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Neural Nets

(C) David McKay - Cambridge Univ. Press

History

1943 A neuron as a computable function y = f (x) Pitts, McCullough
Intelligence → Reasoning → Boolean functions

1960 Connexionism + learning algorithms Rosenblatt

1969 AI Winter Minsky-Papert

1989 Back-propagation Amari, Rumelhart & McClelland, LeCun

1995 Winter again Vapnik

2005 Deep Learning Bengio, Hinton



One neuron: input, weights, activation function
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i wixi f (z) ∈ IR

Activation functions
I Thresholded 0 if z < threshold , 1 otherwise
I Linear z
I Sigmoid 1/(1 + e−z)

I Tanh ez−e−z

ez+e−z

I Radius-based e−z2/σ2

I Rectified linear (ReLU) max(0, z)



Learning the weights

An optimization problem: Define a criterion

I Supervised learning classification, regression

E = {(xi , yi ), xi ∈ IRd , yi ∈ IR, i = 1 . . . n}

I Reinforcement learning

π : State space IRd 7→ Action space IRd′

Mnih et al., 2015

Main issues

I Requires a differentiable / continuous activation function

I Non convex optimization problem



Back-propagation, 1

Notations
Input x = (x1, . . . xd)
From input to the first hidden layer
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(f : e.g. sigmoid)



Back-propagation, 2

Input(x, y), x ∈ IRd , y ∈ {−1, 1}
Phase 1 Propagate information forward

I For layer i = 1 . . . `
For every neuron j on layer i
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Phase 2 Compare the target output (y) to what you get (x
(`)
1 )

assuming scalar output for simplicity

I Error: difference between ŷ = x
(`)
1 and y .

Define
eoutput = f ′(z`1 )[ŷ − y ]

where f ′(t) is the (scalar) derivative of f at point t.



Back-propagation, 3

Phase 3 retro-propagate the errors
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Phase 4: Update weights on all layers

∆w
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where α is the learning rate < 1.

Adjusting the learning rate is a main issue



Properties of NN

Good news

I MLP, RBF: universal approximators

For every decent function f (= f 2 has a finite integral on every compact of IRd)
for every ε > 0,
there exists some MLP/RBF g such that ||f − g || < ε.

Bad news

I Not a constructive proof (the solution exists, so what ?)

I Everything is possible → no guarantee (overfitting).

Very bad news

I A non convex (and hard) optimization problem

I Lots of local minima

I Low reproducibility of the results



The curse of NNs

Le Cun 2007

http://videolectures.net/eml07 lecun wia/



Old Key Issues (many still hold)

Model selection

I Selecting number of neurons, connexion graph More 6⇒ Better

I Which learning criterion avoid overfitting

Algorithmic choices a difficult optimization problem

I Enforce stability through relaxation

Wneo ← (1− α)Wold + αWneo

I Decrease the learning rate α with time

I Stopping criterion early stopping

Tricks

I Normalize data

I Initialize W small !
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Toward deeper representations

Invariances matter

I The label of an image is invariant through small translation, homothety,
rotation...

I Invariance of labels → Invariance of model

y(x) = y(σ(x))→ h(x) = h(σ(x))

Enforcing invariances

I by augmenting the training set:

E = {(xi , yi )}
⋃
{(σ(xi ), yi )}

I by structuring the hypothesis space
Convolutional networks



Hubel & Wiesel 1968

Visual cortex of the cat

I cells arranged in such a way that

I ... each cell observes a fraction of the visual field receptive field

I ... their union covers the whole field

I Layer m: detection of local patterns (same weights)

I Layer m + 1: non linear aggregation of output of layer m



Ingredients of convolutional networks

1. Local receptive fields (aka kernel or filter)

2. Sharing weights
through adapting the gradient-based update: the update is averaged over all
occurrences of the weight.
Reduces the number of parameters by several orders of magnitude



Ingredients of convolutional networks, 2

3. Pooling: reduction and invariance

I Overlapping / non-overlapping regions

I Return the max / the sum of the feature map over the region

I Larger receptive fields (see more of input)



Convolutional networks, summary

LeCun 1998

Properties

I Invariance to small transformations (over the region)

I Reducing the number of weights



Convolutional networks, summary

LeCun 1998

Kryzhevsky et al. 2012

Properties
I Invariance to small transformations (over the region)
I Reducing the number of weights
I Usually many convolutional layers
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Manifesto for Deep

Bengio, Hinton 2006

1. Grand goal: AI

2. Requisites
I Computational efficiency
I Statistical efficiency
I Prior efficiency: architecture relies on human labor

3. Abstraction is mandatory
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Manifesto for Deep

Bengio, Hinton 2006

1. Grand goal: AI

2. Requisites
I Computational efficiency
I Statistical efficiency
I Prior efficiency: architecture relies on student labor

3. Abstraction is mandatory

4. Compositionality principle:
build skills on the top of simpler skills Piaget



The importance of being deep

A toy example: n-bit parity Hastad 1987

Pros: efficient representation
Deep neural nets are (exponentially) more compact

Cons: poor learning

I More layers → more difficult optimization problem

I Getting stuck in poor local optima.



Overcoming the learning problem

Long Short Term Memory

I Jurgen Schmidhuber (1997).
Discovering Neural Nets with Low Kolmogorov Complexity and High
Generalization Capability.
Neural Networks.

Deep Belief Networks

I Geoff. Hinton and S. Osindero and Yeh Weh Teh (2006).
A fast learning algorithm for deep belief nets.
Neural Computation.

Auto-Encoders

I Yoshua Bengio and P. Lamblin and P. Popovici and H. Larochelle (2007).
Greedy Layer- Wise Training of Deep Networks.
Advances in Neural Information Processing Systems



Auto-encoders

E = {(xi , yi ), xi ∈ IRd , yi ∈ IR, i = 1 . . . n}

First layer
x −→ h1 −→ x̂

I An auto-encoder:

Find W ∗ = arg min
W

(∑
i

||W toW (xi )− xi ||2
)

(*) Instead of min squared error, use cross-entropy loss:∑
j

xi,j log x̂i,j + (1− xi,j) log (1− x̂i,j)



Auto-encoders, 2

First layer
x −→ h1 −→ x̂

Second layer same, replacing x with h1

h1 −→ h2 −→ ĥ1



Discussion

Layerwise training

I Less complex optimization problem (compared to training all layers
simultaneously)

I Requires a local criterion: e.g. reconstruction

I Ensures that layer i encodes same information as layer i + 1

I But in a more abstract way:
layer 1 encodes the patterns formed by the (descriptive) features
layer 2 encodes the patterns formed by the activation of the previous
patterns

I When to stop ? trial and error.

Now pre-training is almost obsolete Gradient problems better understood

I Initialization

I New activation ReLU

I Regularization

I Mooore data

I Better optimization algorithms
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Dropout
Why

I Ensemble learning is effective
I But training several Deep NN is too costly
I The many neurons in a large DNN can “form coalitions”.
I Not robust !

How
I During training

I For each hidden neuron, each sample, each iteration
I For each input (of this hidden neuron)
I with probability p (.5), zero the input
I (double the # iterations needed to converge)

I During validation/test
I use all input
I rescale the sum (×p) to preserve average



Recommendations
Ingredients as of 2015

I ReLU non-linearities

I Cross-entropy loss for classification

I Stochastic Gradient Descent on minibatches

I Shuffle the training samples

I Normalize the input variables (zero mean, unit variance)

I If you cannot overfit, increase the model size; if you can, regularize.

Regularization

I L2 penalizes large weights

I L1 penalizes non-zero weights

Adaptive learning rate

I adjusted per neuron to fit the moving average of the last gradients

Hyper-parameters

I Grid search

I Continue training the most promising model

More: Neural Networks, Tricks of the Trade (2012 edition) G. Montavon, G. B.
Orr, and K-R Mller eds.



Not covered

I Long Short Term Memory

I Restricted Boltzman Machines

I Natural gradient
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ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,
Advances in Neural Information Processing Systems 2012

ImageNet

I 15M images

I 22K categories

I Images collected from Web

I Human labelers (Amazons Mechanical Turk crowd-sourcing)
I ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)

I 1K categories
I 1.2M training images ( 1000 per category)
I 50,000 validation images
I 150,000 testing images

I RGB images with variable-resolution



ImageNet

Evaluation

I Guess it right top-1 error

I Guess the right one among the top 5 top-5 error



What is new ?

Former state of the art

SIFT: scale invariant feature transform
HOG: histogram of oriented gradients

Textons: “vector quantized responses of a linear filter bank”



What is new, 2

Traditional approach

→ Manually crafted
features

→ Trainable
classifier

Deep learning

→ Trainable
feature extractor

→ Trainable
classifier



DNN. 1, Tractability

4 layers convolutional

Activation function

I On CIFAR-10: Relu 6 times faster than tanh

Data augmentation learn 60 million parameters; 650,000 neurons

I Translation and horizontal symmetries
I Alter RGB intensities

I PCA, with (p, λ) eigen vector, eigen value
I Add: (p1, p2, p3)× (αλ1, αλ2, αλ3)t to each image, with α ∼ U[0, 1]



DNN. 2, Architecture

I 1st layer: 96 kernels (11 × 11 × 3; stride 3)

I Normalized, pooled

I 2nd layer: 256 kernels (5 × 5 × 48).

I Normalized, pooled

I 3rd layer: 384 kernels (3 × 3 × 256)

I 4th layer: 384 kernels (3 × 3 × 192)

I 5th layer: 256 kernels (3 × 3 × 192)

I followed by 2 fully connexted layers, 4096 neurons each



DNN. 3, Details

Pre-processing

I Variable-resolution images → i) down-sampling; ii) rescale

I subtract mean value for each pixel

Results on the test data

I top-1 error rate: 37.5%

I top-5 error rate: 17.0%

Results on ILSVRC-2012 competition

I 15.3% accuracy

I 2nd best team: 26.2% accuracy



“Understanding” the result

Interpreting a neuron:
Plotting the input (image) which maximally excites this neuron.

20 millions image from YouTube



“Understanding” the result, 2

Interpreting the representation: Plotting the induced topology
http://cs.stanford.edu/people/karpathy/cnnembed/
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Natural Language Processing
Dimensionality: 20K (speech) 50K (Penn TB) 500K (big vocab) 13M (Google)

Bag-of-words

Latent representations Latent Semantic analysis

I Input: matrix (documents × words)

I You know a word by the company it keeps Firth 57

I Dimensionality reduction

− high dimensional, sparsity issue, scales quadratically, update problematic

also, something non additive is needed: not bad 6= not + bad



NLP: which learning criterion ?

Criterion for learning

1. predict a linguistic label

2. predict a class opinion mining

3. predict the neighborhood of words

The labelling cost

I 1, 2 requires labels ground truth

I 3: can be handled in an unsupervised way tons of data !

Criterion for evaluation

I evaluate relationships



Continuous language models

Bengio et al. 2001

Principle

I Input: 10,000-dim boolean input (words)

I Hidden layer: 500 continuous neurons
I Output: from a text window (wi . . .wi+2k), predict

I The grammatical tag of the central word wi+k
I Other: see next

Trained embeddings

I Hidden layer defines a mapping from a text window onto IR500

I Applicable to any discrete space



Continuous language models

The window approach

I Fixed size window works fine for some tasks

I Does not deal with long-range dependencies

The sentence approach

I Feed the whole sentence to the network

I Convolutions to handle variable-length inputs

I Convert network outputs into probabilities softmax p(i) = exp(f (i,x,θ))∑
j exp(f (j,x,θ))

I Maximize log likelihood

Find θ∗ = arg max log(p(y |x, θ))

Results

I Small improvements

I 15% of most frequent words in the dictionary are seen 90% of the time...



Going unlabelled

Collobert et al. 08

Idea: a lesion study

I Take a sentence from Wikipedia: label true

I Replace middle word with random word: label false

I Tons of labelled data, 0-cost labels

I Captures semantics and syntax



Training Language Model

Two window approach (11) networks (100HU) trained on two corpus:

? LM1: Wikipedia: 631M of words

? LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words

Massive dataset: cannot afford classical training-validation scheme

Like in biology: breed a couple of network lines

Breeding decisions according to 1M words validation set

LM1

? order dictionary words by frequency

? increase dictionary size: 5000, 10, 000, 30, 000, 50, 000, 100, 000

? 4 weeks of training

LM2

? initialized with LM1, dictionary size is 130, 000

? 30,000 additional most frequent Reuters words

? 3 additional weeks of training

25



Unsupervised Word Embeddings

france jesus xbox reddish scratched megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mb/s
germany christ msx pinkish punched bit/s

italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbit/s
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish sectioned megapixels

hungary parvati geforce silvery slashed gbit/s
switzerland grace capcom yellowish ripped amperes

26



Continuous language models, Collobert et al. 2008



Word to Vec

Mikolov et al., 13, 14

https://code.google.com/p/word2vec/

Continuous bag of words model

I input, projection layer, hidden layer (linear), output

I Adds input from window to predict the current word

I Shares the weights for different positions

I Very efficient



Word to Vec, two models



Computational aspects

Tricks

I Undersample frequent words (the, is, ...)

I Linear hidden layer

I Negative sampling: only the output neuron that represents the positive
class + few randomly sampled neurons are evaluated

I output neurons: independent logistic regression classifiers

I → training speed independent of vocabulary size



Word vectors – nearest neighbors

• More training data helps the quality a lot!

Tomas Mikolov, COLING 2014 76



Word vectors – more examples

Tomas Mikolov, COLING 2014 77



Word vectors – visualization using PCA

Tomas Mikolov, COLING 2014 78
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Deep Reinforcement Learning
Reinforcement Learning in one slide

I State space S
I Action space A
I Transition model p(s, a, s ′) 7→ [0, 1]
I Reward r(s) bounded

Value functions and policies

V π(s) = r(s) + γ
∑
s′

p(s, π(s), s ′)V π(s ′)

V ∗(s) = max
π

V π(s ′)

π∗(s) = argmax
a∈A

{∑
s′

p(s, a, s ′)V ∗(s ′)

}



Playing Atari

Mnih et al. 2015

Input: 4 consecutive frames

I 84 × 84 (reduced, gray-scaled) pixels × 4 (last four frames)

Architecture

I 1st hidden layer : 16 8 × 8 filters with stride 4, ReLU

I 2nd hidden layer : 32 4 × 4 filters with stride 2, ReLU

I last hidden layer, fully connected, 256 ReLU

I output layer: fully connected, one output per valid action #A in 4..18

I decision: select action with max. output



Playing Atari, 2

Training

y = Q(s, a, θ)

Q(s, a, θ) = IE

[
r(s, a) + arg max

a∈A
{Q(s ′, a′, θ)}

]



Playing Atari, 3

Tricks

I Experience replay: store {(st , at , rt , st+1}
I Inner loop, minibatch of 32 uniformly drawn samples (avoids correlated

updates)

I All positive rewards = 1; negative = -1

I Select an action every 4 time frames and apply it for 4 time frames

Results



Playing Atari, 4

What is impressive

I Several games

I Single architecture

I Same hyper-parameters !!!



Overview

Neural Nets
Main ingredients
Invariances and convolutional networks

Deep Learning

Deep Learning Applications
Computer vision
Natural language processing
Deep Reinforcement Learning
The importance of being deep, revisited

Take-home message



Do Deep Nets Really Need To Be Deep ?

Caruana

http://research.microsoft.com/apps/video/dl.aspx?id=232373

Principle

I Train an ensemble of deep NN

I Use the ensemble as teacher

I Find (optimize) a shallow NN to approximate the teacher



TIMIT

Contents
TIMIT speech corpus: 462 speakers in the training set, 50 speakers in
validation set, 24 speakers in test set.
Pre-processing
The raw waveform audio data were pre-processed using 25ms Hamming
window shifting by 10ms to extract Fourier-transform-based filter-banks with
40 coefficients (plus energy) distributed on a mel-scale, together with their first
and second temporal derivatives. We included +/- 7 nearby frames to
formulate the final 1845 dimension input vector. The data input features were
normalized by subtracting the mean and dividing by the standard deviation on
each dimension. All 61 phoneme labels are represented in tri-state, i.e., three
states for each of the 61 phonemes, yielding target label vectors with 183
dimensions for training. At decoding time these are mapped to 39 classes as in
[13] for scoring.



Results

NNs

I DNN, three fully connected feedforward hidden layers (2000 rectified linear
units per layer).

I CNN convolutional architecture

I Shallow neural nets with 8000, 50 000, and 400 000 hidden units.

Architecture of shallow NN

I A linear bottleneck followed by a non-linear layer



What matters is not the deep architecture, after all...

On the validation set



What matters is not the deep architecture, after all...

On the test set



Why does this work ?

Why does it work

I Label much more informative: input (x, p) with p the log probability of
each class (before the softmax).
This gives much more information than the softmax.

I Data augmentation: teacher can label anything, no extra label cost.



Not covered

Neural Turing Machines Alex Graves

http://msrvideo.vo.msecnd.net/rmcvideos/260037/dl/260037.mp4



Not covered, 2

Morphing of representations Leon Gatys



Not covered, 2

Morphing of representations Leon Gatys



Not covered, 3

Spatial transformer Jaderberg et al., 15
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DNN as a representation builder
Features learned from large datasets e.g. ImageNet

I Can be useful for many other problems
I As initialization for another DNN

I Higher layers are more specific: can be tuned on *your* data while reusing
general features from lower layers (e.g. edge detectors)

I As indices for a large db see Locally Sensitive Hashing
I As a feature layer for e.g. SVMs



DNN as a massive computer science technology

DNN training is made possible

I With tons of data

I With specific computational platforms

The entry ticket is expensive

I See TensorFlow



DNN as a functional primitive

Huge models



Next frontiers

Questions

I Interpretation

I Do we still need (relational) logic ?

Next applications

I Signal processing ?


