Functional Synchronous Programming
of Reactive Systems

Marc Pouzet
LRI

Marc.PouzetQ@lri.fr

Seminar Tao, July 4, 2006

Embedded Software

Evolution since the 70’s
e Moore law: the computing power double every 18 months

e 2006: 500 000 000 transistors (Pentium), 4Ghz

e Especially: small dedicated processors everywhere!
— consumer electronics: TV, video, mobile phones
— automotive: electronic systems, ABS, braking systems, electronic key

e dedicated circuits (ASIC), dedicated or general purpose computers executing

software

e now: dynamic reconfiguration, cold (ADSL modem) or hot (industrial systems,
mobile phones)

A progressive transition

e first in industrial fields
— replacing mechanical, electro-mechanical, electronic systems
— from relay systems (train) to software systems

— flight commands (from direct mechanics, electro-mechanic support

(Caravelle), analog systems (Concorde) to numerical and software (Airbus
320, 1988))

— regulation systems, control/command of industrial processes

e almost everywhere now

— heater controller, washing machine, TV boxes, etc.

e and it is possible to simulate the whole before building it

Embedded real-time systems: characteristics
Hard Real-time Constraints
e the system is submitted to hard real-time constraints
e imposed by the environment (physics does not wait!)

— (statically) bounded response time and memory

Heterogeneous environment
e continuous physical environment: temperature sensors, activators
e and/or discrete: button, threshold, other computers
e a huge number of input/outputs

— the formalism must be able to express this heterogeneity

Concurrent and Deterministic Systems
e closed loop systems: a heater controller and the heater itself run in parallel

e concurrency is the natural way for composing systems: control at the same

time rolling and pitching
e the whole system must stay deterministic
e also simpler: reproducibility, easier debugging, simulation

— the formalism must be able to compose sub-systems in parallel

— the model must conciliate concurrency and determinism

Safety is important
e critical systems: fly-by-wire, braking systems, airbags, medical systems
e some systems do not have a stable (safe) position (plane?)

— properties must be guaranteed statically: “dynamic” = “too late”

— languages with a well founded semantics, formal validation

Design Domain Specific Languages

the general-purpose software model is in-adapted: Turing complete, too

expressive, too hard to verify

complexity is not where it is needed: pointer arithmetics, dynamic allocation,

etc.

do we need all that?

concurrency and determinism are absent but there are fundamental!
far from the mathematical model of the engineer

design specific languages with a limited expressive power, a formal semantics,
well adapted to the culture of the field

this culture is rich:

— continuous control (control theory, sampling, etc.)

— discrete control (automata theory, etc.)

Continuous control (control theory, signal processing...)

e a signal/event is represented by a discrete sequence (a stream)
— stream equations, generating functions, z-transform

— graphical formalism (block-diagrams)
e manual transcription of these equations into imperative programs

e hard and error-prone

YO — bXO , Vn Yn_|_1 = CLYn + bXn_|_1 7/ AN >

The idea of Lustre (and Signal) (1984):

e program directly with these stream equations

e provide a compiler and tool analysis

Discrete Control

e transition systems (automata), Mealy /Moore machines
e synchronous composition of automata + hierarchy, etc.

e process calculi (Milner’s SCCS)

foi
I e

e propose a high-level language for concurrent systems

Esterel (82):

e based on the synchronous composition

e preserving determinism (causality problems are solved)

The Synchronous Model of Time

e these languages are based on the zero delay model

— time is logical as the sequence of atomic reaction of the system to input

events

— the system is the parallel composition of sub-systems which (virtually)
execute in parallel

— check afterwoods the correspondence between logical time and physical
time: is the machine fast enough?

il i 2 i3 i 4 i 5 I 6

i 7
I | | | | |
1 1 1 \ \
(0] | | | | | | |
| | | | | | |
06 o7

ol 02 03 o4 o5

maximum response time max,cin(t, — tn—1) < bound
ne n n

Synchronous Languages

based on a common model but with different programming styles
imperative (automata): Esterel, SyncCharts, Argos
declarative (dataflow): Lustre, Signal

industrial compiler (and environment) SCADE /Lustre, Esterel-studio
(Esterel-Technologies), Signal /Sildex (TNI)

formal semantics, hardware and software compilation of the same description,

test tools and automatic verification

automatic distribution (distributed architectures), (real-time) multi-tasking,

etc.

industrial succes: avionics (Airbus, Dassault, Eurocopter), ground
transportation (Matra, Audi), circuits (Xilink, TI, Intel)

But also...

simulation tools: Simulink/StateFlow (The MathWorks), Catia

(Dassault-Systemes), etc.

very rich plateform to simulate the whole system and its environment
based on numerical analysis techniques, simulation techniques
(partial) code generation, verification tools, etc.

these tools are not that far from synchronous tools

block-diagram description a la SCADE with Simulink; state-transition systems
a la SyncCharts with StateFlow...

but they have not been designed with a programming discipline in mind (where
what is executed is exactly what is modeled and simulated)

informal semantics (code certification, good code quality?), formal
proof/verification tools?

what is is simulated and what is executed must be the same!

Software Factory with Catia + LCM (Dassault-Systemes)

Insert Tools ‘Window Help
Al

HEE

Edit Miew

701 | fi&) mapping |

SEEBS vADR

il
jopos1.Start ?cmd_gopos2.Start

|

—{ p | 0_gopos1 <-frue |

o_goposi <-false | P | o_gopos

cmd_goposi.End <- () ‘ P | emd_gof

Mapping | .BreakPoint | WatchListl |

SimulationBlock

5 SimulationBlock.
Ig IL_Main
Source_1
Cantrol
MAIN

LINE
LOAD

cmd_gopos

cmd_goposZ

-15 i_pos ink — 1

Auto

o_gopos]

Q/

o

RUN PROCESS STOP

0_goposz

]

. UNLOAD “ ° . .
| N E | WELDING PRODUCTION 5
[&EHS L BEooEL D se R WM o o Ees R EenQQ 5 B0 66 E p;m

SimProcess |

——— ¥ : T
12 start et 7 | @ Eiusers|SCRIDELMIA... | [ER Microsoft PowerPoint... [3] DELMIA Automation V... G- 100% 2 &[0

Needs for Synchronous Tools and Models

master the complexity and large scale systems
— what to do with all these transistors?

— critical systems become big: 500 000 lines of code for the fly-by-wire
command of the A380

— some companies only specify the system and assemble the code made by

others
modularity (libraries), abstraction mechanism

“langage” tools (vs verification) which give guaranty at compile time:
automatic type and clock inference (mandatory in a graphical environment),

deadlock freedom, etc.

how to combine dataflow (e.g., Lustre) and control-flow (e.g., Esterel) in a

uniform way?

links with tools for formal certification (code certification is mandatory in civil
avionics, DO 178B norm)

code certification, link with proof assistant

The origin of Lucid Synchrone
In 95, with Paul Caspi (VERIMAG)

What are the relationships between:
e Kahn process networks
e synchronous data-flow programming (e.g., Lustre)
e tools and models of control theory/signal processing
e lazy functional programming (e.g., Haskell)
e types and clocks
e state machines and stream functions

What can we learn from bringing together synchronous programming and

functional programming?

Lucid Synchrone
Build a ‘“laboratory” language
e study the extensions of Lustre (synchronous and functional)

e experiment things and write programs!

e Version 1 (1995), Version 2 (2001), V3 (2006)

Semantics

Synchronous Kahn networks [ICFP’96]
Clocks as dependent types [ICFP’96]

synchronous stream functions and transition systems (co-induction wvs
co-itération) [CMCS’98]

ML-like clock calculus [Emsoft’03]
causality analysis [ESOP’01]

initialization analysis [SLAP’03, STTT’04]
higher-order and typing [Emsoft’04]

data-flow and state machines [Emsoft’05]

N-Synchronous Kahn Networks [Emsoft’05, POPL’06]

Some examples (V3)

e int denote the type of streams of integers,

e 1 denotes an (infinite) constant stream of 1,

e usual primitives apply point-wise

C t f t
X Lo I I
y Yo Y1 Y2
if ¢ then x else y | g Y1 22

Combinatorial functions
Example: 1-bit adder

let xor x y = (x & not (y)) or (not x & y)

let full_add(a, b, c) = (s, co)
where
s = (a xor b) xor c
and co = (a & b) or (b & c) or (a & c)

The compiler automatically computes the type and clock signature.

val full _add : bool * bool * bool -> bool * bool

val full add :: ’a * ’a x ’a -> ’a *x ’a

Full Adder (hierarchical)

Compose two “half adder”

let half_add(a,b) = (s, co)
where
S = a xor b

and co = a & b

Instanciate twice

let full_add(a,b,c) = (s, co)
where
rec (s1, c1) = half_add(a,b)
and (s, c2) = half_add(c, s1)

and co = cl or c2

sl

cl

S2
rﬁ) co

N

Sequential Functions
Operators fby, —>, pre
e fby: unitary (initialized) delay
e —>: initialization

e pre: un-initialized delay (register in circuits)

X Wiy I o

y Yo Y1 Y2

x fby y | zo Yo W1

pre x nil x9 a1

X =2y | o Y1 Y2

Sequential Functions

e Stream functions may depend on the past (statefull systems)

e Example: edge front detector

let node edge x = x -> not (pre x) & x

val sum : 1int => int
val sum :: ’a -> ’a
X t t

~ | <+
— |
|

f
edge x |t f t

In V3, we distinguish combinatorial function (->) from sequential functions (=>)

Polymorphism (code reuse)

let node delay x = x —-> pre X

val delay : ’a => ’a

val delay :: ’a -> ’a

let node edge x = false -> x <> pre x

val edge : ’a => ’a

val edge :: ’a -> ’a

In Lustre, polymorphism is limited to a set of predefined operators (e.g.,

if/then/else, when) and does not pass abstraction.

Library and Curryfication

(* module Numerical *)
let node integr dt x0 dx = x where

rec x = x0 -> pre x +. dx *. dt
val integr : float -> float -> float => float
val integr :: ’a -> ’a -> ’a -> ’a
(* module Main *)
let static dt = 0.001

let integr = integr dt

val integr : float -> float => float

val integr :: ’a -> ’a -> ’a

Example: the inverted pendulum

Specification: control an inverted pendulum
(X,y)
2 , 2 2
[% % = sin(0) * (dd% + g) — (cos() * dd%)
xr = xg+ l.sin(6)

y = yo + l.cos(0)

(x0, y0)

Main module:

Constants:

let static dt = 0.001 (* sampling step *)
and static 1 = 10.0 (* length *)

and static g = 9.81 (* acceleration *)

(x partial application with fixed step *)
let integr = Numerical.integr dt

let deriv = Numerical.deriv dt

The equation of the pendulum

let node pendulum d2x0 d2y0 = theta where
rec theta = integr (integr ((sin thetap)x*.(d2y0 +. g)
—. (cos thetap)*.d2x0)/.1)
and thetap = 0.0 -> pre theta

Reject programs
Reject program which cannot be executed sequentially

let node pendul d2x0 d2y0 = theta
where rec theta =

integr (integr ((sin theta)*.(d2y0 +. g)

PN AN AN AN AN

—.(cos theta)*.d2x0)/.1)

thetap depends instantaneously on itself
e a “syntactical” criteria: a recursion must cross a delay
e a type system, with Pascal Cuoq [ESOP’01]
e thus, with type signatures (interfaces)

e modular and higher-order

Reject programs
Reject program for which the result depend on the initial value of some delays

let node pendul d2x0 d2y0 = theta
where rec theta =
integr (integr ((sin (pre theta)*.(d2y0 +. g)

PN N NN NN NN NN NN NN NN NN NN NN NN NN AN

PN NN NN AN AN AN AN ANANANANANANANANANANN

this expression may not be initialized
e 1-bit abstraction

e a type system (with sub-typing rules), with JL-Colago from
Esterel-Technologies |[SLAP’02, STTT’04]

e works well for SCADE

e tested on real-size examples (75000 lines) at Esterel-Tech.

Clocks: mix several time-scale

e mix slow and fast processes in a safe way?

e multi-sampled systems (software), multi-clock (hardware)
e introduced in Lustre and Signal at the very beginning

e also present in Simulink (periodic systems)

In Lucid Synchrone, a clock is a type and is automatically inferred

when (under-sampling) and merge (over-sampling)

Two operators

C t t f f t f
X To X1 Ty XT3 T4 I
X when ¢ To I L4
X whenot c Tro I3 Is
y Yo Y1 Y2
merge ¢ y (x whenot c) | yo Y1 X2 X3 Y2 Ts

Example
let node sum x = s where rec s = X -> pre s + X

let node sampled_sum x ¢ = sum (x when c)

val sampled_sum : int -> bool => int

val sampled_sum :: ’a -> (_cO:’a) -> ’a on _cO

let clock ten = count 10 true

let node sum_ten x = sampled_sum x ten

val ten : Dbool
val ten :: ’a
val sum_ten : 1nt => 1int

val sum _ten :: ’a -> ’a on ten

Over-sampling
e Define systems whose internal rate is faster that the rate of their inputs?
e express temporal constraints, scheduling, resources
Example: Computation of x~5

let node power x = X * X * X * X * X

let clock four = count 4 true
let node spower x = y where
rec i = merge four x ((1 fby i) whenot four)
and o = 1 fby (i * merge four x (o whenot four))

and y = o when four

val power :: ’a -> ’a

val spower :: ’a on four -> ’a on four

X on four J}
1

|| 'y on four

1 four
f our
four ¢t f f f t f f f t 5 f
X o I 9
1 Wiy Lo iy iy I I I I I I L2
0 1 :I;% :L'% a:% :1:8 .%‘% a:? :1:‘1L :c? :L'% a:%
5 5
spower = | 1 g X9
power T | I§ T3 75

Property: 1 fby (power x) and spower x are observationally equivalent

Clock Constraints and Synchrony

odd

Y
Y

Y

The computation of (x, & T2,)nev is not real-time

let odd x = x when half

let non_synchronous x = x & (odd x)

PN AN AN AN AN AN AN

This expression has clock ’a on half, but is used with clock ’a.

Execution with unbounded FIFOs!!!
e clocks = an information about the behavior of streams
e clocks = types

e the merge and type based clock calculus is reused in the ReLuC compiler of

SCADE

Higher-order

Iteration:

FBY

I 2

let node it £ z x = y
where rec y = f x (init fby y)

val it : (b -> ’a -> ’a) -> ’a -> ’b => ’a
val it :: (b -> ’a -> ’a) -> ’a -> ’b -> ’a
Example:

let node sum x = it (+) 0 x
let node mult x = it (*%) 1 x

Mixed systems (data-flow 4+ automata)

Data-dominated systems: sampled systems, block-diagram formalisms
— Simulation tools: Simulink, etc.

— Programming languages: Scade/Lustre, Signal, etc.

Control dominated systems: transition systems, event systems, automata
formalisms
— StateFlow, StateCharts
— SyncCharts, Argos, Esterel, etc.

What about mixed designs?

e real systems are a mix of both styles: systems have running modes

e cach mode is defined by a control law, naturally written with data-flow

equations

e a transition system for switching between these modes

Extend SCADE/Lustre with state machines

Existing solutions
e two (or more) specific languages: one for the data part, one for the control part

e “linking” mechanisms: a sequential system is always more or less of the form
— a transition function f: S x I — 0O x S

— an initial memory My : S
e agree on a common representation + glue
e exist in most academic or industrial tools

e Ptolemyll, Simulink + StateFlow, Lustre + Esterel Studio SSM, etc.

An example: the cruise control (SCADE V4.2)

-)
I 0ff >

I > RegulON

Cruise State N
e >
Brake —I— RegulOFF

PedalsPressed

1 >

FAocel RegulSTDBY

(= I B

Speed

>

Set
- >

QuickAceql Cruise Speed

Cruise Speedhigt Regulator

>
Quick Decel J‘ | Throttle Cmd
I N . 0.0 »—| 0.0 'J Fecel

Speed

fr Enabled

Regulation &

AcceleratorPressed BrakePressed/
or Speed0utOffLimits/

StandBy
"\t/Requl_STDEY

Interrupt
Regul_OFF,

4/

not (SpeedOutOffLimits
Off? or AcceleratorPressed) /

esume and
not BrakePressed/

Observations

automata only appear at the leaves of the data-flow model: we need a finer

integration

force the programmer to make decisions at the very beginning of the design

(what is the good methodology?)

the control structure is not explicit and is hidden in boolean values: nothing

say that modes are exclusive
code certification?
efficiency /simplicity of the code?

how to exploit this information in static analysis and verification tools?

The Approach

e extend a synchronous data-flow language (Lustre) with automata constructs

e base it on a unified theory of synchronous systems

e produce efficient code (which compete with ad-hoc techniques)

e efficient compilation techniques, conservative (accept all SCADE /Lustre)
Two implementations

e ReLuC compiler of SCADE at Esterel-Tech.

e Lucid Synchrone V3

A simple example: the Franc/Euro converter

Fr anc Eur o

fr = v; fr = v*6. 55957;
eu = v/ 6.55957; eu = v;

In Lucid Synchrone syntax:

let node converter v ¢ = (euro, fr) where

automaton

v and eur = v / 6.55957
until c¢ then Euro
| Euro -> do fr = v * 6.55957 and eu = v

until ¢ then Franc

Franc -> do fr

end

(e off)
Percent ™\
/
Focel Throttle Cmd
real N
0
0.0 %
Cruise Speed
\ w
<1>
off f

The Cruise Control (SCADE V6)

On

(6

Regulation

(6 RegulOn

cruise_speed

}_; Speed

Speed

Percernt
Regulator

AN
7/
Throttle Cmd

<1>

accele

heti

not

!

QuickAccel

Cruise Speedhvigt

cruise_speed N\

Cruise Speed

|_ bogl

Quick Decel

Spead

Speed

SpeedLlimit

bool

between

\.

(

StandBy

Fecel

Percent ™\
7

Throttle Cmd

A

Interrupt

Fecel

Percent

N
/

Throttle Cmd

>ﬁ|i
Brake

el

b

PedalsPressed | bool

Focel

brake

accelerator

Other Examples

the cruise control
the heater
the (Milner) coffee machine

approximation methods (Euler, Runge-Kutta)

Laboratory language
Collaboration with the SCADE team since 1999

e the ReLuC compiler of SCADE is based (and improves) techniques introduced
in Lucid Synchrone

e typing, clock calculus

e some constructions (e.g., merge)
e static analysis (initialization)

e design/semantics of SCADE V6

Collaboration with Athys (Dassault-Systemes) for the integration of a
programming environment into the Catia suite for industrial systems (LCM)

e automatic type synthesis (with polymorphism)

e other type-based analysis

Conclusion and Future Works
Compilation, semantics
e other extensions, program analysis, etc.
e certified compilation (for software and hardware), proof assistant tools

Relaxed Synchrony for Video Systems

e relax (a little) the clock calculus in order to compose non strictly synchronous
systems but which can be synchronized through the insertion of buffers

e model of N-Synchronous Kahn Networks [Emsoft’05, POPL’06]
e with the Alchémy project (INRIA) and Philips NatLabs

Take Physical Resources into Account
e how to model real (physical) time, resources?

e how to compile synchrony on a pipelined machine (or a compiled parallel
machine)?

