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Starting point: gathering the data



Find features

Before learning: describe the examples

I Too poor a description ⇒ nothing possible

I Too rich ⇒ feature pruning is required

Why ?

I ML is not a well-posed problem

I =⇒ Adding useless features (the captain’s age) can
deteriorate the hypotheses



Feature Selection, Position of the problem

Context
I Too many features wrt number of examples

I Remove Feature Selection
I Build new features Feature Construction
I Project on few features Dimensionality Reduction

I A particular case, first-order logic: Propositionalisation

The hidden goal: select or build features ?

I Feature Construction : build good features

I .. makes learning easier...

I Best features: good hypotheses.



When learning boils down to feature selection
Bio-informatics

I 30 000 genes

I few samples (expensive)

I goal: find genes relevant to diseases, resilience, ...



Position of the problem

Goals
• Selection: find a subset of features
• Ranking: order features by increasing relevance

Formalization
Given A = {a1, ..ad}. Define

F : P(A) 7→ IR
A ⊂ A 7→ Err(A) = min error of hypotheses built from A

Find Argmin(F)
Challenge
• A combinatorial optimization problem (2d)
• An unknown optimization function F



Feature selection: the filter approach

Univariate approach
Define score(ai ); iteratively add features by decreasing score order

or iteratively remove features with increasing score
PROS simple, inexpensive
CONS very local optima

Backtrack possible

I Given current solution A
I Add ai to A
I Examine whether removing aj is relevant

Backtrack = less greedy, better optima, much more expensive



Feature selection: the wrapping approach

Multivariate approach
Measure the quality of a feature subset:

estimate F(ai1, ...aik)

CONS
Expensive: an estimate = solving an ML problem.

PROS
Better optima



Feature selection: embedded approach

Principle (beforehand)
An ML criterion which favors hypotheses with few features
For instance: find w , h(x) =< w , x >, = argmin∑

i

(h(xi )− yi )
2 + ||w ||1

data fitting favor w with many null coordinates

Principle − a posteriori
Given

h(x) =< w , x >=
d∑

j=1

wjxj

If |wj | small, the j-th feature is unimportant
Remove and restart the learning.



Filter approaches, 1

Notations
Training set: E = {(xi , yi ), i = 1..n, yi ∈ {−1, 1}}

a(xi )= value of feature a for example (xi )

Correlation

corr(a) =

∑
i a(xi ).yi√∑

i (a(xi ))2 ×
∑

i y 2
i

∝
∑
i

a(xi ).yi = < a, y >

Limitations
Correlated features
Non linear dependencies



Filter approaches, 2

Correlation and projection Stoppiglia et al. 2003

Repeat

I select a∗ = feature most correlated to target

a∗ = argmax{
∑
i

a(xi )yi , a ∈ A}

I Project all other features on orthogonal space:

∀b ∈ A b → b − <a∗,b>
<a∗,a∗> a∗

b(xi )→ b(xi )−
∑

j a
∗(xj )b(xj )√∑

j a
∗(xj )2
√∑

j b(xj )2
a∗(xi )



Correlation and projection, cont

I Project y on orthogonal space too

y → y − <a∗,y>
<a∗,a∗>a∗

yi → yi −−
∑

j a
∗(xj )yj∑

j a
∗(xj )2 a∗(xi )

I Until stopping criterion
I Add random features (r(xi ) = ±1) probe
I When probes are selected, stop.

Limitations
does not work well when there are more than 6-7 relevant

features (numerical noise).



Filter approaches, 3

Information gain decision trees

p([a = v ]) = Pr(y = 1|a(xi ) = v)

QI ([a = v ]) = −p([a = v ]) log p([a = v ])

QI (a) =
∑
v

Pr(a(xi ) = v)QI ([a = v ])
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Information gain, contd

Limitations
Myopic criterion the XOR case
Favors many-valued features
Not well-suited to numerical features



Scores

in text mining, supervised learning
Notations : ci a class ak a word or term

Criteria

1. Conditional probability P(ci |ak)

2. Mutual information P(ci , ak)Log( P(ci ,ak )
P(ci )P(ak ) )

3. Chi-2 (P(t,c)P(¬t,¬c)−P(t,¬c)P(¬t,c))2

P(t)P(¬t)P(c)P(¬c)

4. Relevance P(t,c)+d
P(¬t,¬c)+d



Wrapper approaches

Principle: Generate and test
Given a list of candidate subsets L = {A1, ..,Ap}
• Generate a new candidate A
• Compute F(A)
• learn hA from E|A
• test hA on a test set = F̂(A)

• Update L.

Algorithms
• hill-climbing / multiple restart
• genetic algorithms
• genetic programming



Embedded approaches, 2

Principle
• Build a hypothesis
• Detect irrelevant features
• Prune them
• Iterate
Algorithm : SVM Recursive Feature Elimination Guyon et al.
03
• Linear SVM → h(x) = sign(

∑
wi .ai (x) + b)

• relevance(ai ) approx |wi |
• Prune the bottom-k features
• Iterate.
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Dimensionality Reduction − Intuition

Degrees of freedom

I Image: 4096 pixels; but not independent

I Robotics: (# camera pixels + # infra-red) × time; but not
independent

Goal
Find the (low-dimensional) structure of the data:

I Images

I Robotics

I Genes



Dimensionality Reduction

In high dimension

I Everybody lives in the corners of the space
Volume of Sphere Vn = 2πr2

n Vn−2

I All points are far from each other

Approaches

I Linear dimensionality reduction
I Principal Component Analysis
I Random Projection

I Non-linear dimensionality reduction

Criteria

I Complexity/Size

I Prior knowledge e.g., relevant distance



Linear Dimensionality Reduction

Training set unsupervised

E = {(xk), xk ∈ IRD , k = 1 . . .N}

Projection from IRD onto IRd

x ∈ IRD → h(x) ∈ IRd , d << D
h(x) = Ax

s.t. minimize
∑N

k=1 ||xk − h(xk)||2



Principal Component Analysis

Covariance matrix S
Mean µi = 1

N

∑N
k=1 Xi (xk)

Sij =
1

N

N∑
k=1

(Xi (xk)− µi )(Xj(xk)− µj)

symmetric ⇒ can be diagonalized

S = U∆U ′ ∆ = Diag(λ1, . . . λD)
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Thm: Optimal projection in dimension d

projection on the first d eigenvectors of S

Let ui the eigenvector associated to eigenvalue λi λi > λi+1

h : IRD 7→ IRd , h(x) =< x, u1 > u1 + . . .+ < x, ud > ud

where < v , v ′ > denote the scalar product of vectors v and v ′



Sketch of the proof

1. Maximize the variance of h(x) = Ax∑
k ||xk − h(xk)||2 =

∑
k ||xk ||2 −

∑
k ||h(xk)||2

Minimize
∑
k

||xk − h(xk)||2 ⇒ Maximize
∑
k

||h(xk)||2

Var(h(x)) =
1

N

(∑
k

||h(xk)||2 − ||
∑
k

h(xk)||2
)

As
||
∑
k

h(xk)||2 = ||A
∑
k

xk ||2 = N2||Aµ||2

where µ = (µ1, . . . .µD).
Assuming that xk are centered (µi = 0) gives the result.



Sketch of the proof, 2

2. Projection on eigenvectors ui of S

Assume h(x) = Ax =
∑d

i=1 < x, vi > vi and show vi = ui .

Var(AX ) = (AX )(AX )′ = A(XX ′)A′ = ASA′ = A(U∆U ′)A′

Consider d = 1, v1 =
∑

wiui
∑

w 2
i = 1

remind λi > λi+1

Var(AX ) =
∑

λiw
2
i

maximized for w1 = 1,w2 = . . . = wN = 0
that is, v1 = ui .



Principal Component Analysis, Practicalities

Data preparation

I Mean centering the dataset

µi = 1
N

∑N
k=1 Xi (xk)

σi =
√

1
N

∑N
k=1 Xi (xk)2 − µ2

i

zk = ( 1
σi

(Xi (xk)− µi ))Di=1

Matrix operations

I Computing the covariance matrix

Sij =
1

N

N∑
k=1

Xi (zk)Xj(zk)

I Diagonalizing S = U ′∆U Complexity O(D3)
might be not affordable...



Random projection

Random matrix

A : IRD 7→ IRd A[d ,D] Ai ,j ∼ N (0, 1)

define

h(x) =
1√
d

Ax

Property: h preserves the norm in expectation

E [||h(x)||2] = ||x||2

With high probability 1− 2exp{−(ε2 − ε3)d4 }

(1− ε)||x||2 ≤ ||h(x)||2 ≤ (1 + ε)||x||2



Random projection

Proof

h(x) = 1√
d

Ax

E (||h(x)||2) = 1
d E

[∑d
i=1

(∑D
j=1 Ai ,jXj(x)

)2
]

= 1
d

∑d
i=1 E

[(∑D
j=1 Ai ,jXj(x)

)2
]

= 1
d

∑d
i=1

∑D
j=1 E [A2

i ,j ]E [Xj(x)2]

= 1
d

∑d
i=1

∑D
j=1

||x||2
D

= ||x||2



Random projection, 2

Johnson Lindenstrauss Lemma
For d > 9 lnN

ε2−ε3 , with high probability

(1− ε)||xi − xj ||2 ≤ ||h(xi )− h(xj)||2 ≤ (1 + ε)||xi − xj ||2

More:
http://www.cs.yale.edu/clique/resources/RandomProjectionMethod.pdf
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Latent Semantic Analysis

1. Motivation

2. Algorithm

3. Discussion



Example



Example, cont



LSA, 2

Motivations

I Context : bag of words

I Curse of dimensionality IRD

I Synonymy / Polysemy

Goals

I Dimensionality reduction IRd

I A good topology (distance, similarity)

Remark

I First solution: cosine similarity

I Why not ?

More
http://lsa.colorado.edu



LSA, 3

Input
Matrix X = words × documents

Principle
1. Change of coordinates from words and documents to

concepts
2. Dimensionality reduction

Difference with Principal Component Analysis



LSA ≡ Singular Value Decomposition

Input
Matrix X = words × documents m × d

X = U ′ S V

with • U: change of word basis m × r
• V : change of document basis r × d
• S : diagonal matrix r × r

Dimensionality reduction
• S Order by decreasing eigenvalue
• S ′ = S cancel out all eigenvalues but the first (300) ones.

X ′ = U ′S ′V



Intuition

X =

 m1 m2 m3 m4

d1 0 1 1 1
d2 1 1 1 0


m1 and m4 are not present in the same documents, but are
together with same words; “hence“ they are somewhat related’...
After SVD + Reduction,

X =

 m1 m2 m3 m4

d1 ε 1 1 1
d2 1 1 1 ε





Algorithm



Algorithm, 2



Algorithm, 3



Algorithm, 4



Algorithm, 5



Algorithm, 6



Discussion
An application

Synonymy test TOEFL

Setting the number of dimensions
Trial and error :-(

Remarks
Negation apparently does not matter
More: Google hits P. Turney



Some applications

I Educational Text Selection

I Essay Scoring

I Summary Scoring & Revision

I Cross Language Retrieval



LSA − Principal Component Analysis

Similarities

I Input: matrix

I Diagonalizing

I Cancel all eigenvalues but the highest ones

I Projection on the corresponding eigenvectors

Differences
ACP LSA

Matrix covariance attributs words × documents
d 2-3 100-300
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Non-Linear Dimensionality Reduction

Conjecture

Examples live in a manifold of dimension d << D

Goal: consistent projection of the dataset onto IRd

Consistency:

I Preserve the structure of the data

I e.g. preserve the distances between points



Multi-Dimensional Scaling

Position of the problem

I Given {x1, . . . , xN , xi ∈ IRD}
I Given sim(xi , xj) ∈ IR+

I Find projection Φ onto IRd

x ∈ IRD → Φ(x) ∈ IRd

sim(xi , xj) ∼ sim(Φ(xi ),Φ(xj))

Optimisation

Define X , Xi ,j = sim(xi , xj); X Φ, X Φ
i ,j = sim(Φ(xi ),Φ(xj))

Find Φ minimizing ||X − X ′||
Rq : Linear Φ = Principal Component Analysis
But linear MDS does not work: preserves all distances, while

only local distances are meaningful



Non-linear projections

Approaches

I Reconstruct global structures from local ones Isomap
and find global projection

I Only consider local structures LLE

Intuition: locally, points live in IRd



Isomap

Tenenbaum, da Silva, Langford 2000

http://isomap.stanford.edu

Estimate d(xi , xj)

I Known if xi and xj are close

I Otherwise, compute the shortest path between xi and xj
geodesic distance (dynamic programming)

Requisite

If data points sampled in a convex subset of IRd ,
then geodesic distance ∼ Euclidean distance on IRd .

General case

I Given d(xi , xj), estimate < xi , xj >

I Project points in IRd



Isomap, 2



Locally Linear Embedding

Roweiss and Saul, 2000

http://www.cs.toronto.edu/∼roweis/lle/

Principle

I Find local description for each point: depending on its
neighbors



Local Linear Embedding, 2

Find neighbors

For each xi , find its nearest neighbors N (i)
Parameter: number of neighbors

Change of representation

Goal Characterize xi wrt its neighbors:

xi =
∑

j∈N (i)

wi ,jxj with
∑

j∈N (i)

wij = 1

Property: invariance by translation, rotation, homothety
How Compute the local covariance matrix:

Cj ,k =< xj − xi , xk − xi >

Find vector wi s.t. Cwi = 1



Local Linear Embedding, 3

Algorithm

Local description: Matrix W such that
∑

j wi ,j = 1

W = argmin{
N∑
i=1

||xi −
∑
j

wi ,jxj ||2}

Projection: Find {z1, . . . , zn} in IRd minimizing

N∑
i=1

||zi −
∑
j

wi ,jzj ||2

Minimize ((I −W )Z )′((I −W )Z ) = Z ′(I −W )′(I −W )Z

Solutions: vectors zi are eigenvectors of (I −W )′(I −W )

I Keeping the d eigenvectors with lowest eigenvalues > 0



Example, Texts



Example, Images

LLE
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Propositionalization

Relational domains

Relational learning

PROS Inductive Logic Programming
Use domain knowledge

CONS Data Mining
Covering test ≡ subgraph matching exponential complexity

Getting back to propositional representation:
propositionalization



West - East trains

Michalski 1983



Propositionalization

Linus (ancestor)
Lavrac et al, 94

West(a)← Engine(a, b), first wagon(a, c), roof (c), load(c , square, 3)...
West(a′)← Engine(a′, b′), first wagon(a′, c ′), load(c ′, circle, 1)...

West Engine(X) First Wagon(X,Y) Roof(Y) Load1 (Y) Load2 (Y)
a b c yes square 3
a’ b’ c’ no circle 1

Each column: a role predicate, where the predicate is determinate
linked to former predicates (left columns) with a single instantiation in

every example



Propositionalization

Stochastic propositionalization

Kramer, 98 Construct random formulas ≡ boolean features

SINUS − RDS
http://www.cs.bris.ac.uk/home/rawles/sinus

http://labe.felk.cvut.cz/∼zelezny/rsd

I Use modes (user-declared) modeb(2,hasCar(+train,-car))

I Thresholds on number of variables, depth of predicates...

I Pre-processing (feature selection)



Propositionalization

DB Schema Propositionalization

RELAGGS
Database aggregates

I average, min, max, of numerical attributes

I number of values of categorical attributes



Apprentissage par Renforcement Relationnel



Propositionalisation

Contexte variable

I Nombre de robots, position des robots

I Nombre de camions, lieu des secours

Besoin: Abstraire et Generaliser

Attributs

I Nombre d’amis/d’ennemis

I Distance du plus proche robot ami

I Distance du plus proche ennemi
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