M1 – Apprentissage

Michèle Sebag – Benoit Barbot LRI – LSV

30 septembre 2013

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator

2

Types of Machine Learning problems

$\mathsf{WORLD} - \mathsf{DATA} - \mathsf{USER}$

Observations	+ Target	+ Rewards
Understand Code	Predict Classification/Regression	Decide Policy
Unsupervised	Supervised	Reinforcement

LEARNING

Supervised LEARNING Reinforcement LEARNING

Data

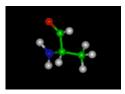
Example

- row : example/ case
- column : feature/ variable/ attribute
- attribute : class/ label

age	employme	education	edun	marital	job	relation	race	gender	hour	country	weal
	State_gov			Never_mar		Not_in_fan		Male		United_3	
51	Self_emp_	Bachelors	13	Married	Exec_man	Husband	White	Male	13	United_3	sta poor
	Private	HS_grad				Not_in_fan		Male		United_3	
54	Private	11th	7	Married	Handlers_	Husband	Black	Male	40	United_3	Sta poor
28	Private	Bachelors	13	Married	Prof_speci	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married	Exec_man	Wife	White	Female	40	United_	sta poor
50	Private	9th	5	Married_sp	Other_serv	Not_in_fan	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married	Exec_man	Husband	White	Male	45	United_S	starich
31	Private	Masters	14	Never_mar	Prof_speci	Not_in_fan	White	Female	50	United_	starich
42	Private	Bachelors	13	Married	Exec_man	Husband	White	Male	40	United_	starich
37	Private	Some_coll	10	Married	Exec_man	Husband	Black	Male	80	United \$	starich
30	State gov	Bachelors	13	Married	Prof speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar	Adm_clerit	Own_child	White	Female	30	United_	sta poor
33	Private	Assoc ac	12	Never mar	Sales	Not in fan	Black	Male	50	United 3	sta poor
41	Private	Assoc_voo	11	Married	Craft_repai	Husband	Asian	Male	40	*Missing	Virich
34	Private	7th 8th	4	Married	Transport	Husband	Amer India	Male	45	Mexico	poor
26	Self_emp_	HS_grad	9	Never_mar	Farming_fi	Own_child	White	Male	35	United_3	sta poor
33	Private	HS grad	9	Never mar	 Machine of	Unmarried	White	Male	40	United 3	sta poor
38	Private	11th	7	Married	Sales	Husband	White	Male	50	United 3	sta poor
44	Self_emp_	Masters	14	Divorced	Exec_man	Unmarried	White	Female	45	United_	starich
41	Private	Doctorate	16	Married	Prof speci	Husband	White	Male	60	United \$	starich
					:					:	:

Instance space ${\mathcal X}$

- Propositionnal : $\mathcal{X} \equiv \mathbb{R}^d$
- Structured : sequential, spatio-temporal, relational.



aminoacid

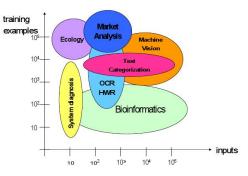
イロン イヨン イヨン イヨン

Э

Data / Applications

- Propositionnal data
- Spatio-temporal data
- Relationnal data
- Semi-structured data
- Multi-media

80% des applis. alarms, mines, accidents chemistry, biology text, Web images, music, movies,...



Difficulty factors

Quality of data / of representation

- Noise; missing data
- + Relevant attributes

Feature extraction

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- Structured data: spatio-temporal, relational, text, videos,...

Data distribution

- + Independants, identically distributed examples
- Other: robotics; data streams; heterogeneous data

Prior knowledge

- + Goals, interestingness criteria
- + Constraints on target hypotheses

Difficulty factors, 2

Learning criterion

- + Convex optimization problem
- \searrow Complexity : *n*, *nlogn*, n^2
- Combinatorial optimization

H. Simon, 1958:

In complex real-world situations, optimization becomes approximate optimization since the description of the real-world is radically simplified until reduced to a degree of complication that the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction, retaining more of the detail of the real-world situation, but settling for a satisfactory, rather than approximate-best, decision.

Scalability

Learning criteria, 2

The user's criteria

- Relevance, causality,
- INTELLIGIBILITY
- Simplicity
- Stability
- Interactive processing, visualisation
- … Preference learning

Difficulty factors, 3

Crossing the chasm

- No killer algorithm
- Little expertise about algorithm selection

How to assess an algorithm

Consistency

When number *n* of examples goes to infinity and target concept h^* is in \mathcal{H} h^* is found:

$$lim_{n\to\infty}h_n = h^*$$

Speed of convergence

$$||h^* - h_n|| = \mathcal{O}(1/n), \mathcal{O}(1/\sqrt{n}), \mathcal{O}(1/\ln n)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Context

Disciplines et critères

- Data bases, Data Mining
- Statistics, data analysis

Scalability

Predefined models

Machine learning

Prior knowledge; complex data/hypotheses

Optimisation

well / ill posed problems

Computer Human Interaction

No final solution: a process

High performance computing

Distributed processing; safety

Supervised Learning, notations Context

$$\begin{array}{c} \text{Oracle} \\ \text{World} \rightarrow \text{Instance } \mathbf{x}_i \rightarrow \qquad \downarrow \\ y_i \end{array}$$

 $\sim P(\mathbf{x}, y)$

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1 \dots n\}$$

HYPOTHESIS SPACE

$$\mathcal{H} \quad h: \mathcal{X} \mapsto \mathcal{Y}$$

LOSS FUNCTION

$$\ell:\mathcal{Y} imes\mathcal{Y}\mapsto {\rm I\!R}$$

OUTPUT

 $h^* = \arg \max \{ \operatorname{score}(h), h \in \mathcal{H} \}_{\text{constant}} \in \mathbb{R}$

11

Classification and criteria

Supervised learning

 $\mathcal{Y} = \text{True/False}$ classification
 $\mathcal{Y} = \{1, \dots, k\}$ multi-class discrimination
 $\mathcal{Y} = \mathbb{R}$ regression

Generalization Error

$$Err(h) = E[\ell(y, h(\mathbf{x}))] = \int \ell(y, h(\mathbf{x})) dP(x, y)$$

Empirical Error

$$Err_{e}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, h(\mathbf{x}_{i}))$$

Bound

structural risk

$$Err(h) < Err_e(h) + \mathcal{F}(n, d(\mathcal{H}))$$

 $d(\mathcal{H}) = Vapnik Cervonenkis dimension of \mathcal{H} , see later$

The Bias-Variance Trade-off

Biais Bias (\mathcal{H}) : error of the best hypothesis h^* de \mathcal{H}

Variance Variance of h_n as a function of \mathcal{E}

The Bias-Variance Trade-off

Biais Bias (\mathcal{H}) : error of the best hypothesis h^* de \mathcal{H}

Variance Variance of h_n as a function of \mathcal{E} target concept Variance Bias Η Function Space **Overfitting** Test error Training error

Complexity of H

Key notions

The main issue regarding supervised learning is overfitting.

- How to tackle overfitting:
 - Before learning: use a sound criterion
 - After learning: cross-validation

regularization Case studies

(ロ) (四) (三) (三) (三) (○) (○)

Summary

- Learning is a search problem
- What is the space ? What are the navigation operators ?

Hypothesis Spaces

Logical Spaces

Concept
$$\leftarrow \bigvee \bigwedge$$
 Literal,Condition

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- Conditions = [color = blue]; [age < 18]</p>
- Condition $f : X \mapsto \{ True, False \}$
- Find: disjunction of conjunctions of conditions
- Ex: (unions of) rectangles of the 2D-planeX.

Hypothesis Spaces

Numerical Spaces

Concept
$$= (h() > 0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- h(x) = polynomial, neural network, ...
- $h: X \mapsto \mathbb{R}$
- ▶ Find: (structure and) parameters of *h*

Hypothesis Space ${\mathcal H}$

Logical Space

- h covers one example x iff h(x) = True.
- \mathcal{H} is structured by a partial order relation

$$h \prec h'$$
 iff $\forall x, h(x) \rightarrow h'(x)$

Numerical Space ${\cal H}$

- h(x) is a real value (more or less far from 0)
- we can define $\ell(h(x), y)$
- \mathcal{H} is structured by a partial order relation

 $h \prec h'$ iff $E[\ell(h(x), y)] < E[\ell(h'(x), y)]$

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Hypothesis Space ${\mathcal H}$ / Navigation

	\mathcal{H}	navigation operators
Version Space	Logical	spec / gen
Decision Trees	Logical	specialisation
Neural Networks	Numerical	gradient
Support Vector Machines	Numerical	quadratic opt.
Ensemble Methods	_	adaptation ${\cal E}$

Introduction to Supervised Machine Learning

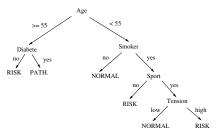
Decision trees

Empirical validation Performance indicators Estimating an indicator

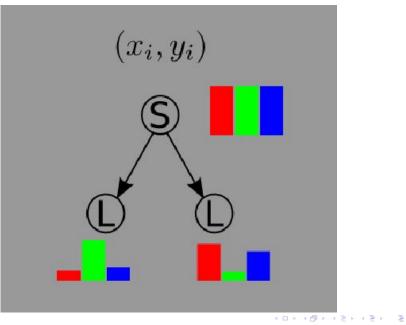
Decision Trees

C4.5 (Quinlan 86)

- Among the most widely used algorithms
- Easy
 - to understand
 - to implelement
 - to use
 - and cheap in CPU time
- ► J48, Weka, SciKit



Decision Trees



Decision Trees (2)

Procedure DecisionTree(\mathcal{E})

- 1. Assume $\mathcal{E} = \{(x_i, y_i)_{i=1}^n, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}\}$
 - If \mathcal{E} single-class (i.e., $\forall i, j \in [1, n]; y_i = y_j$), return
 - If *n* too small (i.e., < threshold), return
 - Else, find the most informative attribute att
- 2. Forall value val of att
 - Set $\mathcal{E}_{val} = \mathcal{E} \cap [att = val].$
 - Call DecisionTree(\mathcal{E}_{val})

Criterion: information gain

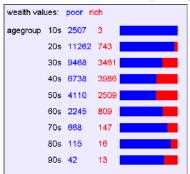
$$p = Pr(Class = 1|att = val)$$

$$I([att = val]) = -p \log p - (1 - p) \log (1 - p)$$

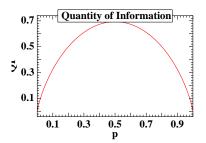
$$I(att) = \sum_{i} Pr(att = val_{i}).I([att = val_{i}])$$

Decision Trees (3)

Contingency Table



Quantity of Information (QI)



Computation

value	p(value)	p(poor value)	QI (value)	p(value) * QI (value)
[0,10[0.051	0.999	0.00924	0.000474
[10,20]	0.25	0.938	0.232	0.0570323
[20,30]	0.26	0.732	0.581	0.153715

Decision Trees (4)

Limitations

- XOR-like attributes
- Attributes with many values
- Numerical attributes
- Overfitting

Limitations

Numerical Attributes

- Order the values $val_1 < \ldots < val_t$
- Compute QI([att < val_i])
- $QI(att) = max_i QI([att < val_i])$

The XOR case Bias the distribution of the examples

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Complexity

Quantity of information of an attribute

n ln *n*

Adding a node

 $D \times n \ln n$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Tackling Overfitting

Penalize the selection of an already used variable

Limits the tree depth.

Do not split subsets below a given minimal size

(ロ) (四) (三) (三) (三) (○) (○)

Limits the tree depth.

Pruning

- Each leaf, one conjunction;
- Generalization by pruning litterals;
- Greedy optimization, QI criterion.

Decision Trees, Summary

Still around after all these years

- Robust against noise and irrelevant attributes
- Good results, both in quality and complexity

Random Forests

Breiman 00

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator

Validation issues

- 1. What is the result ?
- 2. My results look good. Are they ?
- 3. Does my system outperform yours ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

4. How to set up my system ?

Validation: Three questions

Define a good indicator of quality

- Misclassification cost
- Area under the ROC curve

Computing an estimate thereof

- Validation set
- Cross-Validation
- Leave one out
- Bootstrap

Compare estimates: Tests and confidence levels

Which indicator, which estimate: depends.

Settings

Large/few data

Data distribution

- Dependent/independent examples
- balanced/imbalanced classes

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator

Performance indicators

Binary class

- h* the truth
- \hat{h} the learned hypothesis

Confusion matrix

\hat{h} / h^*	1	0	
1	а	b	a+b
0	С	d	c+d
	a+c	b+d	a + b + c + d

Performance indicators, 2

\hat{h} / h^*	1	0	
1	а	b	a+b
0	С	d	c+d
	a+c	b+d	a + b + c + d

- Misclassification rate $\frac{b+c}{a+b+c+d}$
- Sensitivity (recall), True positive rate (TP) $\frac{a}{a+c}$
- Specificity, False negative rate (FN) $\frac{b}{b+d}$
- Precision $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

h leads to order the examples:

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

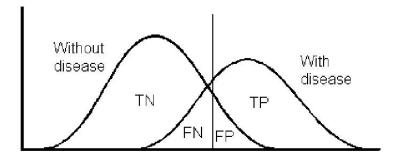
Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

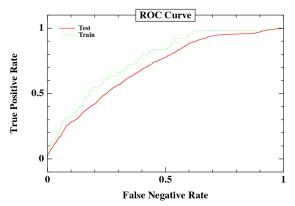
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

h leads to order the examples:

Here, TP $(\theta) = .8$; FN $(\theta) = .1$



The ROC curve



Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative) \equiv nothing learned.

ROC Curve, Properties

Properties

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + $c \times \#$ false negative

In a multi-objective perspective, ROC = Pareto front.

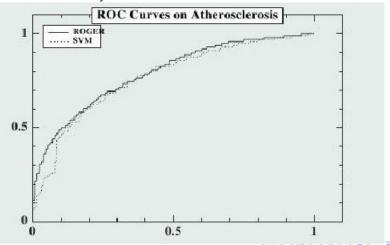
Best solution: intersection of Pareto front with $\Delta(-c,-1)$

・ロ・・日・・日・・日・ ・ 日・ うへつ

ROC Curve, Properties, foll'd

Used to compare learners

multi-objective-like insensitive to imbalanced distributions shows sensitivity to error cost.



Bradley 97

Area Under the ROC Curve

Often used to select a learner Don't ever do this !

Hand, 09

Sometimes used as learning criterion Mann Whitney Wilcoxon

$$AUC = Pr(h(x) > h(x')|y > y')$$

WHY

Rosset, 04

- More stable $\mathcal{O}(n^2)$ vs $\mathcal{O}(n)$
- With a probabilistic interpretation

Clemençon et al. 08

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

HOW

- SVM-Ranking
 Joachims 05; Usunier et al. 08, 09
- Stochastic optimization

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator

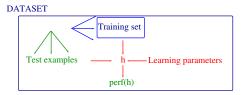
Validation, principle

Assumption: Dataset is to World, like Training set is to Dataset.

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

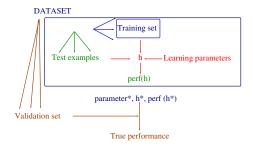
Validation, 2



parameter*, h*, perf (h*)

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Validation, 2



Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator

Confidence intervals

Definition

Given a random variable X on ${\rm I\!R},$ a p%-confidence interval is $I \subset {\rm I\!R}$ such that

 $Pr(X \in I) > p$

Binary variable with probability ϵ

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

▶ Mean: *n*€

• Variance:
$$\sigma^2 = n\epsilon(1-\epsilon)$$

Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}\frac{x-\mu^2}{\sigma}^2}$$

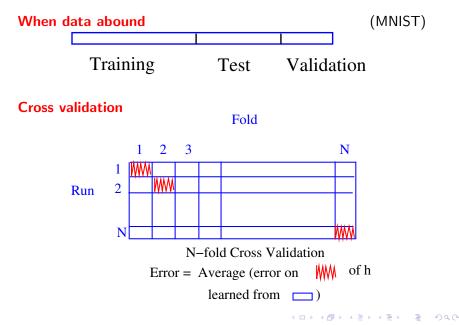
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Confidence intervals

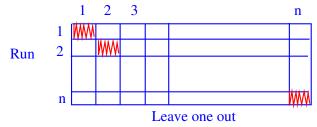
Bounds on (true value, empirical value) for n trials, n > 30

		$Pr(\hat{x}_n - x^* >$			1.96	$\sqrt{\frac{\hat{x}_{n.}(1)}{\hat{x}_{n.}(1)}}$	$\left(\frac{1-\hat{x}_n}{n}\right) < $	< .05
					Ζ			ε
Table	Z	.67	1.	1.28	1.64	1.96	2.33	2.58
	ε	50	32	20	10	5	2	1

Empirical estimates



Empirical estimates, foll'd

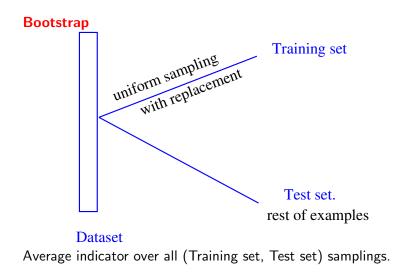


Same as N-fold CV, with N = number of examples.

Properties

Low bias; high variance; underestimate error if data not independent

Empirical estimates, foll'd



Beware

Multiple hypothesis testing

- If you test many hypotheses on the same dataset
- one of them will appear confidently true...

More

- Tutorial slides: http://www.lri.fr/ sebag/Slides/Validation_Tutorial_11.pdf
- Video and slides (soon): ICML 2012, Videolectures, Tutorial Japkowicz & Shah http://www.mohakshah.com/tutorials/icml2012/

Validation, summary

What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

Assessing a result

- Compute confidence intervals
- Consider baselines
- Use a validation set

If the result looks too good, don't believe it