3. Abstraction is mandatory

Manifesto for Deep

Bengio, Hinton 2006
1. Grand goal: Al

2. Requisites

> Computational efficiency
> Statistical efficiency
> Prior efficiency: architecture relies on student labor

3. Abstraction is mandatory

4. Compositionality principle:

Manifesto for Deep

Bengio, Hinton 2006
1. Grand goal: Al

2. Requisites

» Computational efficiency
> Statistical efficiency
> Prior efficiency: architecture relies on student labor

3. Abstraction is mandatory

4. Compositionality principle:
build skills on the top of simpler skills Piaget

The importance of being deep

A toy example: n-bit parity Hastad 1987

level log N

Pros: efficient representation
Deep neural nets are (exponentially) more compact

Cons: poor learning
» More layers — more difficult optimization problem

» Getting stuck in poor local optima.

Overcoming the learning problem

Long Short Term Memory

> Jurgen Schmidhuber (1997).

Discovering Neural Nets with Low Kolmogorov Complexity and High
Generalization Capability.
Neural Networks.

Deep Belief Networks

> Geoff. Hinton and S. Osindero and Yeh Weh Teh (2006).
A fast learning algorithm for deep belief nets.
Neural Computation.

Auto-Encoders

> Yoshua Bengio and P. Lamblin and P. Popovici and H. Larochelle (2007).
Greedy Layer- Wise Training of Deep Networks.
Advances in Neural Information Processing Systems

Auto-encoders

E={(xi,yi),xi GIRd,yf eR,i=1...n}

First layer
X — h — X

» An auto-encoder:

Find W* = arg min WtoW(x;) — xi||?
gn (ZH (x) ||>

* ©O000
A
wy'
i(@]ele) \OOO
A
4]

x ©O00O0

(*) Instead of min squared error, use cross-entropy loss:

> xijlogkij+ (1 —xi;)log (1 - %)
j

Auto-encoders, 2

First layer
x—h; — X

Second layer same, replacing x with h;
h1 — h2 — I';l

mQO0Y000
w; L@e]e]el0l0]0]0)
x Q0000 i X
x

Discussion

Layerwise training

>

Less complex optimization problem (compared to training all layers
simultaneously)

Requires a local criterion: e.g. reconstruction
Ensures that layer i encodes same information as layer i 4 1

But in a more abstract way:

layer 1 encodes the patterns formed by the (descriptive) features
layer 2 encodes the patterns formed by the activation of the previous
patterns

When to stop ? trial and error.

Discussion

Layerwise training

>

Less complex optimization problem (compared to training all layers
simultaneously)

Requires a local criterion: e.g. reconstruction
Ensures that layer i encodes same information as layer i 4 1

But in a more abstract way:

layer 1 encodes the patterns formed by the (descriptive) features
layer 2 encodes the patterns formed by the activation of the previous
patterns

When to stop ? trial and error.

Now pre-training is almost obsolete Gradient problems better understood

>

>

>

>

>

Initialization

New activation ReLU
Regularization

Mooore data

Better optimization algorithms

Dropout
Why

v

Ensemble learning is effective

» But training several Deep NN is too costly

» The many neurons in a large DNN can “form coalitions” .
> Not robust !

How

» During training
> For each hidden neuron, each sample, each iteration
> For each input (of this hidden neuron)
> with probability p (.5), zero the input
> (double the # iterations needed to converge)

» During validation /test
> use all input
> rescale the sum (><p) to preserve average

age o
e wmarried

income @
e single

L

employment @ —— Q—»0

Recommendations
Ingredients as of 2015

» RelLU non-linearities

v

Cross-entropy loss for classification

Stochastic Gradient Descent on minibatches

v v

Shuffle the training samples

v

Normalize the input variables (zero mean, unit variance)

» If you cannot overfit, increase the model size; if you can, regularize.
Regularization

> [y penalizes large weights

> Ly penalizes non-zero weights

Adaptive learning rate

> adjusted per neuron to fit the moving average of the last gradients

Hyper-parameters
» Grid search
» Continue training the most promising model

More: Neural Networks, Tricks of the Trade (2012 edition) G. Montavon, G. B.
Orr, and K-R Mller eds.

Not covered

» Long Short Term Memory
» Restricted Boltzman Machines

» Natural gradient

Overview

Deep Learning Applications
Computer vision
Natural language processing
Deep Reinforcement Learning
The importance of being deep, revisited

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, llya Sutskever, Geoffrey Hinton,
Advances in Neural Information Processing Systems 2012

ImageNet
» 15M images
» 22K categories
> Images collected from Web

» Human labelers (Amazons Mechanical Turk crowd-sourcing)

> ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
> 1K categories

1.2M training images (1000 per category)

50,000 validation images
150,000 testing images

vvyy

» RGB images with variable-resolution

ImageNet

Evaluation
» Guess it right top-1 error

» Guess the right one among the top 5 top-5 error

Py, ! w
\ \ \

What is new ?
Former state of the art
*| %

Kepeirt descripior

SIFT

Orientation Voting

Overlapping Blocks

Input Image Gradient Image

1 DT Rl

Textons
SIFT: scale invariant feature transform
HOG: histogram of oriented gradients

<; . Local Normalization

Textons: “vector quantized responses of a linear filter bank”

What is new, 2

Traditional approach

Manually crafted Trainable
— .
features classifier
Trainable Trainable
— — o
feature extractor classifier

DNN. 1, Tractability

Epochs

4 layers convolutional

Activation function
» On CIFAR-10: Relu 6 times faster than tanh

Data augmentation learn 60 million parameters; 650,000 neurons

» Translation and horizontal symmetries
» Alter RGB intensities

> PCA, with (p, \) eigen vector, eigen value
> Add: (p1, p2, p3) X (ad1, ad2, aA3)t to each image, with a ~ U[0, 1]

DNN. 2, Architecture

> 1st layer: 96 kernels (11 x 11 X 3; stride 3)
» Normalized, pooled

> 2nd layer: 256 kernels (5 x 5 x 48).

» Normalized, pooled

> 3rd layer: 384 kernels (3 x 3 x 256)

> 4th layer: 384 kernels (3 x 3 x 192)

> 5th layer: 256 kernels (3 x 3 x 192)

» followed by 2 fully connexted layers, 4096 neurons each

2088 2088

Max 1 Max pooling
pooling pooling

DNN. 3, Details

Pre-processing

> Variable-resolution images — i) down-sampling; ii) rescale
» subtract mean value for each pixel

Results on the test data
> top-1 error rate: 37.5%
» top-5 error rate: 17.0%

Results on ILSVRC-2012 competition
» 15.3% accuracy

» 2nd best team: 26.2% accuracy

“Understanding” the result

Interpreting a neuron:

Plotting the input (image) which maximally excites this neuron.

©
e
o
]
=
(=]

20 millions image from YouTube

“Understanding” the result, 2

Interpreting the representation: Plotting the induced topology
http://cs.stanford.edu/people/karpathy/cnnembed/

Overview

Deep Learning Applications
Computer vision
Natural language processing
Deep Reinforcement Learning
The importance of being deep, revisited

Natural Language Processing
Dimensionality: 20K (speech) 50K (Penn TB) 500K (big vocab) 13M (Google)

Bag-of-words

wmoltel [coc0ooco0000001 00 00] AND

hotel [c0o0o0O0O0OBl10000000] = ©

Latent representations Latent Semantic analysis

» Input: matrix (documents x words)

v

You know a word by the company it keeps Firth 57

\{

Dimensionality reduction

high dimensional, sparsity issue, scales quadratically, update problematic

loDRIvE «SWIMMER
*sTUDENT

ccLean «TEAGHER

« BRIDE
oswm

oTREAT _ oPRAY

also, something non additive is needed: not bad # not + bad

NLP: which learning criterion ?

Criterion for learning
1. predict a linguistic label
2. predict a class

3. predict the neighborhood of words

The labelling cost
» 1, 2 requires labels

> 3: can be handled in an unsupervised way

Criterion for evaluation

> evaluate relationships

opinion mining

ground truth

tons of data !

Continuous language models

Bengio et al. 2001
Principle

> Input: 10,000-dim boolean input (words)

» Hidden layer: 500 continuous neurons
» Output: from a text window (w; ... wjtak), predict

> The grammatical tag of the central word w;
> Other: see next

Trained embeddings
» Hidden layer defines a mapping from a text window onto IR®®

» Applicable to any discrete space

Continuous language models

The window approach
» Fixed size window works fine for some tasks

» Does not deal with long-range dependencies

The sentence approach
» Feed the whole sentence to the network
» Convolutions to handle variable-length inputs

» Convert network outputs into probabilities softmax p(i) = %
; X

» Maximize log likelihood
Find 6" = argmax log(p(y|x, 6))

Results
» Small improvements
» 15% of most frequent words in the dictionary are seen 90% of the time...

Going unlabelled

Collobert et al. 08
Idea: a lesion study

» Take a sentence from Wikipedia: label true
> Replace middle word with random word: label false
» Tons of labelled data, 0-cost labels

» Captures semantics and syntax

Training Language Model

e Two window approach (11) networks (100HU) trained on two corpus:
* LM1: Wikipedia: 631M of words

* LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words

@ Massive dataset: cannot afford classical training-validation scheme
o Like in biology: breed a couple of network lines
@ Breeding decisions according to 1M words validation set

o LM1
* order dictionary words by frequency

* increase dictionary size: 5000, 10,000, 30,000, 50,000, 100,000
* 4 weeks of training
o LM2
* initialized with LM1, dictionary size is 130, 000
* 30,000 additional most frequent Reuters words

* 3 additional weeks of training

25

Unsupervised Word Embeddings

france jesus XDbOoxX reddish scratched megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mb/s
germany christ MSX pinkish punched bit/s

italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbit/s
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish

sectioned megapixels
silvery slashed gbit/s
capcom yellowish ripped amperes

hungary parvati geforce
switzerland grace

26

Continuous language models, Collobert et al. 2008

MTL: Semantic Role Labeling

wiz-15

& SAL
& SRL+POS
- SRL4CHUNE
SRL+POSSCHUNK
~ SRL+POSHCHUNKHNER
= SRLISTNONYMS

SRL+LANG MODEL

TestErmor

]
0"’\39 P T
*69900540 g

€ SRL+POSSCHUNK+NER+SYNO N YRS

43 SRLHPOSHCHUNKNER+LANG MODEL

LB e s

‘aoagia®oa

‘x}(-:(c::‘_‘:*
o008

Tr i
Epock

TestEmor

Wsz=100

£ SFRL

3 SRL+POS

- SRL4CHUNK
SRL+POSHCHUNK

- SRL+POSHCHUNKHNER

-3 SRL4SYNONYMS

¥ SRL+POS+CHUNK+NER+SYNDNYMS
SRL+LANG MODEL

8 SRL+POSHCHUNK+NER+LANG MODEL

% We get: 14.30%. State-of-the-art: 16.54% — Pradhan et al. (2004)

%‘, 260« faster than state-of-the-art.

- 1115 to label a WSJ sentence.

Word to Vec

Mikolov et al., 13, 14
https://code.google.com/p/word2vec/
Continuous bag of words model

> input, projection layer, hidden layer (linear), output
input prajection hidden output

w(t-3)

wit-2) wilt)

w(t-1)

» Adds input from window to predict the current word
» Shares the weights for different positions

> Very efficient

Word to Vec, two models

Input

o Input projection
projection output
wit-2)]

output
SUmM

wit-1) \

wi(t-2)

wil)

wit-1)
wit+1)

w(t)

w(t+2)

wit+1)

w(t+2)

Computational aspects

Model Vector Training Training | Accuracy
Dimensionality | Words Time (%]
Collobert NNLM 50 660M 2 manths 11
Turian NNLM 200 3™ few weeks 2
Mnih NNLM 100 3™ 7 days 9
Mikolov RNNLM 640 320M weeks 25
Huang NNLM 50 990M weeks 13
Skip-gram (hier.s.) 1000 6B hours 66
CBOW (negative) 300 1.5B minutes T2

Tricks
> Undersample frequent words (the, is, ...)
> Linear hidden layer

> Negative sampling: only the output neuron that represents the positive
class + few randomly sampled neurons are evaluated

» output neurons: independent logistic regression classifiers

» — training speed independent of vocabulary size

Word vectors — nearest neighbors

Redmond Havel graffiti capitulate
conyers plauen cheesecake abdicate
Collobert NNLM lubbock dzerzhinsky gossip accede
keene osterreich dioramas rearm
McCarthy Jewell gunfire -
Turian NNLM Alston Arzu emotion -
Cousins Ovitz impunity -
Podhurst Pontiff anaesthetics Mavericks
Mnih NNLM Harlang Pinochet monkeys planning
Agarwal Rodionov Jews hesitated
Redmond Wash. Vaclav Havel spray paint capitulation
Skip-gram Redmond Washington president Vaclav Havel grafitti capitulated
(phrases) Microsoft Velvet Revolution taggers capitulating

* More training data helps the quality a lot!

Tomas Mikolov, COLING 2014

76

Word vectors — more examples

Montreal Canadiens - Montreal + Toronto

Expression Nearest token
Paris - France + ltaly Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android

Toronto Maple Leafs

Tomas Mikolov, COLING 2014

77

Word vectors — visualization using PCA

" China¢

*Beijing
B Bussia:
Japarx
B Moscow]
Polandk
- Germany« .
France ANarsaw
w —»Berlin
- Italy< Paris =
H#Athens
Greece« "
| Spairx Rome 4
» Madrid
— Portugal sLisbon .
| 1 1 | | 1 |

Tomas Mikolov, COLING 2014

Overview

Deep Learning Applications
Computer vision
Natural language processing
Deep Reinforcement Learning
The importance of being deep, revisited

Deep Reinforcement Learning
Reinforcement Learning in one slide

State space S

» Action space A

» Transition model p(s, a,s’) — [0,1]

> Reward r(s)

v

Environment

Value functions and policies

V7(s) = r(s) +v) _ p(s,m(s), s)V (s")
V*(s) = max V™ (s")

m(s) = argmax{Zp(s, a, s')V*(s’)}

acA

bounded

Playing Atari

Mnih et al. 2015
Input: 4 consecutive frames

> 84 x 84 (reduced, gray-scaled) pixels x 4 (last four frames)

Architecture
> 1st hidden layer : 16 8 X 8 filters with stride 4, ReLU
> 2nd hidden layer : 32 4 x 4 filters with stride 2, ReLU
last hidden layer, fully connected, 256 ReLU
» output layer: fully connected, one output per valid action #Ain 4.18

v

» decision: select action with max. output

Playing Atari, 2

Training

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity [N/
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence sy = {z1} and preprocessed sequenced ¢y = ¢(s1)
fort =1,7 do
With probability e select a random action a;
otherwise select @, = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward 7, and image x,
Set 8441 = 8¢, 4y, T4 and preprocess ¢y = O(S¢11)
Store transition (¢y, ay, re, ¢y41) in D
Sample random minibatch of transitions (¢;, a,,r;, ;1) from D

Ti for terminal ¢;.4+1
rj 4+ ymaxe Q(¢j4+1,a’;0) for non-terminal ¢;41
Perform a gradient descent step on (y; — Q(¢;, a;; F)))2 according to equation
end for
end for

Set y;

y = Q(s,a,0)

Q(s,a,0)=E {r(s, a) +argmax{Q(s’, a’,0)}
acA

Playing Atari, 3

Tricks
> Experience replay: store {(st, at, e, Set1}

> Inner loop, minibatch of 32 uniformly drawn samples (avoids correlated
updates)

» All positive rewards = 1; negative = -1

» Select an action every 4 time frames and apply it for 4 time frames

Results
B.Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
Random 354 1.2 0 -204 157 110 179
Sarsa 3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 =17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [3] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 1 9L —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with ¢ = 0.05.

Playing Atari, 4

What is impressive
» Several games
> Single architecture

» Same hyper-parameters !1!

Overview

Deep Learning Applications
Computer vision
Natural language processing
Deep Reinforcement Learning
The importance of being deep, revisited

Do Deep Nets Really Need To Be Deep ?

Caruana
http://research.microsoft.com/apps/video/dl.aspx?id=232373
Principle

> Train an ensemble of deep NN
» Use the ensemble as teacher

» Find (optimize) a shallow NN to approximate the teacher

TIMIT

Contents

TIMIT speech corpus: 462 speakers in the training set, 50 speakers in
validation set, 24 speakers in test set.

Pre-processing

The raw waveform audio data were pre-processed using 25ms Hamming
window shifting by 10ms to extract Fourier-transform-based filter-banks with
40 coefficients (plus energy) distributed on a mel-scale, together with their first
and second temporal derivatives. We included +/- 7 nearby frames to
formulate the final 1845 dimension input vector. The data input features were
normalized by subtracting the mean and dividing by the standard deviation on
each dimension. All 61 phoneme labels are represented in tri-state, i.e., three
states for each of the 61 phonemes, yielding target label vectors with 183
dimensions for training. At decoding time these are mapped to 39 classes as in
[13] for scoring.

Results

NNs
» DNN, three fully connected feedforward hidden layers (2000 rectified linear
units per layer).
» CNN convolutional architecture
» Shallow neural nets with 8000, 50 000, and 400 000 hidden units.

Architecture of shallow NN

> A linear bottleneck followed by a non-linear layer

Architecture #Param. | # Hidden units | PER
SNN-8k Bl dropout ~12M ~8k 23.1%
trained on original data
SNN-50k . 2l dropout ~100M ~50k 23.0%
trained on original data
SNN-400k 20000 F tropout ~180M ~400k 23.6%
trained on original data
DNN Aol dropent ~12M ~6k 21.9%
trained on original data
CNN c-p-2k-2k-2k + dropout ~13M 10k 19.5%
trained on original data -
ECNN ensemble of 9 CNNs ~125M ~90k 18.5%
SNN-MIMIC-8k 20LEE ~12M ~8k 21.6%
no convolution or pooling layers
SNN-MIMIC-400k 220L-A00k ~180M ~400k | 20.0%
no convolution or pooling layers

What matters is not the deep architecture, after all...

On the validation set

83 . - :
ShallowNet ——
a2 | DeepNet — |
ShallowMimicNet — ik
& Convolutional Net e
7 81| Ensemble of CNNs o .
z
a K
E
£ 80 :
=
5 79 |
z
S wl e S M
< b P ~
77 r_, 4
76 “ . P ———— s i PR T— | . -1 oo
1 10 100

Number of Parameters (millions}

What matters is not the deep architecture, after

On the test set

Accuracy on TIMIT Test Set

a2

8

—

80 |

all...

" Shallowhet

Deephlet
ShallowMimicNet
Convolutional Net
Ensemble of CNNs

—

—%

e K
— T
o ey o
il " T S S|
10 100

Number of Parameters (millions)

Why does this work ?

Why does it work
» Label much more informative: input (x, p) with p the log probability of

each class (before the softmax).
This gives much more information than the softmax.

» Data augmentation: teacher can label anything, no extra label cost.

Not covered

Neural Turing Machines Alex Graves
http://msrvideo.vo.msecnd.net/rmcvideos /260037 /dI/260037.mp4

External Input External Output

Neural Network

Controller | <

SN

Read Heads Write Heads

! !

Memory

Not covered, 2

Morphing of representations
convl_1 conv1_1 convl_1
convl 1 eonvid conv2_1 conv2_1 conv2_1
- conv2_1 conv3_1 conv3_1 conva_1
- conv4_1 convd_1
conv5_1

s o) i a e
. - :) - -
Style Reconstmuctions

[Nz

convil_1

conv5_1

conv2_1 conv3_1 convd_1

Leon Gatys

Not covered, 2

Morphing of representations

Leon Gatys
Decrease a/f3

Used for Content

AL
Used for Style

N

Not covered, 3

Spatial transformer Jaderberg et al., 15

(a) (b) (c) (d) Figure 1: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distorted
MNIST digit classification. (a) The input to the spatial trans-

7 former network is an image of an MNIST digit that is dis-
torted with random translation, scale, rotation, and clutter. (b)
The localisation network of the spatial transformer predicts a

5 tl'ﬁ\nsfurma?ion to ;xpply to the input ?mage. (c) The output
of the spatial transformer, after applying the transformation.
(d) The classification prediction produced by the subsequent
fully-connected network on the output of the spatial trans-

6 former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels — no knowledge of the groundtruth transforma-
tions is given to the system.

Overview

Neural Nets
Main ingredients

Invariances and convolutional networks

Deep Learning

Deep Learning Applications
Computer vision

Natural language processing
Deep Reinforcement Learning

The importance of being deep, revisited

Take-home message

«O» «F»

a

DA

DNN as a representation builder
Features learned from large datasets e.g. ImageNet

> Can be useful for many other problems
> As initialization for another DNN
> Higher layers are more specific: can be tuned on *your* data while reusing
general features from lower layers (e.g. edge detectors)
> As indices for a large db see Locally Sensitive Hashing

» As a feature layer for e.g. SVMs

Elephants Chairs

DNN as a massive computer science technology

DNN training is made possible
> With tons of data

» With specific computational platforms

The entry ticket is expensive

» See TensorFlow

DNN as a functional primitive

Huge models

Published source Application Params
Hinton et al., 2006 Digit images 1.6mn
Hinton & Salakhutdinov | Face images 3.8mn
Salakhutdinov & Hinton | Sem. hashing | 2.6mn
Ranzato & Szummer Text 3mn
Using GPU (Raina et al., 2009) 100mn
Model Vector Training | Training | Accuracy
Dimensionality | Words Time [%]
Collobert NNLM 50 860M | 2 months 1
Turian NNLM 200 37M few weeks 2
Mnih NNLM 100 37M 7 days 9
Mikolov RNNLM 640 320M weeks. 25
Huang NNLM 50 990M weeks 13
Skip-gram (hier.s.) 1000 6B hours 66
CBOW (negative) 300 1.5B minutes T2

Next frontiers

Questions
> Interpretation

» Do we still need (relational) logic ?

Next applications

> Signal processing ?

