Functional Brain Imaging, Multi-Objective Optimisation and Spatio-Temporal Data Mining

Michèle Sebag

TAO, Université Paris-Sud

With Nicolas Tarrisson, Olivier Teytaud, Vojtech Krmicek, UPS
Julien Lefevre, Sylvain Baillet, La Pitié-Salpétrière
Motivations

Functional Brain Imagery

- Patients, Experiments, Measures

- Magneto-Encephalography

 1,000 measures per sensor per second.
The data

Spatio-temporal structure

- Sensors $i = 1..N$
- $i \rightarrow \begin{cases} M_i = (x_i, y_i, z_i) & \in \mathbb{R}^3 \\ \{C_i[t], t = 1..T\} & \in \mathbb{R}^T \end{cases}$
Overview

- Spatio-temporal Data Mining
- Multi-Objective Optimisation
- .. + Multi-modal Optimisation
- 4dMiner & Experimental Validation
- Discriminant Spatio-Temporal Patterns
Goal

Find spatio-temporal patterns
- Spatial region $A \subset \mathbb{R}^3$
- Temporal interval $I \subset \{1..T\}$

defining

$$\mathcal{V}(A, I) = \{C_k[t], \ k \in A, \ t \in I\}$$

SUCH THAT

the variance of signals within $\mathcal{V}(A, I)$ is low
and $A \times I$ is a large spatio-temporal region

“active areas of the brain”
Position of the problem

In practice: done manually
- tedious
- non reproducible

Standard approach
1/ Extract a global spatio-temporal model
 Independent Component Analysis
 EM-based clustering of curves
 Markov Random Field
 or,
 Inductive Database
2/ Find specific spatio-temporal patterns from the global model

99.9 of the global model learned is useless
Data Mining

Goal
- From massive amounts of data and knowledge
- Find novel, useful and valid knowledge

Vision

Ideally	Pervasive knowledge
Actually	Specialized expertise
The need	[Human] knowledge management does not scale up
The opportunity	Huge amounts of accessible data
Discussion

Goals
• subjective (novel & useful knowledge)
• multi-objective (valid = precise or general ?)

Requirements
• Scalability
• Flexibility
 → tunable
 → calibrated
 → computational cost must be controllable
any-time algorithm

Zilberstein 98
MEG Mining: Multi-objective optimisation

Search space: Stable Spatio-Temporal Patterns

\[X = \begin{cases}
I = [t_1, t_2] & \text{temporal interval} \\
i & \text{center of the spatial region} \\
r & \text{radius of the spatial region} \\
d_w = (a, b, c) & \text{distance weights} \text{ ellipsoidal regions}
\end{cases} \]

Objectives

- Temporal length \(\ell(X) = t_2 - t_1 \)
- Spatial area \(a(X) = |\mathcal{V}(X)| = |\{j / d_w(i, j) < r \}| \)
- Spatio-temporal alignment

\[\sigma(X) = \frac{1}{\ell(X) \times a(X)} \sum_{j \in \mathcal{V}(X)} \sigma_I(i, j) \]
\(\sigma_I(i, j) \): I-alignment of sensors \(i \) and \(j \)

\[
\sigma_I(i, j) = \langle i, j \rangle_I \times \left(1 - \frac{|\bar{C}^I_i - \bar{C}^I_j|}{|\bar{C}^I_i|}\right)
\]

with

\[
\langle i, j \rangle_I = \frac{\sum_{t=t_1}^{t_2} C_i(t) \cdot C_j(t)}{\sqrt{\sum_{t=t_1}^{t_2} C_i(t)^2} \times \sum_{t=t_1}^{t_2} C_j(t)^2}
\]

\(\bar{C}^I_j = \text{Average } \{ C_j[t], t \in I \} \)
Multi-objective Optimisation

Find \(\text{Arg Max}\{\mathcal{F}_i, \ i = 1, 2\ldots, \mathcal{F}_i : \Omega \rightarrow \mathbb{R}\} \)

Pareto domination

- \(x < y \) iff \(\exists i_0 \ F_{i_0}(x) < F_{i_0}(y) \)

Pareto Front

- Set of non dominated solutions.

objects with highest quality and smallest cost...
An Any-time Approach

Spatio-temporal data mining
- Monotonous criteria (variance increases with I and A)
- Antagonistic criteria (decrease I or A to keep the variance low)

Complete vs Stochastic Search
- For experts to look at
- Aggregate the results of several runs

Multi-Objective Evolutionary Computation

Kalyan Deb 2001
Evolutionary Computation, the skeleton

\[F : \Omega \rightarrow \mathbb{R} \]
Multi-objective evolutionary optimisation

Standard EC
• Initialisation
• Selection
• Variation (crossover, mutation)

Multi-objective EC

Differences
• Goal: sample the Pareto front
• Selection after $\mathcal{F}'(X)$, measuring:
 The Pareto rank of X in the current population
 The percentage of the archive dominated by X

Find $\operatorname{ArgOpt}(\mathcal{F})$

Find $\operatorname{ArgOpt}\{\ell(X), a(X), \sigma(X)\}$

Archive
4d Miner: Multi-Objective Evolutionary Algorithm

Components

- Search space $\Omega \subseteq \mathbb{N}^3 \times \mathbb{R}^4$
 $$\{X = (I, i, r, w), \; I \subset [1, T], \; i \in [1, N], \; r \in \mathbb{R}, \; w \in \mathbb{R}^3\}$$

- Objectives a, ℓ, σ

- Operators
 - Initialisation sampling mechanism
 - average interval length
 - minimal acceptable alignment
 - minimal pattern size
 - Variation operators
Sampling mechanism $X = (i, w, I, r)$

- i: uniformly drawn in $[1, N]$;

- $w = (1, 1, 1)$ \hspace{1cm} \text{initial} = \text{Euclidean}$

- $I =$
 - t_1: uniformly drawn in $[1, T]$
 - $\ell(I)$ drawn $\sim \mathcal{N}(\text{min}_\ell, \text{min}_\ell/10)$ \hspace{1cm} \text{min}_\ell \text{ user supplied} \hspace{1cm}$$
 - \text{reject if } t_1 + \ell(I) > T$

- r: such that the ball contains all neighbors with bounded I-alignment:
 \hspace{1cm} \text{min}_\sigma \text{ user-supplied}$

 $$r = \text{min}_k \{d_w(i, k) \text{ s.t. } \sigma^I_{i,k} > \text{min}_\sigma\}$$

- \text{reject if } a(X) = |\mathcal{B}(i, r)| < \text{min}_a \hspace{1cm} \text{min}_a \text{ user supplied}$

Complexity: $O(N \log N \times \text{min}_\ell)$
First results: Failure!

Diversity of stable spatio temporal patterns
● seems OK...

...but all patterns represent the same spatio-temporal region...

Failure analysis
● Experts are not interested in the Pareto front only.
●... but in ALL active areas of the brain...
Overview

- Spatio-temporal Data Mining
- Multi-Objective Optimisation
 - + Multi-modal Optimisation
- Experimental Validation
- Discussion
Multi-modal optimisation

Goal
FIND ALL global (and local) optima.

Multi-modal heuristics in EC

Niching or Fitness sharing

since Mahfoud, 95

Selection based on

$$F'(X) = \frac{F(X)}{\sum_{X'} \text{sim}(X,X')}$$
Multi-objective multi-modal optimisation

Sharing-Pareto dominance

\[X = (I, i, r, w) \text{ sp-dominates } Y = (I', i', r', w') \text{ iff} \]

- \(X \) Pareto dominates \(Y \) wrt \(a, \ell, \sigma \)
- \(X \) and \(Y \) overlap
 \[\mathcal{V}(X) \cap \mathcal{V}(Y) \neq \emptyset \]
 \[I \cap I' \neq \emptyset \]
Experimental validation

Goals of experiment
- Usability
- Scalability
- Performance / Recall

Datasets
- La Pitié-Salpêtrière
- Artificial datasets
Artificial Datasets

N: number of sensors: $\{500 .. 4000\}$

T: number of time steps: $\{1000 .. 8000\}$
Artificial Datasets, 2

Draw 10 spatio-temporal patterns
Bias signals accordingly
Performances

Recall: percentage of target patterns with representants in the archive.

<table>
<thead>
<tr>
<th></th>
<th>1,000</th>
<th>2,000</th>
<th>4,000</th>
<th>8,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>98 ± 5</td>
<td>93 ± 9</td>
<td>92 ± 7</td>
<td>79 ± 16</td>
</tr>
<tr>
<td>1000</td>
<td>96 ± 6</td>
<td>96 ± 6</td>
<td>82 ± 14</td>
<td>67 ± 12</td>
</tr>
<tr>
<td>2000</td>
<td>96 ± 5</td>
<td>87 ± 12</td>
<td>72 ± 14</td>
<td>49 ± 15</td>
</tr>
<tr>
<td>4000</td>
<td>89 ± 10</td>
<td>81 ± 13</td>
<td>56 ± 14</td>
<td>32 ± 16</td>
</tr>
</tbody>
</table>

Online Performance
Limitations

Very sensitive to the initialisation parameters
Functional Brain Imagery

Stable spatio-temporal pattern

Stable spatio-temporal pattern
Discriminant Spatio-Temporal Patterns

Experimental setting
- A single person
- Setting 1: sees a ball and let it go
- Setting 2: sees a ball and catches it

Goal
- Find STPs with different activities in Setting 1 and Setting 2
 (should be related to motor skills)
Discriminant Spatio-Temporal Patterns

![Graph 1: Time vs. Activity](image1)

![Graph 2: Time vs. Activity](image2)
Discriminant Spatio-Temporal Patterns
Discussion

Discriminative learning
- Given H, hypothesis space
- Find h, discriminating positive and negative examples.

Generative learning
- build D_+, D_- distribution of positive / negative examples
- Example X is positive iff $P_{D_+}(X) > P_{D_-}(X)$
Discussion, 2

Remark
● Generative learning more demanding
● But often more efficient

Why ?
● Easier to incorporate prior knowledge...

Discriminant STPs : a generative approach
● Find relevant hypotheses (STPs)
● Sort the discriminant ones
Contributions: Spatio-temporal data mining

Based on multi-objective optimization as opposed to, constraints
Mannila Toivonen 97

An any-time algorithm
controllable cost \rightarrow effective flexibility
Perspectives

Convergence
Type I and Type II errors

Pruning
a posteriori, increases the precision
(a priori, kills the recall...)

Functional brain imagery and variability
among patients; among trials

Activation scenarios
The “grammar” of cell assemblies activity

Learn the user’s criteria
Interactive optimization
Discriminant Spatio-Temporal Patterns
Sampling mechanism \(X = (i, w, I, r) \)

- \(i \): uniformly drawn in \([1, N]\);
- \(w = (1, 1, 1) \) \(\text{initial} = \text{Euclidean} \)
- \(I = \)
 - \(t_1 \): uniformly drawn in \([1, T]\)
 - \(\ell(I) \) drawn \(\sim \mathcal{N}(\min_{\ell}, \min_{\ell}/10) \) \(\min_{\ell} \text{ user supplied} \)
 - reject if \(t_1 + \ell(I) > T \)
- \(r \): such that the ball contains all neighbors with bounded \(I \)-alignment:
 \[
 r = \min_k \{ d_w(i, k) \text{ s.t. } \sigma^I_{i,k} > \min_\sigma \}
 \]
 - reject if \(a(X) = |\mathcal{B}(i, r)| < \min_a \) \(\min_a \text{ user supplied} \)

Complexity: \(\mathcal{O}(N \log N \times \min_{\ell}) \)
Variation operators

Mutation \(X = (i, w, I, r) \)
- Self adaptive mutation of \(w, r \)
- Specific mutation operators for \(i \) and \(I \).
- Random (initialisation operator)

Crossover \(X = (i, w, I, r) \times Y = (i', w', I', r') \)
- Restricted mating:
 if the spatio-temporal areas are “close enough”
 \textit{user-supplied}
Selection : Pareto Archive

Steady state

- In each step, select an individual (tournament wrt Archive)
- Apply crossover or mutation
- Evaluate
- If non dominated in the population, store :
- Replace an individual (anti-selection)
Artificial datasets

Curves
$N = 500, \ldots, 4,000$
$T = 1,000, \ldots, 8,000$
For $i = 1 \ldots N$
 For $t = 1 \ldots T$
 $C_i(t) = C_i(t - 1) + \epsilon \ast \pm 1$

10 Target patterns
$P = (i \text{ in } 1 \ldots N; \ I \subset [1, T]; \ w \in \mathbb{R}^3; \ r \in \mathbb{R}).$
$C_P = \text{average of } \{C_j(t), t \in I, d_w(i, j) < r\}$

Action
$C_j(t) = (1 - \alpha)C_j(t) + \alpha C_P \times \exp(-d(t, I) - d(i, j))$