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Clustering

Input
E = {x1, . . . , xn} ∼ P(x)

Output

I Models P̂(x)

I Clusters Partition

I Representatives

Assumptions, contexts
Clusters are separated by a low-density region



Motivations

I Compression.
Ex, vector quantization in images.

I Divide and conquer; preliminary for classification.
Ex, different types of diseases.

I Check data.
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Clustering Questions

Hard or soft ?

I Hard: find a partition of the data

I Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

I Parametric: number K of clusters is known

I Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

I Complexity

I Outliers

I Validation



Formal Background

Notations

E {x1, . . . xN} dataset
N number of data points
K number of clusters given or optimized

Ck k-th cluster Hard clustering
τ(i) index of cluster containing xi

fk k-th model Soft clustering
γk(i) Pr(xi ∼ fk)

Solution Hard Clustering Partition ∆ = (C1, . . .Ck)
Soft Clustering ∀i

∑
k γk(i) = 1



Formal Background, 2
Quality / Cost function Measures how well the clusters
characterize the data

I (log)likelihood soft clustering

I dispersion hard clustering

K∑
k=1

1

|Ck |2
∑

xi ,xj in Ck

d(xi , xj)
2

Tradeoff Quality increases with K ⇒ Regularization needed
to avoid one cluster per data point

Exercize

K∑
k=1

1

|Ck |2
∑

xi ,xj in Ck

||xi − xj ||2 =
K∑

k=1

1

|Ck |2
∑

xi ,xj in Ck

||xi − x̄k ||2

with x̄k = average xi , xi ∈ Ck .
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Clustering vs Classification

Marina Meila http://videolectures.net/

Classification Clustering

K # classes (given) # clusters (unknown)
Quality Generalization error many cost functions

Focus on Test set Training set
Goal Prediction Interpretation

Analysis discriminant exploratory
Field mature new



Non-Parametric Clustering
Hierarchical Clustering

Principle
I agglomerative (join nearest clusters)
I divisive (split most dispersed cluster)

Algorithm
Init: Each point is a cluster (n clusters)
Loop

Select two most similar clusters
Merge them

Until there is only 1 cluster

CONS: Complexity O(N3)



Hierarchical Clustering, example



Hierarchical Clustering, 2

Key point 1: choice of distance

d(x , x ′) =



√∑
i (xi − x ′i )

2 Euclidean distance

1−
∑

i xix
′
i

||x ||.||x ′|| Cosine angle

1−
∑

i (xi−x̄)(x ′i−x̄
′)

||x−x̄ ||.||x ′−x̄ ′|| Pearson



Hierarchical Clustering, 3



Hierarchical Clustering, 4

Key point 2: choice of aggregation
Compute distance between two clusters

I Complete linkage:Largest distance between points

I Single linkage: Smallest distance between points

I Average linkage: Average distance between points

I Centroid: distance between centroids of the points

Centroid of points: point closest to their average.



Hierarchical Clustering, 5



Parametric Clustering

Parametric: K is known

Algorithms based on distances

I K -means

I graph / cut

Algorithms based on models

I Mixture of models: EM algorithm
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K -Means

Algorithm

1. Init:
Uniformly draw K points xij in E
Set Cj = {xij}

2. Repeat

3. Draw without replacement xi from E
4. τ(i) = argmink=1...K{d(xi,Ck)} find best cluster for xi

5. Cτ(i) = Cτ(i)

⋃
xi add xi to Cτ(i)

6. Until all points have been drawn

7. If partition C1 . . .CK has changed Stabilize
Define xik = best point in Ck , Ck = {xik}, goto 2.

Algorithm terminates



K -Means, Knobs

Knob 1 : define d(xi ,Ck) favors

I min{d(xi , xj), xj ∈ Ck} long clusters

I average{d(xi , xj), xj ∈ Ck} compact clusters

I max{d(xi , xj), xj ∈ Ck} spheric clusters

Knob 2 : define “best” in Ck

I Medoid argmini{
∑

xj∈Ck
d(xi , xj)}

* Average 1
|Ck |
∑

xj∈Ck
xj

(does not belong to E)



No single best choice



K -Means, Discussion

PROS

I Complexity O(K × N)

I Can incorporate prior knowledge initialization

CONS

I Sensitive to initialization

I Sensitive to outliers

I Sensitive to irrelevant attributes



K -Means, Convergence

I For cost function

L(∆) =
∑
k

∑
i ,j / τ(i)=τ(j)=k

d(xi , xj)

I for d(xi ,Ck) = average {d(xi , xj), xj ∈ Ck}
I for “best” in Ck = average of xj ∈ Ck

K -means converges toward a (local) minimum of L.



K -Means, Practicalities

Initialization

I Uniform sampling

I Average of E + random perturbations

I Average of E + orthogonal perturbations

I Extreme points: select xi1 uniformly in E , then

Select xij = argmax{
j∑

k=1

d(xi , xik )}

Pre-processing

I Mean-centering the dataset
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Model-based clustering

Mixture of components

I Density f =
∑K

k=1 πk fk
I fk : the k-th component of the mixture

I γk(i) = πk fk (x)
f (x)

I induces Ck = {xj / k = argmax{γk(j)}}
Nature of components: prior knowledge

I Most often Gaussian: fk = (µk ,Σk)

I Beware: clusters are not always Gaussian...



Model-based clustering, 2

Search space

I Solution : (πk , µk ,Σk)Kk=1 = θ

Criterion: log-likelihood of dataset

`(θ) = log(Pr(E)) =
N∑
i=1

log Pr(xi ) ∝
N∑
i=1

K∑
k=1

log(πk fk(xi ))

to be maximized.



Model-based clustering with EM

Formalization

I Define zi ,k = 1 iff xi belongs to Ck .

I E [zi ,k ] = γk(i) prob. xi generated by πk fk
I Expectation of log likelihood

E [`(θ)] ∝
∑N

i=1

∑K
k=1 γi (k) log(πk fk(xi ))

=
∑N

i=1

∑K
k=1 γi (k) log πk +

∑N
i=1

∑K
k=1 γi (k) log fk(xi )

EM optimization

E step Given θ, compute

γk(i) =
πk fk(xi )

f (x)

M step Given γk(i), compute

θ∗ = (πk , µk ,Σk)∗ = argminE [`(θ)]



Maximization step

πk : Fraction of points in Ck

πk =
1

N

N∑
i=1

γk(i)

µk : Mean of Ck

µk =

∑N
i=1 γk(i)xi∑N
i=1 γk(i)

Σk : Covariance

Σk =

∑N
i=1 γk(i)(xi − µk)(xi − µk)′∑N

i=1 γk(i)
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Choosing the number of clusters

K -means constructs a partition whatever the K value is.
Selection of K

I Bayesian approaches
Tradeoff between accuracy / richness of the model

I Stability
Varying the data should not change the result

I Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

BIC (θ) = `(θ)− #θ

2
log N

Select K = argmax BIC (θ)
where #θ = number of free parameters in θ:

I if all components have same scalar variance σ

#θ = K − 1 + 1 + Kd

I if each component has a scalar variance σk

#θ = K − 1 + K (d + 1)

I if each component has a full covariance matrix Σk

#θ = K − 1 + K (d + d(d − 1)/2)



Gap statistics

Principle: hypothesis testing

1. Consider hypothesis H0: there is no cluster in the data.
E is generated from a no-cluster distribution π.

2. Estimate the distribution f0,K of L(C1, . . .CK ) for data
generated after π. Analytically if π is simple

Use Monte-Carlo methods otherwise

3. Reject H0 with confidence α if the probability of generating
the true value L(C1, . . .CK ) under f0,K is less than α.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm Assume E extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample E according to this distribution

2. Apply K -means on this sample

3. Measure the associated loss function

Repeat : compute the average L̄0(K ) and variance σ0(K )
Define the gap:

Gap(K ) = L̄0(K )− L(C1, . . .CK )

Rule Select min K s.t.

Gap(K ) ≥ Gap(K + 1)− σ0(K + 1)

What is nice: also tells if there are no clusters in the data...
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Stability

Principle

I Consider E ′ perturbed from E
I Construct C ′1, . . .C

′
K from E ′

I Evaluate the “distance” between (C1, . . .CK ) and (C ′1, . . .C
′
K )

I If small distance (stability), K is OK

Distortion D(∆)

Define S Sij = < xi , xj >
(λi , vi ) i-th (eigenvalue, eigenvector) of S

X Xi ,j = 1 iff xi ∈ Cj

D(∆) =
∑
i

||xi − µτ(i)||2 = tr(S)− tr(X ′SX )

Minimal distortion D∗ = tr(S)−
∑K−1

k=1 λk



Stability, 2

Results

I ∆ has low distortion⇒ (µ1, . . . µK ) close to space (v1, . . . vK ).

I ∆1, and ∆2 have low distortion ⇒ “close”

I (and close to “optimal” clustering)

Meila ICML 06

Counter-example
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Kleinberg’s axiomatic framework for clustering

Kleinberg 2002

Given E = {x1, . . . , xn, xi ∈ X}, a clustering builds a partition Γ
depending on distance d . Let denote Γ = f (d). 1 10 10

10 0 1
10 1 0


Γ = ({1}, {2, 3}).



Kleinberg’s axiomatic framework for clustering
Properties

Scale invariance

∀α > 0, f (αd) = f (d)

Richness
Range(f ) = Power set of E

Consistency
If f (d) = Γ and d ′ is a Γ-enhancing transformation of d , then

f (d ′) = Γ

where d ′ is Γ-enhancing if

I d ′(xi , xj) ≤ d(xi , xj) if xi and xj in same cluster of Γ

I d ′(xi , xj) ≥ d(xi , xj) otherwise



Examples

Run single linkage till you get k clusters

I Scale invariance Yes, consistency Yes, richness No

Run single linkage while distances ≤ c ·maxi ,jd(xi , xj), c > 0

I Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances ≤ some threshold r

I Scale invariance No, consistency Yes, richness Yes
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Impossibility result

Thm

I There is no consistent way of choosing a level of granularity

I There exists no f satisfying all three axioms

d d ′ enhancing Γ d“ rescaling d ′
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Part 2. Data Streaming

I When: data, specificities

I What: goals

I How: algorithms

More: see Joao Gama’s tutorial,
http://wiki.kdubiq.org/summerschool2008/index.php/Main/Materials



Motivations

Electric Power Network



Data

Input

I Continuous flow of (possibly corrupted) data, high speed

I Huge number of sensors, variable along time (failures)

I Spatio-temporal data

Output

I Cluster: profiles of consumers

I Prediction: peaks of demand

I Monitor Evolution: Change detection, anomaly detection



Where is the problem ?

Standard Data Analysis

I Select a sample

I Generate a model (clustering, neural nets, ...)

Does not work...

I World is not static

I Options, Users, Climate, ... change



Where is the problem ?

Standard Data Analysis

I Select a sample

I Generate a model (clustering, neural nets, ...)

Does not work...

I World is not static

I Options, Users, Climate, ... change



Specificities of data

Domain

I Radar: meteorological observations

I Satellite: images, radiation

I Astronomical surveys: radio

I Internet: traffic logs, user queries, ...

I Sensor networks

I Telecommunications

Features

I Most data never seen by humans

I Need for REAL-TIME monitoring, (intrusion, outliers,
anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically

distributed)



Data streaming Challenges

Maintain Decision Models in real-time

I incorporate new information comply with speed

I forget old/outdated information

I detect changes and adapt models accordingly

Unbounded training sets Prefer fast approximate answers...

I Approximation: Find answer with factor 1± ε
I Probably correct: Pr(answer correct ) = 1 -δ

I PAC: ε, δ (Probably Approximately Correct)

I Space ≈ O(1/ε2log(1/δ))



Data Mining vs Data Streaming



What: queries on a data stream

I Sample

I Count number of distinct values / attribute

I Estimate sliding average (number of 1’s in a sliding window)

I Get top-k elements

Application: Compute entropy of the stream

H(x) =
∑

pi log2(pi )

useful to detect anomalies



Sampling

Uniform sampling: each one out of n examples is sampled with
probability 1/n.
What if we don’t know the size ?
Standard

I Sample instances at periodic time intervals

I Loss of information

Reservoir Sampling

I Create buffer size k

I Insert first k elements

I Insert i-th element with probability k/i

I Delete a buffer element at random

Limitations

I Unlikely to detect changes/anomalies

I Hard to parallelize



Count number of values

Problem
Domain of the attribute is {1, . . .M}
Piece of cake if memory available... What if the memory available
is log(M) ?
Flajolet-Martin 1983
Based on hashing: {1, . . .M} 7→ {0, . . . 2L} with L = log(M).

x → hash(x) = y → position least significant bit, lsb(x)



Count number of values, followed

Init: BITMAP({0, . . . L}) = 0
Loop: Read x , BITMAP(lsb(x)) = 1

Result

R = position of rightmost 0 in H

M ≈ 2R/.7735



Decision Trees for Data Streaming

Principle
Grow the tree if evidence best attribute > second best

Algorithm parameter: confidence δ (user-defined)
While true

Read example, propagate until a leaf
If enough examples in leaf

Compute IG for all attributes;

ε =

√
R2ln(1/δ)

2n

Keep best if IG(best) - IG(second best ) > ε

Mining High Speed Data Streams, Pedro Domingos, Geoffrey
Hulten, KDD-00



Open issues

What’s new
Forget about iid;
Forget about more than linear complexity (and log space)

Challenges
Online, Anytime algs
Distributed alg.
Criteria of performance
Integration of change detection
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Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.

Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006

Irina Rish & Gerry Tesauro.



Autonomic Computing

The need

I Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision

I Computing systems take care of the mundane elements of
management by themselves.

I Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance
with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003



Toward Autonomic Grid

EGEE, Enabling Grids for E-sciencE 2001-2011

I 50 countries

I 300 sites

I 180,000 CPUs

I 5Petabytes storage

I 10,000 users

I 300,000 jobs/ day
http://public.eu-egee.org/

EGEE-III : WP Grid Observatory

I Job scheduling

I Job profiling



Data Streaming for Job Profiling

X. Zhang, C. Furtlehner, M.S., ECML 08; KDD 09

Position of the problem

I Jobs arrive and are processed

I Want to detect outliers and anomalies

I Want to predict the traffic /
dimension the system

I The job distribution is non-stationary

Preliminary step: Clustering
the jobs



Clustering with Message Passing Algorithm:
Affinity Propagation

Frey and Dueck, Science 2007 Affinity Propagation w.r.t.
State of art

K-means K-centers AP
exemplar artefact actual point actual point

parameter K K s∗ (penalty)

algorithm greedy search greedy search message passing

performance not stable not stable stable

complexity N × K N × K N2log(N)

WHEN ? When averages don’t make sense
WHY ? Stable, minimal distortion
CONS Computational complexity



Affinity Propagation

Given
E = {e1, e2, ..., eN} elements
d(ei , ej) their dissimilarity

Find σ : E 7→ E σ(ei ), exemplar representing ei
such that:

σ = argmax
N∑
i=1

S(ei , σ(ei ))

where

{
S(ei , ej) = −d2(ei , ej) if i 6= j
S(ei , ei ) = −s∗

s∗: penalty

parameter

Particular cases

I s∗ =∞, only one exemplar 1 cluster

I s∗ = 0, every point is an exemplar N clusters



Affinity Propagation, 2

Two types of messages

I a(i , k) : Availability of i as examplar for k

I r(i , k) : Responsibility of i to k

Rules of propagation

r(i , k) = S(ei , ek)−maxk ′,k ′ 6=k{a(i , k ′) + S(ei , e
′
k)}

r(k, k) = S(ek , ek)−maxk ′,k ′ 6=k{S(ek , e
′
k)}

a(i , k) = min {0, r(k, k) +
∑

i ′,i ′ 6=i ,k max{0, r(i ′, k)}}
a(k, k) =

∑
i ′,i ′ 6=k max{0, r(i ′, k)}



Iterations of Message passing
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Iterations of Message passing



Hierarchical Affinity Propagation

ECML 2008

N subsets

exemplars

exemplars

WEIGHTED

AFFINITY

PROPAGATION

AFFINITY
PROPAGATION

Thm
Let h be the height of the tree, b the branching factor, N0 the size
of each subproblem, K the average number of examplars for each
sub problem. Then

C (h) ∝ N
h+2
h+1



Extending AP to Data Streaming

StrAP : sketch

1. Job jt arrives

2. Does it fit the current model Mt ?
I YES: update Mt

I NO: jt → Reservoir

3. Has the distribution changed ?
I YES: build Mt+1 from Mt and the reservoir

Stream Model: Mt = {(ji , ni ,Σi , ti )}
I ji examplar job

I ni number of jobs represented by ji
I Σi sum of distortions incurred by ji
I ti last time step when a job was affected to ji



Has the distribution changed ?

Page-Hinkley statistical change detection test

p̄t = 1
t

∑t
`=1 p`

mt =
∑t

`=1 (|p` − p̄`|+ δ)
PHt = max{m`} −mt

D. Hinkley. Inference about the change-point in a sequence of random

variables. Biometrika, 1970

E. Page. Continuous inspection schemes. Biometrika, 1954



EGEE Job Streaming

Dynamics of the distribution: schedule of restarts

Accuracy (succ/failed jobs)

Snapshots



The EGEE traffic: months at a glance

A posteriori
build super-examplars from examplars each s.e. a row

aggregate the traffic along time



EGEE Job Streaming, end

Further work

1. List / Interpret outliers.
Build a catalogue of situations

2. From job clustering to day clustering
A day is a histogram of job clusters

3. Sequence modelling
Caveat: nature of random variables

4. Fueling Job scheduling with realistic distribution models.
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