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Validation issues

1. What is the result ?

2. My results look good. Are they ?

3. Does my system outperform yours ?

4. How to set up my system ?
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Validation: Three questions

Define a good indicator of quality

I Misclassification cost

I Area under the ROC curve

Computing an estimate thereof

I Validation set

I Cross-Validation

I Leave one out

I Bootstrap

Compare estimates: Tests and confidence levels
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Overview

Performance indicators

Measuring a performance indicator

Scalable validation: Bags of little bootstrap
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Which indicator, which estimate: depends.

Settings

I Large/few data

Data distribution

I Dependent/independent examples

I balanced/imbalanced classes
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Performance indicators

Binary class

I h∗ the truth

I ĥ the learned hypothesis

Confusion matrix

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d
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Performance indicators, 2

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d

I Misclassification rate b+c
a+b+c+d

I Sensitivity (recall), True positive rate (TP) a
a+c

I Specificity, False negative rate (FN) b
b+d

I Precision a
a+b

Note: always compare to random guessing / baseline alg.
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Performance indicators, 3

The Area under the ROC curve

I ROC: Receiver Operating Characteristics

I Origin: Signal Processing, Medicine

Principle

h : X 7→ IR h(x) measures the risk of patient x

h leads to order the examples:
+ + +−+−+ + + +−−−+−−−+−−−−−−−−−−−−

Given a threshold θ, h yields a classifier: Yes iff h(x) > θ.
+ + +−+−+ + ++ | − − −+−−−+−−−−−−−−−−−−

Here, TP (θ)= .8; FN (θ) = .1
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ROC
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The ROC curve

θ 7→ IR2 : M(θ) = (1− TNR,FPR)

Ideal classifier: (0 False negative,1 True positive)
Diagonal (True Positive = False negative) ≡ nothing learned.
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ROC Curve, Properties

Properties
ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + c × # false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with ∆(−c ,−1)
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ROC Curve, Properties, foll’d
Used to compare learners Bradley 97

multi-objective-like
insensitive to imbalanced distributions
shows sensitivity to error cost.
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Area Under the ROC Curve

Often used to select a learner
Don’t ever do this ! Hand, 09

Sometimes used as learning criterion Mann Whitney

Wilcoxon

AUC = Pr(h(x) > h(x ′)|y > y ′)

WHY Rosset, 04

I More stable O(n2) vs O(n)

I With a probabilistic interpretation Clemençon et al. 08

HOW

I SVM-Ranking Joachims 05; Usunier et al. 08, 09

I Stochastic optimization
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Overview

Performance indicators

Measuring a performance indicator

Scalable validation: Bags of little bootstrap
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Validation, principle

Desired: performance on further instances

Further examples

WORLD

h

Quality

Dataset

Assumption: Dataset is to World, like Training set is to Dataset.

Training set

h

Quality

Test examples

DATASET
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Validation, 2

Training set
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DATASET

parameter*, h*, perf (h*)
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

Validation set

True performance

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Confidence intervals
Definition
Given a random variable X on IR, a p%-confidence interval is
I ⊂ IR such that

Pr(X ∈ I ) > p

Binary variable with probability ε
Probability of r events out of n trials:

Pn(r) =
n!

r !(n − r)!
εr (1− ε)n−r

I Mean: nε

I Variance: σ2 = nε(1− ε)
Gaussian approximation

P(x) =
1√

2πσ2
exp−

1
2
x−µ
σ

2
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Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

Pr(|x̂n − x∗| > 1.96
√

x̂n.(1−x̂n)
n ) < .05

z ε

Table
z .67 1. 1.28 1.64 1.96 2.33 2.58
ε 50 32 20 10 5 2 1
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Empirical estimates

When data abound (MNIST)

Training Test Validation

Cross validation
Fold

2 31

Run

N

2

1

N

Error =  Average (error on 

N−fold Cross Validation

of h

learned from )
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Empirical estimates, foll’d

Cross validation → Leave one out

2 31

Run 2

1

Fold

n

n

Leave one out

Same as N-fold CV, with N = number of examples.

Properties
Low bias; high variance; underestimate error if data not
independent
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Empirical estimates, foll’d

Bootstrap

Dataset

Training set

Test set.

rest of examples

with replacement

uniform sampling

Average indicator over all (Training set, Test set) samplings.
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Beware

Multiple hypothesis testing

I If you test many hypotheses on the same dataset

I one of them will appear confidently true...

More

I Tutorial slides:
http://www.lri.fr/ sebag/Slides/Validation Tutorial 11.pdf

I Video and slides (soon): ICML 2012, Videolectures, Tutorial
Japkowicz & Shah
http://www.mohakshah.com/tutorials/icml2012/
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Validation, summary

What is the performance criterion

I Cost function

I Account for class imbalance

I Account for data correlations

Assessing a result

I Compute confidence intervals

I Consider baselines

I Use a validation set

If the result looks too good, don’t believe it
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