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Clustering

Input
E={x1,...,xp} ~ P(x)
Output
» Models P(x)
» Clusters Partition

» Representatives

Assumptions, contexts
Clusters are separated by a low-density region




Motivations

» Compression.

Ex, vector quantization in images.
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» Divide and conquer; preliminary for classification.
Ex, different types of diseases.

» Check data.



Overview

Clustering
K-Means
Generative models
Expectation Maximization
Selecting the number of clusters
Stability



Clustering Questions

Hard or soft ?
» Hard: find a partition of the data

» Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?
» Parametric: number K of clusters is known

» Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:
» Complexity
» Outliers

» Validation



Formal Background

Notations
& {x1,...xy} dataset
N number of data points
K number of clusters given or optimized
Cx k-th cluster Hard clustering
7(i)  index of cluster containing x;
fi k-th model Soft clustering

’yk(i) Pr(x,- ~ fk)

Solution Hard Clustering Partition A = (Cy, ... Ck)
Soft Clustering Vi Y, (i) =1



Formal Background, 2

Quality / Cost function Measures how well the clusters
characterize the data

> (log)likelihood soft clustering

> dispersion hard clustering

K
1
Z |Cu|? Z d(xi,x;)?
k=1 i j




Formal Background, 2

Quality / Cost function Measures how well the clusters
characterize the data

> (log)likelihood soft clustering

> dispersion hard clustering

Z d(X,‘,XJ')2

k=1 X,‘,Xj in Ck

Mx

Tradeoff Quality increases with K = Regularization needed
to avoid one cluster per data point

Exercize

‘Xi_xj||2 Z|Ck’2 Z HXi—)—(kH2

X, X; in Cy

5.
N
L..M

with X, = average x;,x; € Cj.



Clustering vs Classification

Marina Meila http://videolectures.net/
Classification Clustering
K # classes (given) | # clusters (unknown)

Quality || Generalization error | many cost functions
Focus on Test set Training set

Goal Prediction Interpretation
Analysis discriminant exploratory

Field mature new




Non-Parametric Clustering

Hierarchical Clustering
Principle
» agglomerative (join nearest clusters)
» divisive (split most dispersed cluster)

Algorithm
Init: Each point is a cluster (n clusters)
Loop
Select two most similar clusters
Merge them
Until there is only 1 cluster



Hierarchical Clustering, example
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Hierarchical Clustering, 2

Key point 1: choice of distance

—

_E" [*

Fuclidean Vector angle

d(x,x") =

>l —x7)?

Y
1 — 1t
L SR )

[Ix=X].[[x"=X"1|

Pearson

Euclidean distance

Cosine angle

Pearson



Hierarchical Clustering, 3

& = Observation 1
® Observation 2
= Observation 3
7“2 —
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Hierarchical Clustering, 4

Key point 2: choice of aggregation
Compute distance between two clusters

» Complete linkage:Largest distance between points
» Single linkage: Smallest distance between points

> Average linkage: Average distance between points
» Centroid: distance between centroids of the points

Centroid of points: point closest to their average.



Hierarchical Clustering, 5




Parametric Clustering

Parametric: K is known

Algorithms based on distances
> K-means

» graph / cut

Algorithms based on models

» Mixture of models: EM algorithm
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K-Means

Algorithm
1. Init:
Uniformly draw K points x;, in &
Set G = {x;;}

. Repeat

Draw without replacement x; from &

2
3
4. 7(7) = argming=1._ k{d(x;,Cx)} find best cluster for x;
5 Criy = Gy Uxi add x; to C;
6. Until all points have been drawn

7

. If partition C; ... Ck has changed Stabilize
Define x;, = best point in G, Cx = {x; }, goto 2.

Algorithm terminates



K-Means, Knobs

Knob 1 : define d(x;, Cy)
» min{d(x;,x;),x; € Cc}
> average{d(x;,x;),x; € Cx}
» max{d(x;,x;),x; € Cx}
Knob 2 : define “best” in C,
> Medoid

* Average
(does not belong to &)

favors
long clusters
compact clusters

spheric clusters

argmin;{zxjeck d(x,x;)}

1 .
TS ijeck X;



No single best choice

Fig. 1. Optimizing the diameter produces B while A is clearly more desirable.

Fic. 2. The inferior clustering B is found by optimizing the 2-median measure.



K-Means, Discussion

PROS
» Complexity O(K x N)

» Can incorporate prior knowledge initialization

CONS
» Sensitive to initialization
» Sensitive to outliers

» Sensitive to irrelevant attributes



K-Means, Convergence

» For cost function
L) =>" > d(xi, x;)
k ij /[ r(=r(j)=k
» for d(x;, Cx) = average {d(xj,x;),x; € Cx}
» for “best” in Cy = average of x; € Ci

K-means converges toward a (local) minimum of L.



K-Means, Practicalities

Initialization

» Uniform sampling

v

Average of £ 4+ random perturbations

v

Average of £ + orthogonal perturbations

v

Extreme points: select x;; uniformly in £, then

J
Select x;, = argmax{z d(xi, xi, )}
k=1

Pre-processing

» Mean-centering the dataset
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Model-based clustering

Mixture of components
» Density f = Z,’le T fi
> fi: the k-th component of the mixture
> i) =
» induces Cx = {x; / k = argmax{v«(j)}}
Nature of components: prior knowledge

» Most often Gaussian: fx = (pg, L)

» Beware: clusters are not always Gaussian...
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Model-based clustering, 2

Search space

» Solution : (ﬂk,uk,zk)szl =0

Criterion: log-likelihood of dataset

N K
0(0) = log(Pr(€)) = Z log Pr(x;) o ZZ log(7k fi (x

i=1 k=1

to be maximized.



Model-based clustering with EM

Formalization
» Define z; , = 1 iff x; belongs to C.
> Elzi k] = (i) prob. x; generated by m,f;
» Expectation of log likelihood

E[(0)] o< S Sy vilk) log(mifi(xi))

= SN SR (k) log T+ oMy SR yi(k) log fie(x;)

EM optimization
E step Given 6, compute
N k(%)
=5
M step Given 7, (i), compute

0" = (mk, pk, Lk)* = argminE[¢(0)]



Maximization step

7 Fraction of points in Cj

1 N
Tk = N;’Yk(’)

wi: Mean of Cy
S W)X

M SN )

> . Covariance

s _ ity ) — ) (% — ju)
k

N S (i)
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Choosing the number of clusters

K-means constructs a partition whatever the K value is.
Selection of K

» Bayesian approaches
Tradeoff between accuracy / richness of the model
» Stability
Varying the data should not change the result
» Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

BIC(0) = £(6) — #79 log N

Select K = argmax BIC(0)
where #6 = number of free parameters in 6:

» if all components have same scalar variance o
#9=K—-1+1+ Kd
» if each component has a scalar variance oy
#)=K—-1+K(d+1)
» if each component has a full covariance matrix %,

#0=K—1+K(d+d(d—1)/2)



Gap statistics

Principle: hypothesis testing
1. Consider hypothesis Hy: there is no cluster in the data.
£ is generated from a no-cluster distribution 7.

2. Estimate the distribution fy x of L(Ci, ... Ck) for data
generated after . Analytically if 7 is simple
Use Monte-Carlo methods otherwise

3. Reject Hy with confidence « if the probability of generating
the true value £(Cy, ... Ck) under fy i is less than .

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm Assume £ extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample & according to this distribution
2. Apply K-means on this sample
3. Measure the associated loss function

Repeat : compute the average £o(K) and variance oo(K)
Define the gap:

Gap(K) = Eo(K) - ,C(Cl, ce CK)
Rule Select min K s.t.
Gap(K) > Gap(K + 1) — oo(K + 1)

What is nice: also tells if there are no clusters in the data...
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Stability

Principle
» Consider & perturbed from &
» Construct (i, ... Cj from &’
» Evaluate the “distance” between (Ci,...Cx) and (C{,... C))
» If small distance (stability), K is OK

Distortion D(A)

Define S S;= <x;,x;>
(Ai,vi) i-th (eigenvalue, eigenvector) of S
X X,"j: 1ifFX,’€Cj
D(A) = 3 lxi — pirgy P = £1(S) — tr(X'SX)

Minimal distortion D* = tr(S) — ZkK;ll Ak



Stability, 2

Results
» A has low distortion = (u1, ... uk) close to space (vi, ... vk).
» A7, and A, have low distortion = “close”
» (and close to “optimal” clustering)

Meila ICML 06
Counter-example

©




Overview

Axiomatisation



Kleinberg’'s axiomatic framework for clustering

Kleinberg 2002
Given € = {x1,...,Xn,X; € X}, a clustering builds a partition I
depending on distance d. Let denote [ = f(d).

1 10 10
10 0 1
10 1 0

r=({1},{2,3}).



Kleinberg’'s axiomatic framework for clustering
Properties

Scale invariance

Va >0, f(ad) = f(d)

Richness
Range(f) = Power set of £

Consistency
If f(d) =T and d’ is a M-enhancing transformation of d, then
f(d)y=Tr

where d’ is -enhancing if
» d'(x;,x;) < d(x;,x;) if x; and x; in same cluster of I

» d'(x;,x;) > d(x;,x;) otherwise



Examples

Run single linkage till you get k clusters

» Scale invariance Yes, consistency Yes, richness No

Run single linkage while distances < ¢ - max; jd(x;,x;), ¢ >0



Examples

Run single linkage till you get k clusters

» Scale invariance Yes, consistency Yes, richness No
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» Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances < some threshold r



Examples

Run single linkage till you get k clusters

» Scale invariance Yes, consistency Yes, richness No

Run single linkage while distances < ¢ - max; jd(x;,x;), ¢ >0

» Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances < some threshold r

» Scale invariance No, consistency Yes, richness Yes



Impossibility result

Thm
» There is no consistent way of choosing a level of granularity

» There exists no f satisfying all three axioms

" e
[ . -l L2 ]

d d’ enhancing I d" rescaling d’
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Part 2. Data Streaming

» When: data, specificities
» What: goals

» How: algorithms

More: see Joao Gama'’s tutorial,
http://wiki.kdubiq.org/summerschool2008 /index.php/Main/Materials



Motivations

Electric Power Network



Data

Input
» Continuous flow of (possibly corrupted) data, high speed
» Huge number of sensors, variable along time (failures)
» Spatio-temporal data
Output
» Cluster: profiles of consumers
» Prediction: peaks of demand

» Monitor Evolution: Change detection, anomaly detection



Where is the problem ?

Standard Data Analysis

» Select a sample

» Generate a model (clustering, neural nets, ...)



Where is the problem ?

Standard Data Analysis

» Select a sample

» Generate a model (clustering, neural nets, ...

Does not work...

» World is not static

» Options, Users, Climate, ... change



Specificities of data

Domain
» Radar: meteorological observations
» Satellite: images, radiation

» Astronomical surveys: radio

v

Internet: traffic logs, user queries, ...
» Sensor networks
» Telecommunications

Features
> Most data never seen by humans

» Need for REAL-TIME monitoring, (intrusion, outliers,
anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically
distributed)



Data streaming Challenges

Maintain Decision Models in real-time
> incorporate new information
» forget old/outdated information

» detect changes and adapt models accordingly

comply with speed

Unbounded training sets Prefer fast approximate answers...
» Approximation: Find answer with factor 1 + ¢
» Probably correct: Pr(answer correct ) = 1 -0
» PAC: ¢, (Probably Approximately Correct)
» Space ~ O(1/e?log(1/9))



Data Mining vs Data Streaming

Traditional Stream
Nr. of Passes Multiple Single
Processing Time | Unlimited Restricted
Memory Usage Unlimited Restricted
Type of Result Accurate | Approximate
Distributed No Yes




What: queries on a data stream

v

Sample

» Count number of distinct values / attribute

v

Estimate sliding average (number of 1's in a sliding window)

v

Get top-k elements

Application: Compute entropy of the stream

H(x) = pilog>(pi)

useful to detect anomalies



Sampling

Uniform sampling: each one out of n examples is sampled with
probability 1/n.

What if we don't know the size ?

Standard

» Sample instances at periodic time intervals

> Loss of information
Reservoir Sampling

» Create buffer size k

> Insert first k elements

> Insert i-th element with probability k/i

» Delete a buffer element at random
Limitations

» Unlikely to detect changes/anomalies

» Hard to parallelize



Count number of values

Problem

Domain of the attribute is {1,... M}

Piece of cake if memory available... What if the memory available
is log(M) 7

Flajolet-Martin 1983

Based on hashing: {1,... M} {0,...2} with L = log(M).

x — hash(x) =y — position least significant bit, Isb(x)



Count number of values, followed

Init: BITMAP({0,...L}) =0
Loop: Read x, BITMAP(Isb(x)) = 1

BITMAP
L-1

-
ot

Glojofojo (2o idobaf 1l 1fz)al1

" -

T
pasition ==
lag(d)

fringe of 0/1s
around logid) P *-"-"l

Result

R = position of rightmost 0 in H
M ~ 2R/ 7735



Decision Trees for Data Streaming

Principle
Grow the tree if evidence best attribute > second best

Algorithm parameter: confidence ¢ (user-defined)
While true
Read example, propagate until a leaf
If enough examples in leaf
Compute IG for all attributes;

 — o/ Rema/e)

Keep best if IG(best) - 1G(second best ) > ¢

Mining High Speed Data Streams, Pedro Domingos, Geoffrey
Hulten, KDD-00



Open issues

What’s new
Forget about iid;
Forget about more than linear complexity (and log space)

Challenges
Online, Anytime algs
Distributed alg.
Criteria of performance
Integration of change detection



Overview

Application: Autonomic Computing



Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.
Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006
Irina Rish & Gerry Tesauro.



Autonomic Computing

The need

» Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision
» Computing systems take care of the mundane elements of
management by themselves.

> Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance
with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003



Toward Autonomic Grid

EGEE, Enabling Grids for E-sciencE 2001-2011

» 50 countries

» 300 sites

180,000 CPUs
5Petabytes storage
10,000 users
300,000 jobs/ day

v

v

v

v

http://public.eu-egee.org/
EGEE-IIl : WP Grid Observatory

» Job scheduling
» Job profiling



Data Streaming for Job Profiling

X. Zhang, C. Furtlehner, M.S., ECML 08; KDD 09

Position of the problem

> Jobs arrive and are processed
» Want to detect outliers and anomalies

» Want to predict the traffic /
dimension the system

v

The job distribution is non-stationary

Preliminary step: Clustering
the jobs




Clustering with Message Passing Algorithm:
Affinity Propagation

Frey and Dueck, Science 2007 Affinity Propagation w.r.t.
State of art

K-means K-centers AP
exemplar artefact actual point actual point
parameter K K s* (penalty)
algorithm greedy search | greedy search | message passing
performance not stable not stable stable
complexity N x K N x K N log(N)
WHEN 7? When averages don't make sense
WHY ? Stable, minimal distortion

CONS Computational complexity



Affinity Propagation

Given
E={e,e,...,en} elements
d(ei, €) their dissimilarity
Findo:&— & o(e;), exemplar representing e;
such that:
N
o = argmax Z S(ei,o(ep))
i=1
where S(ei ¢) = —d*(eie) if i) s*:  penalty
S(ei,e) = —s*
parameter

Particular cases
» s* = 00, only one exemplar 1 cluster

> s* =0, every point is an exemplar N clusters



Affinity Propagation, 2

Two types of messages
» a(i, k) : Availability of i as examplar for k
» r(i, k) : Responsibility of i to k

Rules of propagation

r(i, k) = S(e,-, ek) — maxk/7k/¢k{a(i, k/) + 5(6,’, e,’()}
r(k, k) S(ek,ek) — maxk/,k/¢k{5(ek,e,’<)}

a(i,k) = min{0,r(k, k) + 3 iz max{0, r(i’,k)}}
a(k, k) = > iz max{0, r(i’, k)}



Iterations of Message passing

0 INITIALIZATION
-‘\ .11\:/ ‘h‘_‘
d : 7\
{ .‘n""‘-—';
[ £ -
"
o
',A‘




Iterations of Message passing

ITERATION #1
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Iterations of Message passing

ITERATION #2
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Iterations of Message passing

ITERATION #3
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Iterations of Message passing

ITERATION #4
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Iterations of Message passing

ITERATION #5
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Iterations of Message passing

ITERATION #6
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Iterations of Message passing

CONVERGENCE




Hierarchical Affinity Propagation

ECML 2008
% / exemplars
WEIGHTED
AFFINITY
/ PROPAGATION
%< exemplars
N subsets AFFINITY
PROPAGATION

Thm

Let h be the height of the tree, b the branching factor, Np the size
of each subproblem, K the average number of examplars for each
sub problem. Then

h+2

C(h) x N#1



Extending AP to Data Streaming

StrAP : sketch

1. Job j; arrives
2. Does it fit the current model M; ?

» YES: update M,
» NO:

3. Has the distribution changed ?
» YES: build M;,; from M, and the reservoir

Stream Model: M, = {(jj, nj, X, ti)}
> j; examplar job
» n; number of jobs represented by j;
» Y ; sum of distortions incurred by j;

> t; last time step when a job was affected to j;

Jjt+ — Reservoir



Has the distribution changed ?

Page-Hinkley statistical change detection test
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variables. Biometrika, 1970

E. Page. Continuous inspection schemes. Biometrika, 1954



EGEE Job Streaming

Dynamics of the distribution: schedule of restarts
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The EGEE traffic: months at a glance

A posteriori
build super-examplars from examplars each s.e. a row
aggregate the traffic along time

C_ LN FI
ra

Super Clusters




EGEE Job Streaming, end

Further work

1. List / Interpret outliers.
Build a catalogue of situations

2. From job clustering to day clustering
A day is a histogram of job clusters

3. Sequence modelling
Caveat: nature of random variables

4. Fueling Job scheduling with realistic distribution models.
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