Deep Learning

Michèle Sebag TAO

Université Paris-Saclay

Jan. 21st, 2016

Credit for slides: Yoshua Bengio, Yann Le Cun, Nando de Freitas, Christian Perone, Honglak Lee, Ronan Collobert, Tomas Mikolov, Rich Caruana

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Overview

Neural Nets Main ingredients Invariances and convolutional networks

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Take-home message

Neural Nets

(C) David McKay - Cambridge Univ. Press

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

History

1943 A neuron as a computable function $y = f(\mathbf{x})$ Pitts, McCullough Intelligence \rightarrow Reasoning \rightarrow Boolean functions

1960	Connexionism + learning algorithms	Rosenblatt
1969	AI Winter	Minsky-Papert
1989	Back-propagation	Amari, Rumelhart & McClelland, LeCun
1995	Winter again	Vapnik
2005	Deep Learning	Bengio, Hinton

One neuron: input, weights, activation function

$$\mathbf{x} \in \mathrm{I\!R}^d$$
 $z = \sum_i w_i x_i$ $f(z) \in \mathrm{I\!R}$

Activation functions

- Thresholded
- Linear
- Sigmoid
- Tanh
- Radius-based
- Rectified linear (ReLU)

0 if z < threshold, 1 otherwise

$$\frac{1}{(1+e^{-z})}$$

$$\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$$

$$e^{-z^{2}/\sigma^{2}}$$

$$\max(0, z)$$

Learning the weights

An optimization problem: Define a criterion

Supervised learning
 classification, regression

$$\mathcal{E} = \{ (\mathbf{x}_i, y_i), x_i \in \mathbb{R}^d, y_i \in \mathbb{R}, i = 1 \dots n \}$$

Reinforcement learning

$$\pi$$
: State space $\mathbb{R}^d \mapsto$ Action space $\mathbb{R}^{d'}$

Mnih et al., 2015

Main issues

- Requires a differentiable / continuous activation function
- Non convex optimization problem

Back-propagation, 1

Notations

Input $\mathbf{x} = (x_1, \dots x_d)$ From input to the first hidden layer $z_j^{(1)} = \sum w_{jk} x_k$ $x_j^{(1)} = f(z_j^{(1)})$ From layer *i* to layer *i* + 1 $z_j^{(i+1)} = \sum w_{jk}^{(i)} x_k^{(i)}$ $x_j^{(i+1)} = f(z_j^{(i+1)})$ (*f*: e.g. sigmoid)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Back-propagation, 2

Input(\mathbf{x} , y), $\mathbf{x} \in \mathbb{R}^d$, $y \in \{-1, 1\}$ **Phase 1** Propagate information forward

► For layer
$$i = 1 \dots \ell$$

For every neuron j on layer i
 $z_j^{(i)} = \sum_k w_{j,k}^{(i)} x_k^{(i-1)}$
 $x_j^{(i)} = f(z_j^{(i)})$

Phase 2 Compare the target output (y) to what you get $(x_1^{(\ell)})$

assuming scalar output for simplicity

Error: difference between ŷ = x₁^(ℓ) and y.
 Define

$$e^{output} = f'(z_1^\ell)[\hat{y} - y]$$

where f'(t) is the (scalar) derivative of f at point t.

Back-propagation, 3

Phase 3 retro-propagate the errors

$$e_j^{(i-1)} = f'(z_j^{(i-1)}) \sum_k w_{kj}^{(i)} e_k^{(i)}$$

Phase 4: Update weights on all layers

$$\Delta w_{ij}^{(k)} = \alpha e_i^{(k)} x_j^{(k-1)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where α is the learning rate < 1.

Adjusting the learning rate is a main issue

Properties of NN

Good news

MLP, RBF: universal approximators

```
For every decent function f (= f^2 has a finite integral on every compact of \mathbb{R}^d)
for every \epsilon > 0,
```

there exists some MLP/RBF g such that $||f - g|| < \epsilon$.

Bad news

- Not a constructive proof (the solution exists, so what ?)
- Everything is possible \rightarrow no guarantee (overfitting).

Very bad news

- A non convex (and hard) optimization problem
- Lots of local minima
- Low reproducibility of the results

The curse of NNs

Le Cun 2007

The NIPS community has suffered of an acute convexivitis epidemic

- ML applications seem to have trouble moving beyond logistic regression, SVMs, and exponential-family graphical models.
- For a new ML model, convexity is viewed as a virtue
- Convexity is sometimes a virtue
- But it is often a limitation
- ML theory has essentially never moved beyond convex models the same way control theory has not really moved beyond linear systems
- Often, the price we pay for insisting on convexity is an unbearable increase in the size of the model, or the scaling properties of the optimization algorithm [O(n^2), O(n^3)...]

http://videolectures.net/eml07_lecun_wia/

Old Key Issues (many still hold)

Model selection

- Selecting number of neurons, connexion graph
- Which learning criterion

Algorithmic choices

Enforce stability through relaxation

$$\mathbf{W}_{\textit{neo}} \leftarrow (1 - lpha) \mathbf{W}_{\textit{old}} + lpha \mathbf{W}_{\textit{neo}}$$

- Decrease the learning rate α with time
- Stopping criterion

Tricks

- Normalize data
- Initialize W small !

More *⇒* Better avoid overfitting

a difficult optimization problem

early stopping

Overview

Neural Nets Main ingredients Invariances and convolutional networks

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Take-home message

Toward deeper representations

Invariances matter

- The label of an image is invariant through small translation, homothety, rotation...
- \blacktriangleright Invariance of labels \rightarrow Invariance of model

$$y(x) = y(\sigma(x)) \rightarrow h(x) = h(\sigma(x))$$

Enforcing invariances

by augmenting the training set:

$$\mathcal{E} = \{(x_i, y_i)\} \bigcup \{(\sigma(x_i), y_i)\}$$

by structuring the hypothesis space

Convolutional networks

Hubel & Wiesel 1968

Visual cortex of the cat

- cells arranged in such a way that
- ... each cell observes a fraction of the visual field
- ... their union covers the whole field

receptive field

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Layer m: detection of local patterns (same weights)
 layer m
 layer m-l

• Layer m + 1: non linear aggregation of output of layer m

Ingredients of convolutional networks

1. Local receptive fields

(aka kernel or filter)

2. Sharing weights

through adapting the gradient-based update: the update is averaged over all occurrences of the weight.

Reduces the number of parameters by several orders of magnitude

Ingredients of convolutional networks, 2

3. Pooling: reduction and invariance

- Overlapping / non-overlapping regions
- Return the max / the sum of the feature map over the region
- Larger receptive fields (see more of input)

Convolutional networks, summary

LeCun 1998

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Properties

- Invariance to small transformations (over the region)
- Reducing the number of weights

Convolutional networks, summary

LeCun 1998

Kryzhevsky et al. 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Properties

- Invariance to small transformations (over the region)
- Reducing the number of weights
- Usually many convolutional layers

Overview

Neural Nets Main ingredients Invariances and convolutional netwo

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

Take-home message

・ロット 4回ット 4回ット 4回ット 4日ッ

Bengio, Hinton 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Grand goal: Al
- 2. Requisites
 - Computational efficiency
 - Statistical efficiency
 - Prior efficiency: architecture relies on human labor
- 3. Abstraction is mandatory

Bengio, Hinton 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Grand goal: Al
- 2. Requisites
 - Computational efficiency
 - Statistical efficiency
 - Prior efficiency: architecture relies on student labor
- 3. Abstraction is mandatory

Bengio, Hinton 2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 1. Grand goal: AI
- 2. Requisites
 - Computational efficiency
 - Statistical efficiency
 - Prior efficiency: architecture relies on student labor
- 3. Abstraction is mandatory
- 4. Compositionality principle:

Bengio, Hinton 2006

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1. Grand goal: Al
- 2. Requisites
 - Computational efficiency
 - Statistical efficiency
 - Prior efficiency: architecture relies on student labor
- 3. Abstraction is mandatory
- 4. Compositionality principle: build skills on the top of simpler skills

Piaget

The importance of being deep

Hastad 1987

Pros: efficient representation Deep neural nets are (exponentially) more compact

Cons: poor learning

- More layers \rightarrow more difficult optimization problem
- Getting stuck in poor local optima.

Overcoming the learning problem

Long Short Term Memory

 Jurgen Schmidhuber (1997).
 Discovering Neural Nets with Low Kolmogorov Complexity and High Generalization Capability.
 Neural Networks.

Deep Belief Networks

Geoff. Hinton and S. Osindero and Yeh Weh Teh (2006).
 A fast learning algorithm for deep belief nets.
 Neural Computation.

Auto-Encoders

 Yoshua Bengio and P. Lamblin and P. Popovici and H. Larochelle (2007). Greedy Layer- Wise Training of Deep Networks. Advances in Neural Information Processing Systems

Auto-encoders

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), x_i \in \mathbb{R}^d, y_i \in \mathbb{R}, i = 1 \dots n\}$$

First layer

$$\mathbf{x} \longrightarrow h_1 \longrightarrow \hat{\mathbf{x}}$$

► An auto-encoder:

Find
$$W^* = \arg\min_{W} \left(\sum_{i} ||W^t o W(\mathbf{x}_i) - x_i||^2 \right)$$

$$\stackrel{\text{$\widehat{x} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ W_1^{\dagger} \\ h_1 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ W_1^{\dagger} \\ x \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ W_1 \\ x \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ W_1 \\ x \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ W_1 \\ x \bigcirc \bigcirc \\ W_1 \\ x \bigcirc \bigcirc \\ W_1 \\ x \bigcirc \\ W_1 \\ x \bigcirc \\ W_1 \\ x \bigcirc \\ W_1 \\ W$$

(*) Instead of min squared error, use cross-entropy loss:

$$\sum_{j} \mathbf{x}_{i,j} \log \hat{\mathbf{x}}_{i,j} + (1 - \mathbf{x}_{i,j}) \log \left(1 - \hat{x}_{i,j}
ight)$$

Auto-encoders, 2

Discussion

Layerwise training

- Less complex optimization problem (compared to training all layers simultaneously)
- Requires a local criterion: e.g. reconstruction
- Ensures that layer i encodes same information as layer i + 1
- But in a more abstract way: layer 1 encodes the patterns formed by the (descriptive) features layer 2 encodes the patterns formed by the activation of the previous patterns

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▶ When to stop ? trial and error.

Discussion

Layerwise training

- Less complex optimization problem (compared to training all layers simultaneously)
- Requires a local criterion: e.g. reconstruction
- Ensures that layer *i* encodes same information as layer i + 1
- But in a more abstract way: layer 1 encodes the patterns formed by the (descriptive) features layer 2 encodes the patterns formed by the activation of the previous patterns
- ▶ When to stop ? trial and error.

Now pre-training is almost obsolete

- Initialization
- New activation
- Regularization
- Mooore data
- Better optimization algorithms

Gradient problems better understood

ReLU

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dropout

Why

- Ensemble learning is effective
- But training several Deep NN is too costly
- ▶ The many neurons in a large DNN can "form coalitions".
- Not robust !

How

- During training
 - For each hidden neuron, each sample, each iteration
 - For each input (of this hidden neuron)
 - with probability p (.5), zero the input
 - (double the # iterations needed to converge)
- During validation/test
 - use all input
 - rescale the sum (×p) to preserve average

Recommendations

Ingredients

- ReLU non-linearities
- Cross-entropy loss for classification
- Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- If you cannot overfit, increase the model size; if you can, regularize.

Regularization

- ► L₂ penalizes large weights
- ► L₁ penalizes non-zero weights

Adaptive learning rate

adjusted per neuron to fit the moving average of the last gradients

Hyper-parameters

- Grid search
- Continue training the most promising model

More: Neural Networks, Tricks of the Trade (2012 edition) G. Montavon, G. B. Orr, and K-R Mller eds.

Not covered

- Long Short Term Memory
- Restricted Boltzman Machines

(ロ)、(型)、(E)、(E)、 E) の(の)

Natural gradient

Overview

Neural Nets Main ingredients Invariances and convolutional networ

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

Take-home message

くして 「「」 (山下) (山下) (山下) (山下)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Advances in Neural Information Processing Systems 2012

ImageNet

- ▶ 15M images
- 22K categories
- Images collected from Web
- Human labelers (Amazons Mechanical Turk crowd-sourcing)
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1K categories
- 1.2M training images (1000 per category)
- 50,000 validation images
- 150,000 testing images
- RGB images with variable-resolution

ImageNet

Evaluation

- Guess it right
- Guess the right one among the top 5

top-1 error top-5 error

What is new ?

SIFT: scale invariant feature transform

HOG: histogram of oriented gradients

Textons: "vector quantized responses of a linear filter bank"

Traditional approach

DNN. 1, Tractability

4 layers convolutional

Activation function

On CIFAR-10: Relu 6 times faster than tanh

Data augmentation

learn 60 million parameters; 650,000 neurons

- Translation and horizontal symmetries
- Alter RGB intensities
 - PCA, with (p, λ) eigen vector, eigen value
 - Add: $(p_1, p_2, p_3) \times (\alpha \lambda_1, \alpha \lambda_2, \alpha \lambda_3)^t$ to each image, with $\alpha \sim U[0, 1]$

DNN. 2, Architecture

- 1st layer: 96 kernels (11 \times 11 \times 3; stride 3)
- Normalized, pooled
- > 2nd layer: 256 kernels (5 \times 5 \times 48).
- Normalized, pooled
- 3rd layer: 384 kernels (3 \times 3 \times 256)
- 4th layer: 384 kernels $(3 \times 3 \times 192)$
- ▶ 5th layer: 256 kernels (3 × 3 × 192)
- followed by 2 fully connexted layers, 4096 neurons each

DNN. 3, Details

Pre-processing

• Variable-resolution images \rightarrow i) down-sampling; ii) rescale

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

subtract mean value for each pixel

Results on the test data

- ▶ top-1 error rate: 37.5%
- ▶ top-5 error rate: 17.0%

Results on ILSVRC-2012 competition

- ► 15.3% accuracy
- 2nd best team: 26.2% accuracy

"Understanding" the result

Interpreting a neuron:

Plotting the input (image) which maximally excites this neuron.

20 millions image from YouTube

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

"Understanding" the result, 2

Interpreting the representation: Plotting the induced topology

http://cs.stanford.edu/people/karpathy/cnnembed/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overview

Neural Nets Main ingredients Invariances and convolutional networ

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

Take-home message

くして 前 ふかく 山下 ふゆう ふしゃ

Natural Language Processing

Dimensionality: 20K (speech) 50K (Penn TB) 500K (big vocab) 13M (Google)

Bag-of-words motel [00000000000000] AND hotel [00000001000000] = 0

Latent representations

- Input: matrix (documents × words)
- You know a word by the company it keeps
- Dimensionality reduction
- high dimensional, sparsity issue, scales quadratically, update problematic

also, something non additive is needed: not bad \neq not + bad, $\langle \mathcal{B} \rangle$, \langle

Latent Semantic analysis

Firth 57

NLP: which learning criterion ?

Criterion for learning

1.	predict	а	linguistic	label
----	---------	---	------------	-------

- 2. predict a class
- 3. predict the neighborhood of words

The labelling cost

1, 2 requires labels
3: can be handled in an unsupervised way

Criterion for evaluation

evaluate relationships

opinion mining

ground truth tons of data !

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

Continuous language models

Bengio et al. 2001

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Principle

- Input: 10,000-dim boolean input
- Hidden layer: 500 continuous neurons
- Output: from a text window $(w_i \dots w_{i+2k})$, predict
 - The grammatical tag of the central word w_{i+k}
 - Other: see next

Trained embeddings

- \blacktriangleright Hidden layer defines a mapping from a text window onto ${
 m I\!R}^{500}$
- Applicable to any discrete space

(words)

Continuous language models

The window approach

- Fixed size window works fine for some tasks
- Does not deal with long-range dependencies

The sentence approach

- Feed the whole sentence to the network
- Convolutions to handle variable-length inputs
- ► Convert network outputs into probabilities softmax $p(i) = \frac{exp(f(i,x,\theta))}{\sum_i exp(f(j,x,\theta))}$
- Maximize log likelihood

Find
$$\theta^* = \arg \max \log(p(y|\mathbf{x}, \theta))$$

Results

- Small improvements
- ▶ 15% of most frequent words in the dictionary are seen 90% of the time...

Going unlabelled

Collobert et al. 08

Idea: a lesion study

- Take a sentence from Wikipedia: label true
- ▶ Replace middle word with random word: label false
- Tons of labelled data, 0-cost labels
- Captures semantics and syntax

Training Language Model

- Two window approach (11) networks (100HU) trained on two corpus:
 - * LM1: Wikipedia: 631M of words
 - * LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words
- Massive dataset: cannot afford classical training-validation scheme
- Like in biology: breed a couple of network lines
- Breeding decisions according to 1M words validation set
- •LM1
 - $\star\,$ order dictionary words by frequency
 - \star increase dictionary size: 5000, 10,000, 30,000, 50,000, 100,000
 - \star 4 weeks of training
- LM2
 - \star initialized with LM1, dictionary size is 130,000
 - * 30,000 additional most frequent Reuters words
 - \star 3 additional weeks of training

france	jesus	xbox	reddish	scratched	megabits
454	1973	6909	11724	29869	87025
austria	god	amiga	greenish	nailed	octets
belgium	sati	playstation	bluish	smashed	mb/s
germany	christ	msx	pinkish	punched	bit/s
italy	satan	ipod	purplish	popped	baud
greece	kali	sega	brownish	crimped	carats
sweden	indra	psNUMBER	greyish	scraped	kbit/s
norway	vishnu	hd	grayish	screwed	megahertz
europe	ananda	dreamcast	whitish	sectioned	megapixels
hungary	parvati	geforce	silvery	slashed	gbit/s
switzerland	grace	capcom	yellowish	ripped	amperes

Continuous language models, Collobert et al. 2008

MTL: Semantic Role Labeling

We get: 14.30%. State-of-the-art: 16.54% – Pradhan et al. (2004) $$$250\times$$ faster than state-of-the-art. $\sim 0.01s$ to label a WSJ sentence.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Word to Vec

Mikolov et al., 13, 14 https://code.google.com/p/word2vec/

Continuous bag of words model

- Adds input from window to predict the current word
- Shares the weights for different positions
- Very efficient

Word to Vec, two models

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Computational aspects

Model	Vector Dimensionality	Training Words	Training Time	Accuracy
Collobert NNLM	50	660M	2 months	11
Turian NNLM	200	37M	few weeks	2
Mnih NNLM	100	37M	7 days	9
Mikolov RNNLM	640	320M	weeks	25
Huang NNLM	50	990M	weeks	13
Skip-gram (hier.s.)	1000	6B	hours	66
CBOW (negative)	300	1.5B	minutes	72

Tricks

- Undersample frequent words (the, is, ...)
- Linear hidden layer
- Negative sampling: only the output neuron that represents the positive class + few randomly sampled neurons are evaluated
- output neurons: independent logistic regression classifiers
- $\blacktriangleright \rightarrow$ training speed independent of vocabulary size

Word vectors – nearest neighbors

	Redmond	Havel	graffiti	capitulate
	conyers	plauen	cheesecake	abdicate
Collobert NNLM	lubbock	dzerzhinsky	gossip	accede
	keene	osterreich	dioramas	rearm
	McCarthy	Jewell	gunfire	-
Turian NNLM	Alston	Arzu	emotion	-
	Cousins	Ovitz	impunity	-
	Podhurst	Pontiff	anaesthetics	Mavericks
Mnih NNLM	Harlang	Pinochet	monkeys	planning
	Agarwal	Rodionov	Jews	hesitated
	Redmond Wash.	Vaclav Havel	spray paint	capitulation
Skip-gram	Redmond Washington	president Vaclav Havel	grafitti	capitulated
(phrases)	Microsoft	Velvet Revolution	taggers	capitulating

• More training data helps the quality a lot!

Word vectors – more examples

Expression	Nearest token
Paris - France + Italy	Rome
bigger - big + cold	colder
sushi - Japan + Germany	bratwurst
Cu - copper + gold	Au
Windows - Microsoft + Google	Android
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs

Word vectors – visualization using PCA

Overview

Neural Nets Main ingredients Invariances and convolutional networ

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

Take-home message

くして 前 ふかく 山下 ふゆう ふしゃ

Deep Reinforcement Learning

Reinforcement Learning in one slide

- $\blacktriangleright \ \, {\rm State \ space \ } {\cal S}$
- \blacktriangleright Action space ${\cal A}$
- Transition model $p(s, a, s') \mapsto [0, 1]$
- Reward r(s)

bounded

Value functions and policies

$$V^{\pi}(s) = r(s) + \gamma \sum_{s'} p(s, \pi(s), s') V^{\pi}(s')$$
$$V^{*}(s) = \max_{\pi} V^{\pi}(s')$$
$$\pi^{*}(s) = \operatorname{argmax}_{a \in \mathcal{A}} \left\{ \sum_{s'} p(s, a, s') V^{*}(s') \right\}_{a \in \mathcal{A}}$$

Playing Atari

Mnih et al. 2015

Input: 4 consecutive frames

▶ 84 \times 84 (reduced, gray-scaled) pixels \times 4 (last four frames)

Architecture

- $\blacktriangleright\,$ 1st hidden layer : 16 8 \times 8 filters with stride 4, ReLU
- > 2nd hidden layer : 32 4 \times 4 filters with stride 2, ReLU
- Iast hidden layer, fully connected, 256 ReLU
- ▶ output layer: fully connected, one output per valid action #A in 4..18
- decision: select action with max. output

Playing Atari, 2

Training

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation end for end for

$$y = Q(s, a, \theta)$$
$$Q(s, a, \theta) = \mathbb{E}\left[r(s, a) + \operatorname*{arg\,max}_{a \in \mathcal{A}} \{Q(s', a', \theta)\}\right]$$

Playing Atari, 3

Tricks

- Experience replay: store {(s_t, a_t, r_t, s_{t+1}}
- Inner loop, minibatch of 32 uniformly drawn samples (avoids correlated updates)
- ▶ All positive rewards = 1; negative = -1
- Select an action every 4 time frames and apply it for 4 time frames

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa 3	996	5.2	129	-19	614	665	271
Contingency 4	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	$^{-3}$	18900	28010	3690
HNeat Best 8	3616	52	106	19	1800	920	1720
HNeat Pixel 8	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Results

Table 1: The upper table compares average total reward for various learning methods by running an ϵ -greedy policy with $\epsilon = 0.05$ for a fixed number of steps. The lower table reports results of the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that always get the same score while DQN used an ϵ -greedy policy with $\epsilon = 0.05$.

Playing Atari, 4

What is impressive

- Several games
- Single architecture
- Same hyper-parameters !!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Neural Nets Main ingredients Invariances and convolutional networ

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

Take-home message

くして 前 ふかく 山下 ふゆう ふしゃ

Do Deep Nets Really Need To Be Deep ?

Caruana

http://research.microsoft.com/apps/video/dl.aspx?id=232373

Principle

- Train an ensemble of deep NN
- Use the ensemble as teacher
- Find (optimize) a shallow NN to approximate the teacher

ΤΙΜΙΤ

Contents

TIMIT speech corpus: 462 speakers in the training set, 50 speakers in validation set, 24 speakers in test set.

Pre-processing

The raw waveform audio data were pre-processed using 25ms Hamming window shifting by 10ms to extract Fourier-transform-based filter-banks with 40 coefficients (plus energy) distributed on a mel-scale, together with their first and second temporal derivatives. We included +/- 7 nearby frames to formulate the final 1845 dimension input vector. The data input features were normalized by subtracting the mean and dividing by the standard deviation on each dimension. All 61 phoneme labels are represented in tri-state, i.e., three states for each of the 61 phonemes, yielding target label vectors with 183 dimensions for training. At decoding time these are mapped to 39 classes as in [13] for scoring.

・ロト・日本・モート モー うへぐ

Results

NNs

- DNN, three fully connected feedforward hidden layers (2000 rectified linear units per layer).
- CNN convolutional architecture
- Shallow neural nets with 8000, 50 000, and 400 000 hidden units.

Architecture of shallow NN

A linear bottleneck followed by a non-linear layer

	Architecture	# Param.	# Hidden units	PER
SNN-8k	8k + dropout trained on original data	$\sim \! 12M$	$\sim 8k$	23.1%
SNN-50k	50k + dropout trained on original data	$\sim 100 M$	\sim 50k	23.0%
SNN-400k	250L-400k + dropout trained on original data	$\sim \! 180 M$	$\sim 400 k$	23.6%
DNN	2k-2k-2k + dropout trained on original data	$\sim \! 12M$	$\sim 6k$	21.9%
CNN	c-p-2k-2k-2k + dropout trained on original data	$\sim \! 13M$	$\sim 10k$	19.5%
ECNN	ensemble of 9 CNNs	$\sim \! 125 M$	$\sim 90k$	18.5%
SNN-MIMIC-8k	250L-8k no convolution or pooling layers	~12M	$\sim 8k$	21.6%
SNN-MIMIC-400k	250L-400k no convolution or pooling layers	$\sim \! 180 \mathrm{M}$	$\sim 400 \mathrm{k}$	20.0%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

What matters is not the deep architecture, after all...

On the validation set

What matters is not the deep architecture, after all...

On the test set

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Why does this work ?

Why does it work

 Label much more informative: input (x, p) with p the log probability of each class (before the softmax).
 This gives much more information than the softmax.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

> Data augmentation: teacher can label anything, no extra label cost.

Not covered

Neural Turing Machines

Alex Graves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

http://msrvideo.vo.msecnd.net/rmcvideos/260037/dl/260037.mp4

Not covered, 2

Morphing of representations

Leon Gatys

Not covered, 2

Morphing of representations

S

Used for Content

Used for Style

Decrease α/β

Leon Gatys

Not covered, 3

Spatial transformer

Jaderberg et al., 15

Figure 1: The result of using a spatial transformer as the first layer of a fully-connected network trained for distorted MNIST digit classification. (a) The input to the spatial transformer network is an image of an MNIST digit that is distorted with random translation, scale, rotation, and clutter. (b) The localisation network of the spatial transformer predicts a transformation to apply to the input image. (c) The output of the spatial transformer, after applying the transformation. (d) The classification prediction produced by the subsequent fully-connected network on the output of the spatial transformer network (a CNN including a spatial transformer module) is trained end-to-end with only class labels – no knowledge of the groundtruth transformations is given to the system.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

Overview

Neural Nets

Main ingredients Invariances and convolutional networks

Deep Learning

Deep Learning Applications

Computer vision Natural language processing Deep Reinforcement Learning The importance of being deep, revisited

Take-home message

・ロト・日本・日本・日本・日本・日本

DNN as a representation builder

Features learned from large datasets

- Can be useful for many other problems
- As initialization for another DNN
 - Higher layers are more specific: can be tuned on *your* data while reusing general features from lower layers (e.g. edge detectors)
- As indices for a large db
- As a feature layer for e.g. SVMs

e.g. ImageNet

see Locally Sensitive Hashing

DNN as a massive computer science technology

DNN training is made possible

- With tons of data
- With specific computational platforms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The entry ticket is expensive

See TensorFlow

DNN as a functional primitive

Huge models

Published source	Application	Params
Hinton et al., 2006	Digit images	1.6mn
Hinton & Salakhutdinov	Face images	$3.8 \mathrm{mn}$
Salakhutdinov & Hinton	Sem. hashing	2.6mn
Ranzato & Szummer	Text	3mn
Using GPU (Raina e	$100 \mathrm{mn}$	

Model	Vector Dimensionality	Training Words	Training Time	Accuracy [%]
Collobert NNLM	50	660M	2 months	11
Turian NNLM	200	37M	few weeks	2
Mnih NNLM	100	37M	7 days	9
Mikolov RNNLM	640	320M	weeks	25
Huang NNLM	50	990M	weeks	13
Skip-gram (hier.s.)	1000	6B	hours	66
CBOW (negative)	300	1.5B	minutes	72

Next frontiers

Questions

- Interpretation
- Do we still need (relational) logic ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Next applications

Signal processing ?