
Functional Synchronous Programming
of Reactive Systems

Marc Pouzet
LRI

Marc.Pouzet@lri.fr

Seminar Tao, July 4, 2006

1



Embedded Software

Evolution since the 70’s

• Moore law: the computing power double every 18 months

• 2006: 500 000 000 transistors (Pentium), 4Ghz

• Especially: small dedicated processors everywhere!

– consumer electronics: TV, video, mobile phones

– automotive: electronic systems, ABS, braking systems, electronic key

• dedicated circuits (ASIC), dedicated or general purpose computers executing
software

• now: dynamic reconfiguration, cold (ADSL modem) or hot (industrial systems,
mobile phones)

2



A progressive transition

• first in industrial fields

– replacing mechanical, electro-mechanical, electronic systems

– from relay systems (train) to software systems

– flight commands (from direct mechanics, electro-mechanic support
(Caravelle), analog systems (Concorde) to numerical and software (Airbus
320, 1988))

– regulation systems, control/command of industrial processes

• almost everywhere now

– heater controller, washing machine, TV boxes, etc.

• and it is possible to simulate the whole before building it

3



Embedded real-time systems: characteristics

Hard Real-time Constraints

• the system is submitted to hard real-time constraints

• imposed by the environment (physics does not wait!)

↪→ (statically) bounded response time and memory

Heterogeneous environment

• continuous physical environment: temperature sensors, activators

• and/or discrete: button, threshold, other computers

• a huge number of input/outputs

↪→ the formalism must be able to express this heterogeneity

4



Concurrent and Deterministic Systems

• closed loop systems: a heater controller and the heater itself run in parallel

• concurrency is the natural way for composing systems: control at the same
time rolling and pitching

• the whole system must stay deterministic

• also simpler: reproducibility, easier debugging, simulation

↪→ the formalism must be able to compose sub-systems in parallel
↪→ the model must conciliate concurrency and determinism

Safety is important

• critical systems: fly-by-wire, braking systems, airbags, medical systems

• some systems do not have a stable (safe) position (plane?)

↪→ properties must be guaranteed statically: “dynamic” = “too late”
↪→ languages with a well founded semantics, formal validation

5



Design Domain Specific Languages

• the general-purpose software model is in-adapted: Turing complete, too
expressive, too hard to verify

• complexity is not where it is needed: pointer arithmetics, dynamic allocation,
etc.

• do we need all that?

• concurrency and determinism are absent but there are fundamental!

• far from the mathematical model of the engineer

• design specific languages with a limited expressive power, a formal semantics,
well adapted to the culture of the field

• this culture is rich:

– continuous control (control theory, sampling, etc.)

– discrete control (automata theory, etc.)

6



Continuous control (control theory, signal processing...)

• a signal/event is represented by a discrete sequence (a stream)
↪→ stream equations, generating functions, z-transform
↪→ graphical formalism (block-diagrams)

• manual transcription of these equations into imperative programs

• hard and error-prone

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1

6

ha Z- - h -

?

?

hbX

Y

The idea of Lustre (and Signal) (1984):

• program directly with these stream equations

• provide a compiler and tool analysis

7



Discrete Control

• transition systems (automata), Mealy/Moore machines

• synchronous composition of automata + hierarchy, etc.

• process calculi (Milner’s SCCS)

2’

A/B B/C

1

2

1’

Esterel (82):

• propose a high-level language for concurrent systems

• based on the synchronous composition

• preserving determinism (causality problems are solved)

8



The Synchronous Model of Time

• these languages are based on the zero delay model

– time is logical as the sequence of atomic reaction of the system to input
events

– the system is the parallel composition of sub-systems which (virtually)
execute in parallel

– check afterwoods the correspondence between logical time and physical
time: is the machine fast enough?

i7

o

i

o1 o2 o3 o4 o5 o6 o7

i1 i2 i3 i4 i5 i6

maximum response time maxn∈IN (tn − tn−1) ≤ bound

9



Synchronous Languages

• based on a common model but with different programming styles

• imperative (automata): Esterel, SyncCharts, Argos

• declarative (dataflow): Lustre, Signal

• industrial compiler (and environment) SCADE/Lustre, Esterel-studio
(Esterel-Technologies), Signal/Sildex (TNI)

• formal semantics, hardware and software compilation of the same description,
test tools and automatic verification

• automatic distribution (distributed architectures), (real-time) multi-tasking,
etc.

• industrial succes: avionics (Airbus, Dassault, Eurocopter), ground
transportation (Matra, Audi), circuits (Xilink, TI, Intel)

10



But also...

• simulation tools: Simulink/StateFlow (The MathWorks), Catia
(Dassault-Systèmes), etc.

• very rich plateform to simulate the whole system and its environment

• based on numerical analysis techniques, simulation techniques

• (partial) code generation, verification tools, etc.

• these tools are not that far from synchronous tools

• block-diagram description à la SCADE with Simulink; state-transition systems
à la SyncCharts with StateFlow...

• but they have not been designed with a programming discipline in mind (where
what is executed is exactly what is modeled and simulated)

• informal semantics (code certification, good code quality?), formal
proof/verification tools?

• what is is simulated and what is executed must be the same!

11



Software Factory with Catia + LCM (Dassault-Systèmes)

12



Needs for Synchronous Tools and Models

• master the complexity and large scale systems

– what to do with all these transistors?

– critical systems become big: 500 000 lines of code for the fly-by-wire
command of the A380

– some companies only specify the system and assemble the code made by
others

• modularity (libraries), abstraction mechanism

• “langage” tools (vs verification) which give guaranty at compile time:
automatic type and clock inference (mandatory in a graphical environment),
deadlock freedom, etc.

• how to combine dataflow (e.g., Lustre) and control-flow (e.g., Esterel) in a
uniform way?

• links with tools for formal certification (code certification is mandatory in civil
avionics, DO 178B norm)

• code certification, link with proof assistant

13



The origin of Lucid Synchrone

In 95, with Paul Caspi (VERIMAG)

What are the relationships between:

• Kahn process networks

• synchronous data-flow programming (e.g., Lustre)

• tools and models of control theory/signal processing

• lazy functional programming (e.g., Haskell)

• types and clocks

• state machines and stream functions

What can we learn from bringing together synchronous programming and
functional programming?

14



Lucid Synchrone

Build a “laboratory” language

• study the extensions of Lustre (synchronous and functional)

• experiment things and write programs!

• Version 1 (1995), Version 2 (2001), V3 (2006)

15



Semantics

• Synchronous Kahn networks [ICFP’96]

• Clocks as dependent types [ICFP’96]

• synchronous stream functions and transition systems (co-induction vs
co-itération) [CMCS’98]

• ML-like clock calculus [Emsoft’03]

• causality analysis [ESOP’01]

• initialization analysis [SLAP’03, STTT’04]

• higher-order and typing [Emsoft’04]

• data-flow and state machines [Emsoft’05]

• N-Synchronous Kahn Networks [Emsoft’05, POPL’06]

16



Some examples (V3)

• int denote the type of streams of integers,

• 1 denotes an (infinite) constant stream of 1,

• usual primitives apply point-wise

c t f t . . .

x x0 x1 x2 . . .

y y0 y1 y2 . . .

if c then x else y x0 y1 x2 . . .

17



Combinatorial functions

Example: 1-bit adder

let xor x y = (x & not (y)) or (not x & y)

let full_add(a, b, c) = (s, co)

where

s = (a xor b) xor c

and co = (a & b) or (b & c) or (a & c)

The compiler automatically computes the type and clock signature.

val full_add : bool * bool * bool -> bool * bool

val full_add :: ’a * ’a * ’a -> ’a * ’a

18



Full Adder (hierarchical)

Compose two “half adder”

let half_add(a,b) = (s, co)

where

s = a xor b

and co = a & b

Instanciate twice

let full_add(a,b,c) = (s, co)

where

rec (s1, c1) = half_add(a,b)

and (s, c2) = half_add(c, s1)

and co = c1 or c2
c1

a

b

s1

c
s

s2
co

19



Sequential Functions

Operators fby, ->, pre

• fby: unitary (initialized) delay

• ->: initialization

• pre: un-initialized delay (register in circuits)

x x0 x1 x2 . . .

y y0 y1 y2 . . .

x fby y x0 y0 y1 . . .

pre x nil x0 x1 . . .

x -> y x0 y1 y2 . . .

20



Sequential Functions

• Stream functions may depend on the past (statefull systems)

• Example: edge front detector

let node edge x = x -> not (pre x) & x

val sum : int => int

val sum :: ’a -> ’a

x t f t t t f . . .

edge x t f t f f f . . .

In V3, we distinguish combinatorial function (->) from sequential functions (=>)

21



Polymorphism (code reuse)

let node delay x = x -> pre x

val delay : ’a => ’a

val delay :: ’a -> ’a

let node edge x = false -> x <> pre x

val edge : ’a => ’a

val edge :: ’a -> ’a

In Lustre, polymorphism is limited to a set of predefined operators (e.g.,
if/then/else, when) and does not pass abstraction.

22



Library and Curryfication

(* module Numerical *)

let node integr dt x0 dx = x where

rec x = x0 -> pre x +. dx *. dt

val integr : float -> float -> float => float

val integr :: ’a -> ’a -> ’a -> ’a

(* module Main *)

let static dt = 0.001

let integr = integr dt

val integr : float -> float => float

val integr :: ’a -> ’a -> ’a

23



Example: the inverted pendulum

Specification: control an inverted pendulum

l ∗ d2θ
dt2 = sin(θ) ∗ (d2y0

dt2 + g)− (cos(θ) ∗ d2x0
dt2 )

x = x0 + l.sin(θ)

y = y0 + l.cos(θ)

l

(x0,y0)

(x,y)

24



Main module:

Constants:

let static dt = 0.001 (* sampling step *)

and static l = 10.0 (* length *)

and static g = 9.81 (* acceleration *)

(* partial application with fixed step *)

let integr = Numerical.integr dt

let deriv = Numerical.deriv dt

The equation of the pendulum

let node pendulum d2x0 d2y0 = theta where

rec theta = integr (integr ((sin thetap)*.(d2y0 +. g)

-.(cos thetap)*.d2x0)/.l)

and thetap = 0.0 -> pre theta

25



Reject programs

Reject program which cannot be executed sequentially

let node pendul d2x0 d2y0 = theta

where rec theta =

integr (integr ((sin theta)*.(d2y0 +. g)

^^^^^^

-.(cos theta)*.d2x0)/.l)

thetap depends instantaneously on itself

• a “syntactical” criteria: a recursion must cross a delay

• a type system, with Pascal Cuoq [ESOP’01]

• thus, with type signatures (interfaces)

• modular and higher-order

26



Reject programs

Reject program for which the result depend on the initial value of some delays

let node pendul d2x0 d2y0 = theta

where rec theta =

integr (integr ((sin (pre theta)*.(d2y0 +. g)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

-.(cos (pre theta))*.d2x0)/.l)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

this expression may not be initialized

• 1-bit abstraction

• a type system (with sub-typing rules), with JL-Colaço from
Esterel-Technologies [SLAP’02, STTT’04]

• works well for SCADE

• tested on real-size examples (75000 lines) at Esterel-Tech.

27



Clocks: mix several time-scale

• mix slow and fast processes in a safe way?

• multi-sampled systems (software), multi-clock (hardware)

• introduced in Lustre and Signal at the very beginning

• also present in Simulink (periodic systems)

In Lucid Synchrone, a clock is a type and is automatically inferred

28



Two operators

when (under-sampling) and merge (over-sampling)

c t t f f t f . . .

x x0 x1 x2 x3 x4 x5 . . .

x when c x0 x1 x4 . . .

x whenot c x2 x3 x5 . . .

y y0 y1 y2 . . .

merge c y (x whenot c) y0 y1 x2 x3 y2 x5 . . .

29



Example

let node sum x = s where rec s = x -> pre s + x

let node sampled_sum x c = sum (x when c)

val sampled_sum : int -> bool => int

val sampled_sum :: ’a -> (_c0:’a) -> ’a on _c0

let clock ten = count 10 true

let node sum_ten x = sampled_sum x ten

val ten : bool

val ten :: ’a

val sum_ten : int => int

val sum_ten :: ’a -> ’a on ten

30



Over-sampling

• Define systems whose internal rate is faster that the rate of their inputs?

• express temporal constraints, scheduling, resources

Example: Computation of x^5

let node power x = x * x * x * x * x

let clock four = count 4 true

let node spower x = y where

rec i = merge four x ((1 fby i) whenot four)

and o = 1 fby (i * merge four x (o whenot four))

and y = o when four

val power :: ’a -> ’a

val spower :: ’a on four -> ’a on four

31



y on four

0

1

0

*

1

1
x on four

four

four

four

1

four t f f f t f f f t f f ...

x x0 x1 x2 ...

i x0 x0 x0 x0 x1 x1 x1 x1 x2 x2 x2 ...

o 1 x2
0 x3

0 x4
0 x5

0 x2
1 x3

1 x4
1 x5

1 x2
2 x3

2 ...

spower x 1 x5
0 x5

1 ...

power x x5
0 x5

1 x5
2 ...

Property: 1 fby (power x) and spower x are observationally equivalent

32



Clock Constraints and Synchrony

-

- odd -

&

-

-

The computation of (xn &x2n)n∈IN is not real-time

let odd x = x when half

let non_synchronous x = x & (odd x)

^^^^^^^^

This expression has clock ’a on half, but is used with clock ’a.

Execution with unbounded FIFOs!!!

• clocks = an information about the behavior of streams

• clocks = types

• the merge and type based clock calculus is reused in the ReLuC compiler of
SCADE

33



Higher-order

Iteration:

FBY

x
F

z

y
itx

z
F y

let node it f z x = y

where rec y = f x (init fby y)

val it : (’b -> ’a -> ’a) -> ’a -> ’b => ’a

val it :: (’b -> ’a -> ’a) -> ’a -> ’b -> ’a

Example:

let node sum x = it (+) 0 x

let node mult x = it (*) 1 x

34



Mixed systems (data-flow + automata)

Data-dominated systems: sampled systems, block-diagram formalisms
↪→ Simulation tools: Simulink, etc.
↪→ Programming languages: Scade/Lustre, Signal, etc.

Control dominated systems: transition systems, event systems, automata
formalisms
↪→ StateFlow, StateCharts
↪→ SyncCharts, Argos, Esterel, etc.

What about mixed designs?

• real systems are a mix of both styles: systems have running modes

• each mode is defined by a control law, naturally written with data-flow
equations

• a transition system for switching between these modes

35



Extend SCADE/Lustre with state machines

Existing solutions

• two (or more) specific languages: one for the data part, one for the control part

• “linking” mechanisms: a sequential system is always more or less of the form

– a transition function f : S × I → O × S

– an initial memory M0 : S

• agree on a common representation + glue

• exist in most academic or industrial tools

• PtolemyII, Simulink + StateFlow, Lustre + Esterel Studio SSM, etc.

36



An example: the cruise control (SCADE V4.2)

37



Observations

• automata only appear at the leaves of the data-flow model: we need a finer
integration

• force the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

• the control structure is not explicit and is hidden in boolean values: nothing
say that modes are exclusive

• code certification?

• efficiency/simplicity of the code?

• how to exploit this information in static analysis and verification tools?

38



The Approach

• extend a synchronous data-flow language (Lustre) with automata constructs

• base it on a unified theory of synchronous systems

• produce efficient code (which compete with ad-hoc techniques)

• efficient compilation techniques, conservative (accept all SCADE/Lustre)

Two implementations

• ReLuC compiler of SCADE at Esterel-Tech.

• Lucid Synchrone V3

39



A simple example: the Franc/Euro converter

eu = v/6.55957;

c

cc

v fr

eu

EuroFranc

fr = v; fr = v*6.55957;

eu = v;

In Lucid Synchrone syntax:

let node converter v c = (euro, fr) where

automaton

Franc -> do fr = v and eur = v / 6.55957

until c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

until c then Franc

end

40



The Cruise Control (SCADE V6)

41



Other Examples

• the cruise control

• the heater

• the (Milner) coffee machine

• approximation methods (Euler, Runge-Kutta)

42



Laboratory language

Collaboration with the SCADE team since 1999

• the ReLuC compiler of SCADE is based (and improves) techniques introduced
in Lucid Synchrone

• typing, clock calculus

• some constructions (e.g., merge)

• static analysis (initialization)

• design/semantics of SCADE V6

Collaboration with Athys (Dassault-Systèmes) for the integration of a
programming environment into the Catia suite for industrial systems (LCM)

• automatic type synthesis (with polymorphism)

• other type-based analysis

43



Conclusion and Future Works

Compilation, semantics

• other extensions, program analysis, etc.

• certified compilation (for software and hardware), proof assistant tools

Relaxed Synchrony for Video Systems

• relax (a little) the clock calculus in order to compose non strictly synchronous
systems but which can be synchronized through the insertion of buffers

• model of N-Synchronous Kahn Networks [Emsoft’05, POPL’06]

• with the Alchémy project (INRIA) and Philips NatLabs

Take Physical Resources into Account

• how to model real (physical) time, resources?

• how to compile synchrony on a pipelined machine (or a compiled parallel
machine)?

44


