M1 — Apprentissage

Michele Sebag — Benoit Barbot
LRI — LSV

24 février 2014

Overview

Introduction

Reinforcement Learning

Environment

Generalities
» An agent, spatially and temporally situated
» Stochastic and uncertain environment
» Goal: select an action in each time step,
> ... in order maximize expected cumulative reward over a time
horizon
What is learned ?
A policy = strategy = { state — action }

Reinforcement Learning

Context
An unknown world.
Some actions, in some states, bear rewards with some delay [with
some probability]

find policy (state — action)
maximizing the expected reward

Goal :

4 rooms
4 hallways

4 unreliable
primitive actions

up

Fail 339
of he ime

left right

down

B multi-step options
(io each room's 2 hall ways)

Given goal location,
quickly plan shortest route

Reinforcement Learning, example

World You are in state 34.
Your immediate reward is 3. You have 3 actions

Robot I'll take action 2

World You are in state 77
Your immediate reward is -7. You have 2 actions

Robot I'll take action 1
World You are in state 34 (again)

Markov Decision Property: actions/rewards only depend on the
current state.

Reinforcement Learning

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will
— others things being equal — be more firmly connected with the
situation, so that when it recurs, they will more likely to recur;

those which are accompanied or closely followed by discomfort to
the animal will — others things being equal — have their
connection with the situation weakened, so that when it recurs,
they will less likely to recur;

the greater the satisfaction or discomfort, the greater the

strengthening or weakening of the link.
Thorndike, 1911.

Formal background

Notations
» State space S
» Action space A
» Transition model p(s,a,s’) — [0, 1]

» Reward r(s)

Goal
» Find policy 7: S — A

Maximize E[n] = Expected cumulative reward

(detail later)

Applications

» Robotics
Navigation, football, walk,

» Control
Helicopter, elevators, telecom, smart grids, manufacturing, ...

» Operation research
Transport, scheduling, ...

» Games
Backgammon, Othello, Tetris, Go, ...

» Other
Computer Human Interfaces, ML (Feature Selection, Active
learning, Natural Language Processing,...)

Position of the problem

3 interleaved tasks

EXPERIMENT
» Learn a world model (p, r)

» Decide/select (the best) / \
action

» Explore the world OPTIMIZE ~——— LEARN

Sources
» Sutton & Barto, Reinforcement Learning, MIT Press, 1998
>

http://www.eecs.umich.edu/~baveja/NIPSO5RLTutorial/

Particular case

If the transition model is known
Reinforcement learning — Optimal control

What's hard

Curse of dimensionality

» State: features size, texture, color,
|S| exponential wrt number of features

> Not all features are always relevant

Example:

see

swann
swann
bear

white
black

take a video
flee

What's hard

Curse of dimensionality

> State: features size, texture, color,
|S| exponential wrt number of features

> Not all features are always relevant

see swann

Example: swann

bear

white
black

take a video
flee

Time horizon — Bounded rationality

>

v

v

T.h. is infinite: eternity.

Finite, unknown: reach the goal asap

Finite: reach the goal in T time steps

NEVER

Bounded rationality: find as fast as possible a decent policy
(finding an approximation of the goal).

Overview

RL Algorithms
Values
Value functions
Optimal policy
Temporal differences and eligibility traces
Q-learning
Partial summary

Formalisation

Notations
» State space §

» Action space A
» Transition model
» deterministic: s’ = t(s, a)
» probabilistic: p(s, a,s’)e [0, 1].

» Reward r(s) bounded

» Time horizon H (finite or infinite)

Goal
» Find policy (strategy) 7:S — A

» which maximizes (discounted) cumulative reward from now to

timestep H
2> r(s)

t

Formalisation
Notations
» State space S

» Action space A
Transition model
» deterministic: s’ = t(s, a)
» probabilistic: p(s, a,s’)e [0, 1].
Reward r(s) bounded
Time horizon H (finite or infinite)

v

v

v

Goal
» Find policy (strategy) 7 : S +— A

» which maximizes (discounted) cumulative reward from now to

timestep H
H

D qtr(s) <1

t=1

Formalisation
Notations

» State space §

v

Action space A
Transition model

v

» deterministic: s’ = (s, a)
» probabilistic: p(s, a,s’)e [0, 1].

Reward r(s) bounded

Time horizon H (finite or infinite)

v

v

Goal
» Find policy (strategy) 7:S — A

» which maximizes (discounted) cumulative reward from now to
timestep H

Exr[3 7 r(se)]
t=1

Markov Decision Process

But can we define P2, and r(s) ?

» YES, if all necessary information is in s

» NO, otherwise

> If state is partially observable
Goal: arrive in the third branch

» If environment (reward and transition distribution) is changing
Reward for *first* photo of an object by the satellite

The Markov assumption

P(Sh+1|50 dap S1 d1...5h ah) = P(5h+1|5h ah)

Everything you need to know is the current (state, action).

Find the treasure

Single reward: on the treasure.

Wandering robot

Nothing happens...

The robot finds it

Robot updates its value function

V(s,a) == "distance" to the treasure on the trajectory.

Reinforcement learning

* Robot most often selects a = arg max V/(s, a)
* and sometimes explores (selects another action).

Reinforcement learning

* Robot most often selects a = arg max V(s, a)
* and sometimes explores (selects another action).
* Lucky exploration: finds the treasure again

Updates the value function

* Value function tells how far you are from the treasure given the
known trajectories.

&

Finally

* Value function tells how far you are from the treasure

Finally

Let's be greedy: selects the action maximizing the value function

Exercize

Uniform policy
» States: squares
» Actions: north, south, east,
west.
» Rewards: -1 if you would get
outside; 10 in A; 5in B

» Transition model: as
expected (South, North etc,
except: in A, any action
sends you in A’; in B any
action sends you in B'.

Compute the value function

A —> A’, reward 10

B —> B’, reward 5

Underlying: Dynamic programming

Principle
> Recursively decompose the problem in subproblems

» Solve and propagate

An example
{(shortest path (A, B)) < {(sp(A, C)) + (sp(C, B))

Finding the shortest
path in a graph

Approaches

v

Value function

» Value iteration
» Policy iteration

v

Temporal differences

v

Q-learning

v

Direct policy search
optimization in the m space Stochastic optimization

Policy and value function 1/3

Finite horizon, deterministic transition

H
Vz(s0) = r(so) -I-Zr
h=1

where Shy1 = t(sh, ap = 77(5h))

Policy and value function 1/3

Finite horizon, deterministic transition

H
Vr(so) = r(so) -I-Zr
h=1

where Shy1 = t(sh, ap = 77(5h))

Finite horizon, stochastic transition

H

Ve(s0) = r(s0) + > p(sh-1,an-1 = 7(sh—1), 5n)r(sn)
h=1

where sp11 = s with proba p(sp, an = 7(sp), s)

Policy and value function, 2/3

Finite horizon, stochastic transition

H

Ve(s0) = r(s0) + > _ p(Sh—1.an—1 = 7(sh—1). 5n)r(sn)
h=1

where sp1 = s with proba p(sp, ap = 7(sp), s)

Infinite horizon, stochastic transition

H

Vi(s0) = r(so) + Zﬁ/hp(sh—la ap—1 = 7(Sh—1).5n)r(sh)
h—1

with discount factor v, 0 < v < 1
Remark

y<1l—= V<

~ small — myopic agent.

Value function and Q-value function

Value function
V:S—= 1R

Vi:(s): utility of state s when following policy 7
Improving 7w by using V. requires to know the transition model:

m(s) — arg max ,p(s,a,s’) V(s

Q function
R:(SxA)~R

Qx (s, a): utility of selecting action a in state s when following
policy

Improving 7 by using @ is straightforward:

7(s) — arg max ,Qx(s, a)

Optimal policies

From value function to a better policy

7(s) = argmaxa{p(s, a,s’) Vr(s')}

From policies to optimal value function

V*(s) = max; V(s)

From value function to optimal policy

7*(s) = argmax,{p(s, a, s’)V*(s')}

Linear and dynamic programming

If transition model and reward function are known

Step 1
m(s) 1= arg max {Z p(s,a,s’) (r(s") + ny(s'))}

Step 2

V(s):=> p(s,a=m(s),s) (r(s") + V("))

Properties
Converges eventually toward the optimum if all states, actions are
considered.

Value iteration

Bellman equation
Iterate

Vigi(s —max{Zpsas (s") + v Vi(s))}

Stop when
maxs|Vii1(s) — Vi(s)| < e
Initialisation
> arbitrary
> educated is better see Inverse Reinforcement Learning

Policy iteration

Principle
> Modify 7 step 1
» Update V until convergence step 2

Getting faster

» Don't wait until V' has converged before modifying 7.

Discussion

Policy and value iteration
» Must wait until the end of the episode
» Episodes might be long

Can we update V on the fly ?
> | have estimates of how long it takes to go to RER, to catch
the train, to arrive at Cité-U
» Something happens on the way (bump into a friend, chat,
delay, miss the train,...)

» | can update my estimates of when I'll be home...

TD(0)

1. Initialize V and 7
2. Loop on episode

2.1 Initialize s
2.2 Repeat

Select action a = 7(s)

Observe s’ and reward r

V(s) « V(s)+ a(r+vV(s')=V(s))
—_———

R
s ¢

2.3 Until s’ terminal state

Discussion

Update on the spot ?
» Might be brittle

» Instead one can consider several steps
R = 2y
= re +yrev1 +7°V(st12)

Find an intermediate between

» Policy iteration
R. — 2
t =41+ Y2 Y 3+

» TD(0)
Re = rev1 + v Vi(se+1)

TD()\), intuition

weight given to
S the 3-step retum total area =1

weight given to
actual, final return

T—i1-1

R‘,’l:(l—/l) Z/IHHIRYH-FAT i er
—

TD()\), intuition, followed

§.' =hat sz(SHl)_Vr(S!)

TD())

1. Initialize V and 7
2. Loop on episode

2.1 Initialize s
2.2 Repeat

a=m(s)

Observe s’ and reward r

d«—r+ V()= V(s)

e(s) +e(s)+1
For all s*
V(s") «+ V(s") + ade(s”)
e(s”) + yhe(s”)

s+ s

2.3 Until s’ terminal state

Q-learning
Principle: lterate

» During an episode (from initial state until reaching a final
state)

» At some point explore and choose another action;
» If it improves, update Q(s, a):

Q(st, ar) < Q(st,a) +
N——

old value
learned value
o X f(5t+1) + Y max Q(5t+17 3t+1) - Q(St, at)
~ —— ~—~ art1 ———
learning rate reward discount factor old value

max future value

Equivalent to

Q(st, ar) « Q(st,ar)(1 — o) + afr(se+1) + T:f Q(St+1, ar+1)]

Partial summary

Notations
» State space S

» Action space A
» Transition model
» deterministic: s’ = (s, a)
» probabilistic: p(s,a,s’) € [0,1].

» Reward r(s) bounded

» Time horizon H (finite or infinite)

Policy 7 <+ Value function V(s) (or Q(s, a))
1 Update V Iterate [until convergence]
2 Modify w

Reinforcement Learning, 2

Strengths

» Optimality guarantees (converge to global optimum)...

Weaknesses

» ...if each state is visited often, and each action is tried in each
state

» Number of states: exponential wrt number of features

Behavioral cloning

Input

» Traces (s¢, a;) of expert

Supervised learning

> Learn h(s¢) = a;

Limitations
> Expert's mistakes

» Mistakes of h: unbounded consequences

Sammut, Bain 95

Inverse Reinforcement Learning

Input

» Traces (s¢, a;) of expert

Supervised learning
» Learn V t.q. V(st,ar) > V(st, @)

Limitations
» Expert’s mistakes
» Requires appropriate representation

more ?

http://videolectures.net/ecmlpkdd2012_abbeel_learning_robotics/

Abbeel, Ng, 2004

Overview

Game of Go

Go as Al Challenge

Go as Al Challenge, foll'd

Rules
» Each player puts a stone on the goban, black first

» Each stone remains on the goban, except:

group w/o degree freedom is killed a group with two eyes can't be kille
> The goal is to control the max. territory

Go as Al Challenge, foll'd

Features

0170

» Number of games 2.1 ~ number of

atoms in universe.
» Branching factor: 200 (~ 30 for chess)

» No good heuristic function to assess a
position

» Local and global features (symmetries,
freedom, ...)

> A move might make a difference some
dozen plies later

Where is the difficulty ?
» You can't grow the full tree
» You can't safely cut branches

> You can't be greedy

Principles of MoGo

Gelly Wang 07, Gelly Silver 07

» A weak but unbiased assessment function: Monte Carlo-based

> Allowing the machine to play against itself and build its own
strategy

Exploration vs Exploitation dilemma

Assessing a position Fast and frugal...

Monte-Carlo-based Briigman (1993) b00 |
1. While possible, add a stone (white, black) pas evldn
2. Compute Win(black) F4
3. Repeat and average

<

ash ‘7J
Remark: The point is to be unbiased

if there exist situations where you (wrongly) think you are in good shape
then you go there

and you are in bad shape...

Build a strategy: Monte-Carlo Tree Search

L |
I l l l
l |
I
In a given situation:
Select a move Multi-Armed Bandit
In the end:
1. Assess the final move Monte-Carlo

2. Update reward for all moves

Select a move

Exploration vs Exploitation
Dilemma

Multi-Armed Bandits Lai, Robbins 85
> In a casino, one wants to maximize one's gains while playing
> Play the best arms so far ? Exploitation

> But there might exist better arms... Exploration

Multi-Armed Bandits, foll’d

Auer et al. 01, 02; Kocsis Szepesvdri 06 For each arm (move)
» Reward: Bernoulli variable ~ p;,0 < p; <1

» Empirical estimate: [i; + Confidence (n;) nb trials

Decision: Optimism in front of unknown!

log(3_ nj)

Select i* = argmax fi; + C
nj

Multi-Armed Bandits, foll’d

Auer et al. 01, 02; Kocsis Szepesvdri 06 For each arm (move)
» Reward: Bernoulli variable ~ p;,0 < p; <1

» Empirical estimate: [i; + Confidence (n;) nb trials

Decision: Optimism in front of unknown!

log(3_ nj)

Select i* = argmax fi; + C
nj

Arm A

[Ly .
|] =

Arm B Arm B

Multi-Armed Bandits, foll’d

Auer et al. 01, 02; Kocsis Szepesvari 06 Criterion: the regret of
your strategy 7

» Not what you gain,

» But what you loose compared to the oracle

T
Regret(m) = (1" — u(n(t))
t=1
Note
» Optimal regret in log(T) Lai Robbins 85
> UCB achieves the optimal regret Auer et al. 02

» Compare to e-greedy...

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
> Building Blocks

> Select next action (bandit-based
phase)
Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward
Update information in visited nodes
> Returned solution:

> Path visited most often

vYyy

v

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
» Building Blocks

>

vYyy

>

» Returned solution:

>

Select next action (bandit-based
phase)

Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward

. \.
Update information in visited nodes Random
Phase

Path visited most often

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
» Building Blocks

>

vYyy

>

» Returned solution:

>

Select next action (bandit-based
phase)

Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward

. \.
Update information in visited nodes Randomy
Phase

Path visited most often

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
» Building Blocks

>

vYyy

>

» Returned solution:

>

Select next action (bandit-based
phase)

Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward

. \.
Update information in visited nodes Randomy
Phase™,

Path visited most often

L. Kocsis, and C. Szepesvari, 06

The UCT scheme

» Upper Confidence Tree (UCT) [1]

» Gradually grow the search tree
» Building Blocks

> Select next action (bandit-based
phase)

Add a node (leaf of the search tree)
Select next action bis (random phase)
Compute instant reward

> Update information in visited nodes

» Returned solution:
> Path visited most often

vYyy

|{] New Node

\

o
Random:
Phase™,

.
Explored Tree &

L. Kocsis, and C. Szepesvari, 06

Monte-Carlo Tree Search

Comments: MCTS grows an asymmetrical tree
» Most promising branches are more explored

. > thus their assessment becomes more precise
. . - - » Guarantees of optimality

_ - : Going Beyond

- » Take into account standard deviation of
E;i % » Adjust constant C

» Needs heuristics to deal with many arms

» Share information among branches

BB1: Select Next Action

Rules for the Multi-Armed Bandit phase Auer et al. 02

» Upper Confidence Bound

N log(T
» Select argmax fi, + %g()
acA ?

» Upper Confidence Bound (UCB1-tuned)

» Select argmax fi, + \/C“"";ga(T)min <}1,5§ + W)

acA

T Total number of trials in current node

n, Number of trials for action a

[1a Empirical average reward for action a

&2 Empirical variance of reward for action a

BB1: Select Next Action, foll'd

ce log(T)

Select argmax i, + na

acA
» Asymptotically optimal

» But visits the tree infinitely often !

Why not selecting always the best ?

» Not consistent:

if unlucky, good arm gets 0 first time it's played, bad arm gets 1

first time it's played, always play bad arm...

Frugal and consistent

Select argmax Nb win + 1

acA

Nb loss + 2

Berthier et al. 2010

BB2: Control the branching factor

What if many arms ? degenerate into exploration
» Continuous heuristics
Use a small exploration constant c,

» Discrete heuristics Progressive Widening

Coulom 06; Rolet et al. 09
Consider only | T?| actions (b < 1, usually b =1/2)

Number of
considered actions

Number of iterations

When n, = 4,9,16,25,..., you are allowed to consider a new arm.

BB3: Consider a new arm, which one ?

Prefer good initialization: it takes time to
recover from a bad one

Which good moves ? Sharing information
among nodes

Rapid Action Value Estimation (RAVE)
Gelly Silver 07
RAVE(n,m) = average ,u (n)

m ancestor of n

[1, has a high variance — rather use

afia+ (1 — @) (BRAVE(a) + (1 — B)RAVE,(a))

— na — Nae
o = =
na+c1 /B N, e+c2

BB4: The random phase

Note
» MoGo worked because of the smart random phase,
» not because of UCT.

Random phase, 3 variants
1. Put stones randomly
2. Put stones randomly in the neighborhoof of a previous stone

3. Put stones matching patterns expertise

Many trials !

Failures
» Grafting expert knowledge
» Replacing the random phase by a smarter one
» Using value of the game instead of 0/1
» Compiling RAVE with a neural net

Successes
» Parallelizing

» Learning an opening book

Comparative results

2011
2011
2011
2010

2007
2008
2009
2009

200
2008
2009

First win against a pro (6D), H2, 13x13
First win against a pro (9P), H2.5, 13x13
First win against a pro in Blind Go, 9x9
Gold medal in TAAI, all categories
19x19, 13x13, 9x9

Win against a pro (5P), 9x 9 (blitz)

in against a pro (5P), 9x 9 (white)

Win against a pro (5P), 9x 9 (black)

, 9% 9 (black)

, 19x 19 H9

, 19x 19 H7
, 19x 19 H6

Win against a pro (5P
Win against a pro (8P
Win against a pro (9P

~— ~— — —

Win against a pro (1P

MoGoTW
MoGoTW
MoGoTW
MoGoTW

MoGo
MoGo
MoGo
MoGoTW

MoGo
MoGo
MoGo

Comparative results

Failure: Semeai

=] 5 = = £ DA

Failure: Semeai

=] 5 = = £ DA

Semeai

Failure:

DA

Semeai

Failure:

DA

Semeai

Failure:

DA

Failure: Semeai

Semeai

Failure:

)0000000
)O0N0000

Semeai

Failure:

Failure: Semeai

Why does it fail
» First simulation gives 50%
» Following simulations give 100% or 0%

» But MCTS tries other moves: doesn't see all moves on the
black side are equivalent.

%

Implications

Energy policy

Claim
Many problems can be phrased as optimization in front of the
uncertainty.

Adversarial setting 2 two-player game

uniform setting a single player game

Management of energy stocks under uncertainty

States and Decisions

States
» Amount of stock (60 nuclear, 20 hydro.)
» Varying: price, weather alea or archive
» Decision: release water from one reservoir to another

» Assessment: meet the demand, otherwise buy energy

Reservoir | (P PLANT

Reservoir 3 ‘

vkeservoir 4

Lost water

O NUCLEAR PLANT

When Machine Learning is Feature Selection

Bio-informatics
» 30 000 genes
» few examples (expensive)

» Goal: find the genes related to (disease, exposure to
radiations, etc).

Feature Selection

Gaudel Sebag, 10

Combinatorial optimization:

Set of features F

Set of states S =27

Initial state ()

Set of actions A={add f, f € F}
Final state any state

Reward function r: S — [0, 1]

Goal: minimize generalization error

Find argmin Err (A(F, D))
FCF

Feature Selection with MCTS: Fuse

Select next move: UCB + Progressive widening
Select new arm/feature: use RAVE

Random phase
> No fixed time horizon
» Introduce specific stopping actions

» In random phase, stop with probability 1 — g¢ (g <1, user
specified)

FUSE: reward(F)
Generalization error estimate

> Requisite
» fast (to be computed 10* times)

» unbiased

» Proposed reward
> k-NN like
» + AUC criterion *

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

(*) Mann Whitney Wilcoxon test:

())EVE, N () <N (XY, y<y'}
V(F) = G Ty NV, yy]]

FUSE: reward(F)
Generalization error estimate

> Requisite
» fast (to be computed 10* times)

» unbiased

» Proposed reward PR
> k-NN like
» + AUC criterion *

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

(*) Mann Whitney Wilcoxon test:
V(F) = HO y DV, Nes) <N, y<y')
o {(Goy) (< y))EVE, y<y'}

FUSE: reward(F)
Generalization error estimate

> Requisite
» fast (to be computed 10* times)

» unbiased

» Proposed reward ©.
> k-NN like :
» + AUC criterion *

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

(*) Mann Whitney Wilcoxon test:

())EVE, N () <N (XY, y<y'}
V(F) = G Ty NV, yy]]

FUSE: reward(F)
Generalization error estimate

> Requisite
» fast (to be computed 10* times)

» unbiased

» Proposed reward @.
> k-NN like :
» + AUC criterion *

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

(*) Mann Whitney Wilcoxon test:

())EVE, N () <N (XY, y<y'}
V(F) = G Ty NV, yy]]

FUSE: reward(F)
Generalization error estimate

> Requisite
» fast (to be computed 10* times)
> unbiased

» Proposed reward O} ’
> k-NN like . @
» + AUC criterion * ' -

» Complexity: O(mnd) QO @ ¢
d Number of selected features ' : i %

n Size of the training set
m Size of sub-sample (m < n)

(*) Mann Whitney Wilcoxon test:
V(F) = HO y DV, Nes) <N, y<y')
o {(Goy) (< y))EVE, y<y'}

Experimental setting

» Questions

FUSE vs FUSER

Continuous vs discrete exploration heuristics

FS performance w.r.t. complexity of the target concept
Convergence speed

vV vy VvVYyy

» Experiments on

DATA SET SAMPLES FEATURES PROPERTIES
MADELON [1] 2,600 500 XOR-LIKE
ARCENE [1] 200 10,000 REDUNDANT FEATURES
COLON 62 2,000 “EASY”

1] NIPS'03

Experimental setting

> Baselines

CFS (Constraint-based Feature Selection) [1]

Random Forest [2]

Lasso [3]

RANDR: RAVE obtained by selecting 20 random features at
each iteration

v

v vy

> Results averaged on 50 splits (10 x 5 fold cross-validation)

» End learner
» Hyper-parameters optimized by 5 fold cross-validation

(1] M. A. Hall ICML'00
[2] J. Rogers, and S. R. Gunn SLSFS'05
[3] R. Tibshirani Journal of the Royal Statistical Society 94

Results on Madelon after 200,000 iterations

04 ‘ ‘
i\f\.\ D-FUSER
035 |y C-FUSE
i\&y CFS -
0.3 \ . Random Forest
. \ Lasso
S 0.25 + \: ! RANDR 7777777 |
) I hes
%”: 0.2 1\
[0.15 g
0.1 LILLI ;M
: 1T T
0.05
0

0 5 10 15 20 25 30
Number of used top-ranked features

» Remark: FUSER = best of both worlds
» Removes redundancy (like CFS)
» Keeps conditionally relevant features (like Random Forest)

Results on Arcene after 200,000 iterations

0.4

D-FUSER ——
0.35 C-FUSE™ —
CFS e
Random Forest 1
Lasso
§ 025 RANDR ------ 1
e 0.2
3
+ 0.15
0.1
0.05
0
0 50 100 150 200

Number of used top-ranked features

» Remark: FUSER = best of both worlds

» Removes redundancy (like CFS)
» Keeps conditionally relevant features (like Random Forest)

0T-test “CFS vs. FUSER” with 100 features: p-value=0.036

Results on Colon after 200,000 iterations

0.4 R
D-FUSER —
0.35 C-FUSE™ —
CFS -
0.3 \A Random Forest -~
i Lassao
S 025 ol RAND® ------]
5] s Sl ,
Z
[0.15
0.1
0.05
0
0 50 100 150 200
Number of used top-ranked features
» Remark

> All equivalent

NIPS 2003 Feature Selection challenge

» Test error on a disjoint test set

DATABASE ALCORITHM CHALLENGE SUBMITTED | IRRELEVANT
ERROR FEATURES FEATURES
MADELON FSPP2 [1] 6.22% (1°) 12 0
D-FUSER 6.50% (24) 18 0
BAYES-NN-RED [2] 7.20% (1) 100 0
ARCENE | D-FUSER(oN ALL) 8.42% (3) 500 34
D-FUSER 9.42% 500 (8™) 500 0

[1] K. Q. Shen, C. J. Ong, X. P. Li, E. P. V. Wilder-Smith Mach. Learn. 2008
[2] R. M. Neal, and J. Zhang Feature extraction, foundations and applications, Springer 2006

Conclusion

Contributions
» Formalization of Feature Selection as a Markov Decision
Process
» Efficient approximation of the optimal policy (based on UCT)
= Any-time algorithm
» Experimental results

» State of the art
» High computational cost (45 minutes on Madelon)

Perspectives

» Use other end learners
» Reuvisit the reward see (Hand 2010) about AUC
» Extend to Feature construction

Extension to Feature Construction

Context: Data Mining from Relational Databases

» A star schema (customer, invoices,
services...)

» Usually: propositionalize the
database

» Alternative: Feature Construction
Explore the language of queries

ax | somme][]

Lessonl: When is MCTS relevant

Applicable when
» High dimension
» Complex model

» Delayed reward

Challenges
> When the game is highly non-observable

» When no baseline for the random phase

Lesson 2: Using by-products of MCTS

» FUSE with N iterations:
each iteration i) follows a path; ii) evaluates a final node

> Result:
Search tree (most visited path) +— RAVE score
\ 4
Wrapper approach Filter approach
FUSE FUSER

» On the feature subset, use end learner A

» Any Machine Learning algorithm
» Support Vector Machine with Gaussian kernel in experiments

Perspectives

Extensions
» Continuous RAVE (continuous action / state spaces)

» Partially observable settings (poker)

Applications
» Feature construction

» Robotics (action selection)

	Introduction
	RL Algorithms
	Values
	Value functions
	Optimal policy
	Temporal differences and eligibility traces
	Q-learning
	Partial summary

	Game of Go
	Monte-Carlo Tree Search
	Next
	Experimental validation
	Conclusion

