M1 – Apprentissage

Michèle Sebag – Benoit Barbot LRI – LSV

14 octobre 2013

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Validation issues

- 1. What is the result ?
- 2. My results look good. Are they ?
- 3. Does my system outperform yours ?
- 4. How to set up my system ?

Validation: Three questions

Define a good indicator of quality

- Misclassification cost
- Area under the ROC curve

Computing an estimate thereof

- Validation set
- Cross-Validation
- Leave one out
- Bootstrap

Compare estimates: Tests and confidence levels

Performance indicators

Measuring a performance indicator

Scalable validation: Bags of little bootstrap

Which indicator, which estimate: depends.

Settings

Large/few data

Data distribution

- Dependent/independent examples
- balanced/imbalanced classes

Performance indicators

Binary class

- h* the truth
- \hat{h} the learned hypothesis

Confusion matrix

\hat{h} / h^*	1	0	
1	а	b	a+b
0	с	d	c+d
	a+c	b+d	a + b + c + d

Performance indicators, 2

\hat{h} / h^*	1	0	
1	а	b	a+b
0	с	d	c+d
	a+c	b+d	a + b + c + d

- Misclassification rate $\frac{b+c}{a+b+c+d}$
- Sensitivity (recall), True positive rate (TP) $\frac{a}{a+c}$
- Specificity, False negative rate (FN) $\frac{b}{b+d}$
- Precision $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

h leads to order the examples:

Here, TP $(\theta) = .8$; FN $(\theta) = .1$

The ROC curve

Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative) \equiv nothing learned.

ROC Curve, Properties

Properties

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + $c \times \#$ false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with $\Delta(-c,-1)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

ROC Curve, Properties, foll'd

Used to compare learners

multi-objective-like insensitive to imbalanced distributions shows sensitivity to error cost.

Bradley 97

Area Under the ROC Curve

Often used to select a learner Don't ever do this !

Hand, 09

Sometimes used as learning criterion Mann Whitney Wilcoxon

$$AUC = Pr(h(x) > h(x')|y > y')$$

WHY

Rosset, 04

- More stable $\mathcal{O}(n^2)$ vs $\mathcal{O}(n)$
- With a probabilistic interpretation

Clemençon et al. 08

HOW

- SVM-Ranking
 Joachims 05; Usunier et al. 08, 09
- Stochastic optimization

Performance indicators

Measuring a performance indicator

Scalable validation: Bags of little bootstrap

Validation, principle

Assumption: Dataset is to World, like Training set is to Dataset.

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Validation, 2

parameter*, h*, perf (h*)

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Confidence intervals

Definition

Given a random variable X on ${\rm I\!R},$ a p%-confidence interval is $I \subset {\rm I\!R}$ such that

 $Pr(X \in I) > p$

Binary variable with probability ϵ

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

▶ Mean: *n*€

• Variance:
$$\sigma^2 = n\epsilon(1-\epsilon)$$

Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}\frac{x-\mu^2}{\sigma}^2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

		$Pr(\hat{x}_n - x^* >$			1.96	$\sqrt{\frac{\hat{x}_{n.}}{(1-x_{n.})}}$.05	
					Ζ			ε
Table	z	.67	1.	1.28	1.64	1.96	2.33	2.58
	ε	50	32	20	10	5	2	1

Empirical estimates

Empirical estimates, foll'd

Same as N-fold CV, with N = number of examples.

Properties

Low bias; high variance; underestimate error if data not independent

Empirical estimates, foll'd

Beware

Multiple hypothesis testing

- If you test many hypotheses on the same dataset
- one of them will appear confidently true...

More

- Tutorial slides: http://www.lri.fr/ sebag/Slides/Validation_Tutorial_11.pdf
- Video and slides (soon): ICML 2012, Videolectures, Tutorial Japkowicz & Shah http://www.mohakshah.com/tutorials/icml2012/

Validation, summary

What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

Assessing a result

- Compute confidence intervals
- Consider baselines
- Use a validation set

If the result looks too good, don't believe it

Performance indicators

Measuring a performance indicator

Scalable validation: Bags of little bootstrap