Master Recherche IAC TC2: Apprentissage Statistique & Optimisation

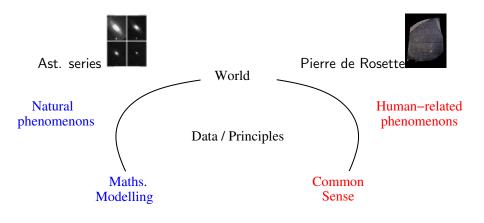
Alexandre Allauzen – Anne Auger – Michèle Sebag LIMSI – LRI

Sept. 16th, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Where we are

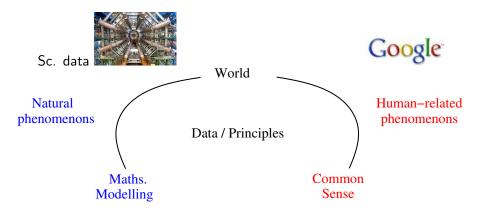
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



You are here

Where we are

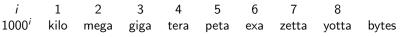
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



You are here

Harnessing Big Data

Watson (IBM) defeats human champions at the quiz game Jeopardy (Feb. 11)



- Google: 24 petabytes/day
- Facebook: 10 terabytes/day; Twitter: 7 terabytes/day
- Large Hadron Collider: 40 terabytes/seconds

Machine Learning and Optimization

Machine Learning

World \rightarrow instance $\mathbf{x}_i \rightarrow$

Oracle \downarrow y_i

Optimization

ML and Optimization

- ML is an optimization problem: find the best model
- Smart optimization requires learning about the optimization landscape

Types of Machine Learning problems

WORLD - DATA - USER

Observations	+ Target	+ Rewards

Understand	Predict	Decide
Code	Classification/Regression	Action Policy/Strategy
Unsupervised	Supervised	Reinforcement
LEARNING	LEARNING	LEARNING

The module

- 1. Introduction. Decision trees. Validation.
- 2. Neural Nets
- 3. Statistics
- 4. Learning from sequences
- 5. Unsupervised learning
- 6. Representation changes
- 7. Bayesian learning
- 8. Optimisation

REN. T. BANES

Pointers

- Slides of this module:
 - http://tao.lri.fr/tiki-index.php?page=Courses http://www.limsi.fr/Individu/allauzen/wiki/index.php/
- Andrew Ng courses http://ai.stanford.edu/~ang/courses.html
- PASCAL videos http://videolectures.net/pascal/
- Tutorials NIPS Neuro Information Processing Systems http://nips.cc/Conferences/2006/Media/
- About ML/DM http://hunch.net/

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Part 1. Generalities
- 2. Part 2. Decision trees
- 3. Part 3. Validation

Examples

- Vision
- Control
- Netflix
- Spam
- Playing Go
- Google

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

http://ai.stanford.edu/~ang/courses.html

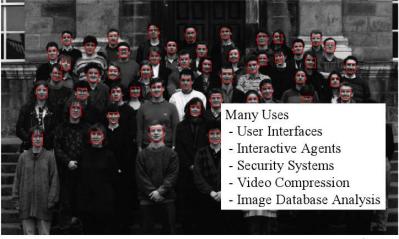
Reading cheques

MNIST: The drosophila of MI

Classification

Fig. 4. Size-normalized examples from the MNIST database.

Detecting faces

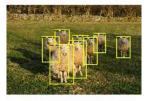


Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

2

The 2005-2012 Visual Object Chall

A. Zisserman, C. Williams, M. Everingham, L. v.d. Gool



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The supervised learning setting

Input: set of (\mathbf{x}, y)

- ▶ An instance \mathbf{x} e.g. set of pixels, $\mathbf{x} \in \mathbb{R}^D$
- A label y in $\{1, -1\}$ or $\{1, \dots, K\}$ or ${\rm I\!R}$

The supervised learning setting

Input: set of (\mathbf{x}, y)

- ▶ An instance \mathbf{x} e.g. set of pixels, $\mathbf{x} \in \mathbb{R}^D$
- A label y in $\{1, -1\}$ or $\{1, \dots, K\}$ or ${\rm I\!R}$

Pattern recognition

Classification Does the image contain the target concept ?

$$h: \{ \mathsf{ Images} \} \mapsto \{1, -1\}$$

- Detection Does the pixel belong to the img of target concept?
 - $h: \{ \text{ Pixels in an image} \} \mapsto \{1, -1\}$
- Segmentation

Find contours of all instances of target concept in image

The 2005 Darpa Challenge

Thrun, Burgard and Fox 2005

Autonomous vehicle Stanley - Terrains

The Darpa challenge and the AI ag

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What remains to be done	Thrun 2005
 Reasoning 	10%
 Dialogue 	60%
 Perception 	90%

Robots

Ng, Russell, Veloso, Abbeel, Peters, Schaal, ...

Reinforcement learning

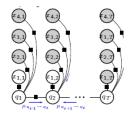
Classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Robots, 2

Toussaint et al. 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ



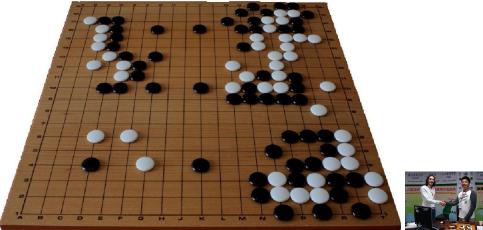
(a) Factor graph modelling the variable interactions

(b) Behaviour of the 39-DOF Humanoid: Reaching goal under Balance and Collision constraints

Bayesian Inference for Motion Control and Planning

Go as AI Challenge

Gelly Wang 07; Teytaud et al. 2008-2011



Reinforcement Learning, Monte-Carlo Tree Search

・ロト・日本・日本・日本・日本

Energy policy

Claim

Many problems can be phrased as optimization in front of the uncertainty.

Adversarial setting 2 two-player game uniform setting a single player game

Management of energy stocks under uncertainty

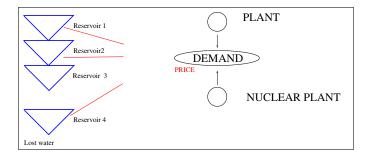
States and Decisions

States

- Amount of stock (60 nuclear, 20 hydro.)
- Varying: price, weather

alea or archive

- Decision: release water from one reservoir to another
- Assessment: meet the demand, otherwise buy energy



Netflix Challenge 2007-2008

Collaborative Filtering

Collaborative filtering

Input

- A set of users
- A set of movies
- A n_m × n_u matrix: person, movie, rating Very sparse matrix: less than 1% filled...

Output

Filling the matrix !

n_u, ca 500,000 *n_m*, ca 18,000

Collaborative filtering

Input

- A set of users
- A set of movies
- A n_m × n_u matrix: person, movie, rating Very sparse matrix: less than 1% filled...

Output

Filling the matrix !

Criterion

- (relative) mean square error
- ranking error

n_u, ca 500,000 *n_m*, ca 18,000

Spam – Phishing – Scam

Best Buy Viagra Generic Online

Viagra 100mg x 100 Pills \$125. Free Pills & Reorder Discount, We accept VSA & E-Check Payments, 90000+ Satisfied Customent

Top Selling 100% Quality & Satisfaction guaranteed!

Classification, Outlier detection

The power of big data

- Now-casting
- Public relations >> Advertizing

outbreak of flu

Mc Luhan and Google

We shape our tools and afterwards our tools shape us Marshall McLuhan, 1964

First time ever a tool is observed to modify human cognition that fast.

Sparrow et al., Science 2011

Physical phenomenons

manufacturing, experimental sciences, numerical engineering Vision, speech, robotics..

Social phenomenons

Health, Insurance, Banks ...

Individual phenomenons

Consumer Relationship Management, User Modelling Social networks, games...

PASCAL : http://pascallin2.ecs.soton.ac.uk/

Types of application

But : Modelling

analysis & control

+ privacy

+ dynamics

Domain

Ex: KDD 2009 - Orange

- 1. Churn
- 2. Appetency
- 3. Up-selling

Objectives

- 1. Ads. efficiency
- 2. Less fraud

Banks, Telecom, CRN

Health, bio-informatics

Ex: Risk factors

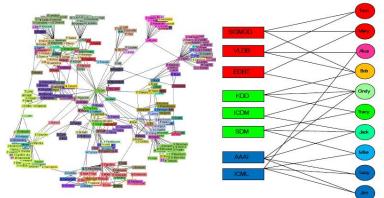
- 1. Cardio-vascular diseases
- 2. Carcinogenic Molecules
- 3. Obesity genes ...

Objectives

- 1. Diagnostic
- 2. Personalized care
- 3. Identification

Scientific Social Network

Itr Tiswe Han 2010

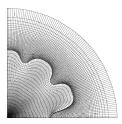


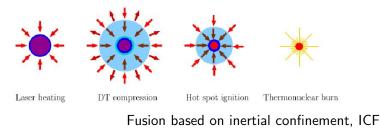
Questions

- 1. Who does what ?
- 2. Good conferences ?
- 3. Hot/emerging topics ?
- 4. Is Mr Q. Lee same as Mr Quoc N. Lee ?

Numerical Engineering

- Codes
- Computationally heavy
- Expertise demanding





e-Science, Design (2)

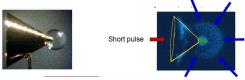
Objectives

- Approximate answer
- ... in tenth of seconds
- Speed up the design cycle
- Optimal design

More is Different

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Alternative scheme : spherical target with a gold cone*

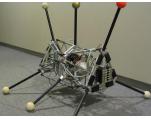


* Kodama et al. Nature 412 798 (2001); 418 933 (2002);

Autonomous robotics

Complexe, monde fermé **Design**

simple, random



د [tr. Hod Lipson, 2010] المراج

Autonomous robotics, 2

Reality Gap

- Design in silico
- Run the controller on the robot

(simulator) (in vivo)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Autonomous robotics, 2

Reality Gap

- Design in silico
- Run the controller on the robot
- Does not work !

Closing the reality Gap

- 1. Simulator-based design
- 2. On-board trials
- 3. Log the data, update the simulator
- 4. Goto 1

Active learning

(simulator) (in vivo)

safe environnement

Co-evolution [tr. Hod Lipson, 2010]

Overview

Examples

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator

Types of Machine Learning probl

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

WORLD - DATA - USER

Observations	+ Target	+ Rewards
Understand	Predict	Decide
Code	Classification/Regression	Policy
Unsupervised	Supervised	Reinforcement
LEARNING	LEARNING	LEARNING

Data

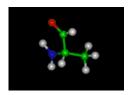
Example

- row : example/ case
- column : feature/ variable/ attribute
- attribute : class/ label

age	employme	education	edun	marital	job	relation	race	gender	hour	country	wealt
	State_gov			Never_mar		Not_in_fan		Male		United_St	
	Self_emp_			Married	Exec_mar			Male		United_St	
39	Private	HS_grad	9	Divorced	Handlers_	Not_in_fan		Male		United_St	
	Private	11th	7	Married	Handlers_	Husband	Black	Male	40	United_St	poor
28	Private	Bachelors	13	Married	Prof_spec	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married	Exec_mar	Wife	White	Female	40	United_St	poor
50	Private	9th	5	Married_sp	Other_sen	Not_in_fan	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married	Exec_mar	Husband	White	Male	45	United_St	rich
31	Private	Masters	14	Never_mar	Prof_spec	Not_in_fan	White	Female	50	United_St	rich
42	Private	Bachelors	13	Married	Exec_man	Husband	White	Male	40	United_St	rich
37	Private	Some_coll	10	Married	Exec_mar	Husband	Black	Male	80	United_St	rich
30	State_gov	Bachelors	13	Married	Prof_spec	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar	Adm_cleri	Own_child	White	Female	30	United_St	poor
33	Private	Assoc_ac	12	Never_mar	Sales	Not_in_fan	Black	Male	50	United_St	poor
41	Private	Assoc_voo	11	Married	Craft_repa	Husband	Asian	Male	40	*MissingV	rich
34	Private	7th 8th	4	Married	Transport	Husband	Amer India	Male	45	Mexico	poor
26	Self emp	HS_grad	9	Never man	Farming fi	Own child	White	Male	35	United St	poor
33	Private	HS grad	9	Never man	Machine of	Unmarried	White	Male	40	United St	poor
38	Private	11th	7	Married	Sales	Husband	White	Male	50	United St	poor
44	Self emp	Masters	14	Divorced	Exec mar	Unmarried	White	Female	45	United St	rich
41	Private	Doctorate	16	Married	Prof_spec	Husband	White	Male	60	United_St	rich

Instance space \mathcal{X}

- Propositionnal : $\mathcal{X} \equiv \mathbb{R}^d$
- Structured : sequential, spatio-temporal, relational.

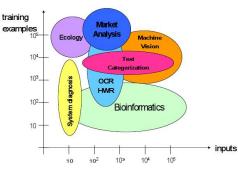


aminoacid

- Propositionnal data
- Spatio-temporal data
- Relationnal data
- Semi-structured data
- Multi-media

Data / Applications

80% des applis. alarms, mines, accidents chemistry, biology text, Web images, music, movies,...



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Difficulty factors

Quality of data / of representation

- Noise; missing data
- + Relevant attributes

Feature extraction

- Structured data: spatio-temporal, relational, text, videos,...

Data distribution

- + Independants, identically distributed examples
- Other: robotics; data streams; heterogeneous data

Prior knowledge

- + Goals, interestingness criteria
- + Constraints on target hypotheses

Difficulty factors, 2

Learning criterion

- + Convex optimization problem
- \searrow Complexity : *n*, *nlogn*, n^2
- Combinatorial optimization

H. Simon, 1958:

In complex real-world situations, optimization becomes approximate optimization since the description of the real-world is radically simplified until reduced to a degree of complication that the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction, retaining more of the detail of the real-world situation, but settling for a satisfactory, rather than approximate-best, decision.

Scalability

Learning criteria, 2

The user's criteria

- Relevance, causality,
- INTELLIGIBILITY
- Simplicity
- Stability
- Interactive processing, visualisation
- … Preference learning

Difficulty factors, 3

Crossing the chasm

- No killer algorithm
- Little expertise about algorithm selection

How to assess an algorithm

Consistency

When number n of examples goes to infinity and target concept h^* is in \mathcal{H} h^* is found:

$$lim_{n\to\infty}h_n = h^*$$

Speed of convergence

 $||h^* - h_n|| = \mathcal{O}(1/n), \mathcal{O}(1/\sqrt{n}), \mathcal{O}(1/\ln n)$

Context

Disciplines et critères

Data bases, Data Mining

Statistics, data analysis

Machine learning

Scalability

Predefined models

Prior knowledge; complex data/hypotheses

Optimisation

well / ill posed problems

- Computer Human Interaction
- High performance computing

No final solution: a process

Distributed processing; safety

Supervised Learning, notation

$$\begin{array}{c} \mathsf{Oracle} \\ \mathsf{World} \to \mathsf{Instance} \; \mathbf{x}_i \to & \downarrow \\ & y_i \end{array}$$

$$\begin{array}{l} \mathsf{INPUT} & \sim \mathcal{P}(\mathbf{x}, y) \\ \mathcal{E} = \{(\mathbf{x}_i, y_i), x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1 \dots n\} \\ \\ \mathsf{HYPOTHESIS} \text{ SPACE} \\ \\ \mathcal{H} \quad h : \mathcal{X} \mapsto \mathcal{Y} \\ \\ \mathsf{LOSS} \text{ FUNCTION} \\ \\ \ell : \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R} \end{array}$$

OUTPUT

・ ◆ 臣 ◆ ○ ▲ ● ◆ ○ ◆ ④ $h^* - \arg \max \{\operatorname{score}(h) \ h \in \mathcal{H}\}^{\circ \square}$

Classification and criteria

Supervised learning

$$\mathcal{Y} = \mathsf{True}/\mathsf{False}$$
$$\mathcal{Y} = \{1, \dots k\}$$

$$\mathcal{Y} = \{\mathbf{1}, \dots \}$$
$$\mathcal{Y} = \mathbb{R}$$

classification multi-class discrimination regression

Generalization Error

$$Err(h) = E[\ell(y, h(\mathbf{x}))] = \int \ell(y, h(\mathbf{x})) dP(x, y)$$

Empirical Error

$$Err_{e}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, h(\mathbf{x}_{i}))$$

Bound

structural risk

$$Err(h) < Err_e(h) + \mathcal{F}(n, d(\mathcal{H}))$$

 $d(\mathcal{H})=$ Vapnik Cervonenkis dimension of \mathcal{H} , see later $\mathcal{L}_{\mathcal{O} \land \mathcal{O}}$

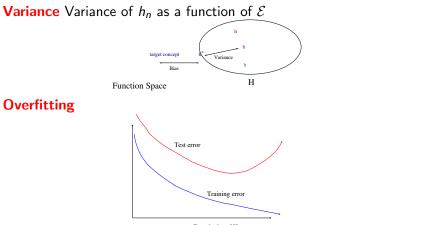
The Bias-Variance Trade-off

Biais Bias (\mathcal{H}) : error of the best hypothesis h^* de \mathcal{H}

Variance Variance of h_n as a function of \mathcal{E}

The Bias-Variance Trade-off

Biais Bias (\mathcal{H}) : error of the best hypothesis h^* de \mathcal{H}



Complexity of H

- The main issue regarding supervised learning is overfitting.
- How to tackle overfitting:
 - Before learning: use a sound criterion
 - After learning: cross-validation

regularization Case studies

Summary

- Learning is a search problem
- What is the space ? What are the navigation operators ?

Hypothesis Spaces

Logical Spaces

Concept
$$\leftarrow \bigvee \bigwedge$$
 Literal, Condition

- ▶ Conditions = [color = blue]; [age < 18]
- Condition $f : X \mapsto \{ True, False \}$
- Find: disjunction of conjunctions of conditions
- ► Ex: (unions of) rectangles of the 2D-planeX.

Hypothesis Spaces

Numerical Spaces

$$\mathsf{Concept} = (h() > 0)$$

- h(x) = polynomial, neural network, ...
- $\blacktriangleright h: X \mapsto \mathbb{R}$
- ▶ Find: (structure and) parameters of *h*

Hypothesis Space ${\mathcal H}$

Logical Space

- h covers one example x iff h(x) = True.
- \mathcal{H} is structured by a partial order relation

$$h \prec h'$$
 iff $\forall x, h(x) \rightarrow h'(x)$

Numerical Space \mathcal{H}

- h(x) is a real value (more or less far from 0)
- we can define $\ell(h(x), y)$
- \blacktriangleright ${\cal H}$ is structured by a partial order relation

 $h \prec h'$ iff $E[\ell(h(x), y)] < E[\ell(h'(x), y)]$

Hypothesis Space \mathcal{H} / Navigati

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	\mathcal{H}	navigation operators
Version Space	Logical	spec / gen
Decision Trees	Logical	specialisation
Neural Networks	Numerical	gradient
Support Vector Machines	Numerical	quadratic opt.
Ensemble Methods	_	adaptation ${\cal E}$

Overview

Examples

Introduction to Supervised Machine Learning

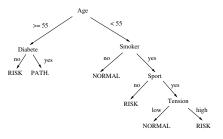
Decision trees

Empirical validation Performance indicators Estimating an indicator

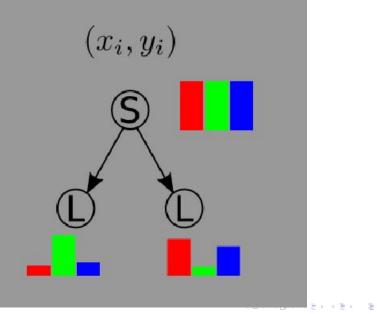
Decision Trees

C4.5 (Quinlan 86)

- Among the most widely used algorithms
- Easy
 - to understand
 - to implelement
 - to use
 - and cheap in CPU time
- ▶ J48, Weka, SciKit



Decision Trees



Decision Trees (2)

Procedure DecisionTree(\mathcal{E})

- 1. Assume $\mathcal{E} = \{(x_i, y_i)_{i=1}^n, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}\}$
 - If \mathcal{E} single-class (i.e., $\forall i, j \in [1, n]$; $y_i = y_j$), return
 - If *n* too small (i.e., < threshold), return
 - Else, find the most informative attribute att
- 2. Forall value val of att
 - Set $\mathcal{E}_{val} = \mathcal{E} \cap [att = val].$
 - Call DecisionTree(\mathcal{E}_{val})

Criterion: information gain

$$p = Pr(Class = 1|att = val)$$

$$I([att = val]) = -p \log p - (1 - p) \log (1 - p)$$

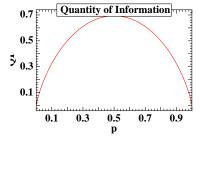
$$I(att) = \sum_{i} Pr(att = val_{i}).I([att = val_{i}])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Decision Trees (3)

Contingency Table wealth values: poor rich agegroup 10s 2507 3 20s 11262 743 30s 9468 3461 40s 6738 3986 2509 50s 4110 60s 2245 809 70s 668 147 80s 115 16 90s 42 13

Quantity of Information (QI)



Computation

value	p(value)	p(poor value)	QI (value)	p(value) * QI (value)
[0,10[0.051	0.999	0.00924	0.000474
[10,20[0.25	0.938	0.232	0.0570323
[20,30[0.26	0.732	0.581	0.153715

Decision Trees (4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limitations

- XOR-like attributes
- Attributes with many values
- Numerical attributes
- Overfitting

Limitations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Numerical Attributes

- Order the values $val_1 < \ldots < val_t$
- Compute QI([att < val_i])
- QI(att) = max_i QI([att < val_i])

The XOR case

Bias the distribution of the examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quantity of information of an attribute

n ln *n*

Adding a node

 $D \times n \ln n$

Tackling Overfitting

Penalize the selection of an already used variable

Limits the tree depth.

Do not split subsets below a given minimal size

Limits the tree depth.

Pruning

- Each leaf, one conjunction;
- Generalization by pruning litterals;
- Greedy optimization, QI criterion.

Decision Trees, Summary

Still around after all these years

- Robust against noise and irrelevant attributes
- Good results, both in quality and complexity

Random Forests

Breiman 00

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Overview

Examples

Introduction to Supervised Machine Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decision trees

Empirical validation Performance indicators Estimating an indicator

Validation issues

- 1. What is the result ?
- 2. My results look good. Are they ?
- 3. Does my system outperform yours ?
- 4. How to set up my system ?

Validation: Three questions

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Define a good indicator of quality

- Misclassification cost
- Area under the ROC curve

Computing an estimate thereof

- Validation set
- Cross-Validation
- Leave one out
- Bootstrap

Compare estimates: Tests and confidence levels

Which indicator, which estimate: de

Settings

Large/few data

Data distribution

- Dependent/independent examples
- balanced/imbalanced classes

Overview

Examples

Introduction to Supervised Machine Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decision trees

Empirical validation Performance indicators Estimating an indicator

Performance indicators

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Binary class

- h* the truth
- \hat{h} the learned hypothesis

Confusion matrix

\hat{h} / h^*	1	0	
1	а	b	a+b
0	с	d	c+d
	a+c	b+d	a + b + c + d

Performance indicators, 2

\hat{h} / h^*	1	0	
1	а	b	a+b
0	С	d	c+d
	a+c	b+d	a + b + c + d

- Misclassification rate $\frac{b+c}{a+b+c+d}$
- Sensitivity (recall), True positive rate (TP) $\frac{a}{a+c}$
- Specificity, False negative rate (FN) $\frac{b}{b+d}$
- Precision $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

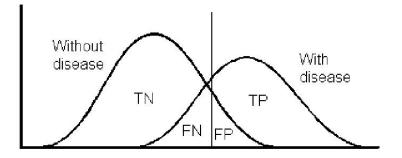
 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

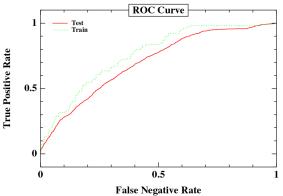
Here, TP (θ) = .8; FN (θ) = .1

ROC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



The ROC curve



Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative) \equiv nothing learned.

ROC Curve, Properties

Properties

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + $c \times \#$ false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with $\Delta(-c, -1)$

ROC Curve, Properties, foll'd

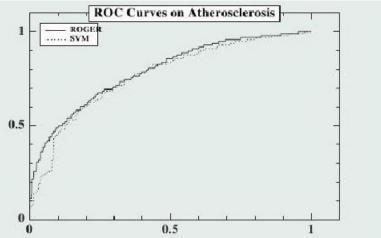
Used to compare learners

Bradley 97

multi-objective-like

insensitive to imbalanced distributions

shows sensitivity to error cost.



Area Under the ROC Curve

Often used to select a learnerDon't ever do this !Hand, 09

Sometimes used as learning criterion Mann Whitney Wilcoxon

$$AUC = Pr(h(x) > h(x')|y > y')$$

WHY

- More stable $\mathcal{O}(n^2)$ vs $\mathcal{O}(n)$
- With a probabilistic interpretation
 Clemençon et al. 08
 HOW
 - SVM-Ranking
 - Stochastic optimization

Joachims 05; Usunier et al. 08, 09

Overview

Examples

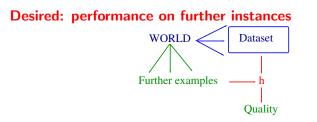
Introduction to Supervised Machine Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decision trees

Empirical validation Performance indicators Estimating an indicator

Validation, principle



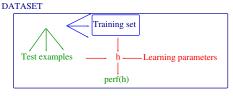
Assumption: Dataset is to World, like Training set is to Dataset.

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Validation, 2

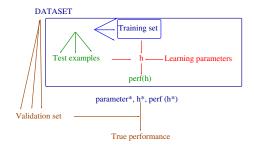


parameter*, h*, perf (h*)

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Validation, 2



Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Overview

Examples

Introduction to Supervised Machine Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decision trees

Empirical validation Performance indicators Estimating an indicator

Confidence intervals

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

Given a random variable X on ${\rm I\!R},$ a p%-confidence interval is $I \subset {\rm I\!R}$ such that

$$Pr(X \in I) > p$$

Binary variable with probability ϵ

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

► Mean: *n*€

• Variance:
$$\sigma^2 = n\epsilon(1-\epsilon)$$

Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{xp^{-\frac{1}{2}\frac{x-\mu}{\sigma}^2}}$$

Confidence intervals

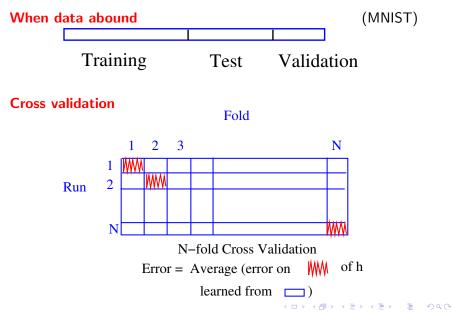
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bounds on (true value, empirical value) for *n* trials, n > 30

$$Pr(|\hat{x}_n - x^*| > 1.96 \quad \sqrt{\frac{\hat{x}_n \cdot (1 - \hat{x}_n)}{n}}) < .05$$

$$z \qquad \varepsilon$$
Table $\begin{bmatrix} z & .67 & 1. & 1.28 & 1.64 & 1.96 & 2.33 & 2.58 \\ \varepsilon & 50 & 32 & 20 & 10 & 5 & 2 & 1 \end{bmatrix}$

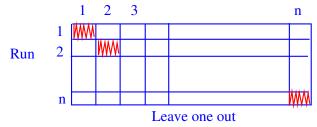
Empirical estimates



Empirical estimates, foll'd

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 $\begin{array}{l} \text{Cross validation} \rightarrow \text{Leave one out} \\ Fold \end{array}$

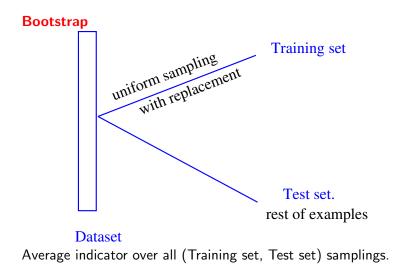


Same as N-fold CV, with N = number of examples.

Properties

Low bias; high variance; underestimate error if data not independent

Empirical estimates, foll'd



Beware

Multiple hypothesis testing

- If you test many hypotheses on the same dataset
- one of them will appear confidently true...

More

- Tutorial slides: http://www.lri.fr/ sebag/Slides/Validation_Tutorial_11.pdf
- Video and slides (soon): ICML 2012, Videolectures, Tutorial Japkowicz & Shah http://www.mohakshah.com/tutorials/icml2012/

Validation, summary

What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

Assessing a result

- Compute confidence intervals
- Consider baselines
- Use a validation set

If the result looks too good, don't believe it