
Reinforcement Learning

Michèle Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS − INRIA − Université Paris-Sud

Jan. 14th, 2019
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

1 / 62

Where we are

MDP Main Building block

General settings

Model-based Model-free

Finite Dynamic Programming Discrete RL

Infinite (optimal control) Continuous RL

Last course: Function approximation
This course: Direct policy search; Evolutionary robotics

2 / 62

Position of the problem

Notations

I State space S
I Action space A
I Transition model p(s, a, s ′) 7→ [0, 1]

I Reward r(s) bounded

Mainstream RL: based on values

V ∗ : S 7→ IR π∗(s) = arg opt
a∈A

(∑
s′

p(s, a, s ′)V ∗(s ′)

)

Q∗ : S ×A 7→ IR π∗(s) = arg opt
a∈A

(Q∗(s, a))

What we want
π : S 7→ A

Aren’t we learning something more complex than needed ?...
⇒ Let us consider Direct policy search

3 / 62

From RL to Direct Policy Search

Direct policy search: define

I Search space (representation of solutions)

I Optimization criterion

I Optimization algorithm

4 / 62

Examples

5 / 62

Representation

1.Explicit representation ≡ Policy space
π is represented as a function from S onto A

I Non-parametric representation, e.g. decision tree or random forest

I Parametric representation. Given a function space, π is defined by a vector
of parameters θ.

πθ =

Linear function on S
Radius-based function on S
(deep) Neural net

E.g. in the linear function case, given s ∈ S = IRd and θ in IRd ,

πθ(s) = 〈s, θ〉

6 / 62

Representation
2. Implicit representation: for example Trajectory generators
π(s) is obtained by solving an auxiliary problem. For instance,

I Define desired trajectories Dynamic movement primitives

I Trajectory τ = f (θ)

I Action = getting back to the trajectory given the current state s

7 / 62

Direct policy search in RL

Two approaches

I Model-free approaches

I Model-based approaches

History

I Model-free approaches were the first ones; they work well but i) require
many examples; ii) these examples must be used in a smart way.

I Model-based approaches are more recent. They proceed by i) modelling
the MDP from examples (this learning step has to be smart); ii) using the
model as if it were a simulator.
Important points: the model must give a prediction and a confidence
interval (will be very important for the exploration).

8 / 62

DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

9 / 62

The model-free approach

Algorithm

1. Explore: Generate trajectories τi = (si,t , ai,t)
T
t=1 after πθk

2. Evaluate:
I Compute quality of trajectories Episode-based
I Compute quality of (state-action) pairs Step-based

3. Update: compute θk+1

Two modes
I Episode-based

I learn a distribution Dk over Θ
I draw θ after Dk , generate trajectory, measure its quality
I bias Dk toward the high quality regions in Θ space

I Step-based
I draw at from π(st , θk)
I measure qθ(s, a) from the cumulative reward gathered after having visited

(s, a)

10 / 62

Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

I

11 / 62

Model-free Episode-based DPS. PROS
Getting rid of Markovian assumption

I Rover on Mars: take a picture of region 1, region 2, ...

11 / 62

PROS, 2

Hopes of scalability

I With respect to continuous state space

I No divergence even under function approximation

Tackling more ambitious goals also see Evolutionary RL

I Partial observability does not hurt convergence (though increases
computational cost)

I Optimize controller (software) and also morphology of the robot
(hardware);

I Possibly consider co-operation of several robots...

12 / 62

Model-free Episode-based DPS. CONS

Lost the global optimum properties

I Not a well-posed optimization problem in general

I Lost the Bellman equation ⇒ larger variance of solutions

A noisy optimization problem

I Policy π → a distribution over the trajectories (depending on starting
point, on noise in the environment, sensors, actuators...)

I V (θ) =def IE
[∑

t γ
trt+1|θ

]
or

V (θ) =def IEθ [J(trajectory)]

I In practice

V (θ) ≈ 1

K

K∑
i=1

J(trajectory i)

How many trajectories are needed ?

Requires tons of examples

13 / 62

CONS, 2

The in-situ vs in-silico dilemma

I In-situ: launch the robot in the real-life and observe what happens
I In-silico: use a simulator

I But is the simulator realistic ???

The exploration vs exploitation dilemma

I For generating the new trajectories

I For updating the current solution θ

θt+1 = θt − αt∇V (θ)

Very sensitive to the learning rate αt .

14 / 62

The model-free approach, how

An optimization objective

An optimization mechanism

I Gradient-based optimization

I Define basis functions φi , learn αi

I Use black-box optimization

15 / 62

Cumulative value, gradient

The cumulative discounted value

V (s0) = r(s) +
∑
t=1

γtr(st)

with st+1 next state after st for policy πθ

The gradient
∂V (s0, θ)

∂θ
≈ V (s0, θ + ε)− V (s0, θ − ε)

2ε

I Model p(st+1|st , at , θ) not required but useful

I Laarge variance ! many samples needed.

A trick

I Using a simulator: Fix the random seed and reset

I No variance of V (s0, θ), much smaller variance of its gradient

16 / 62

Average value, gradient

No discount: long term average reward

V (s) = lim
T→∞

1

T
IE

[∑
t

r(st)|s0 = s

]

Assumption: ergodic Markov chain
(After a while, the initial state does not matter).

I V (s) does not depend on s

I One can estimate the percentage of time spent in state s

q(θ, s) = Prθ(S = s)

Yields another value to optimize

V (θ) = IEθ[r(S)] =
∑
s

r(s)q(θ, s)

17 / 62

Model-free Direct Policy Search

Algorithm

1. V (θ) = IEθ[r(S)] =
∑

s r(s)q(θ, s)

2. Compute or estimate the gradient ∇V (θ)

3. θt+1 = θt + αt∇V (θ)

Computing the derivative

∇V = ∇

(∑
s

r(s)q(θ, s)

)
=
∑
s

r(s)∇q(θ, s)

= IES,θ

[
r(S)
∇q(θ,S)

q(θ,S)

]
= IES,θ [r(S)∇log q(θ,S)]

Unbiased estimate of the gradient (̂integral = empirical sum)

∇̂V =
1

N

∑
i

r(si)
∇q(θ, si)

q(θ, si)

18 / 62

The Success Matching Principle

πnew (a|s) ∝ Success (s, a, θ).πold(a|s)

Different computations of “Success”

I θ ∼ Dk generates trajectory, evaluation V (θ)

I Transform evaluation into (non-negative) probability wk

I Find mixture policy πk+1

p(a|s) ∝
∑

wkp(a|s, θk)

I Find θk+1 accounting for πk+1

I Update Dk , iterate

19 / 62

Computing the weights

wk = exp (β(V (θ)−minV (θ))

β: temperature of optimization simulated annealing

Example

= exp

(
10

V (θ)−minV (θ)

maxV (θ)−minV (θ)

)

20 / 62

Model-free Direct Policy Search, summary

Algorithm

I Define the criterion to be optimized (cumulative value, average value)

I Define the search space (Θ: parametric representation of π)
I Optimize it: θk → θk + 1

I Using gradient approaches
I Updating a distribution Dk on Θ
I In the step-based mode or success matching case:

find next best q∗k+1(s, a); find θk+1 such that Qπ = q∗k+1

Pros

I It works

Cons

I Requires tons of examples
I Optimization process difficult to tune:

I Learning rate difficult to adjust
I Regularization (e.g. using KL divergence) badly needed and difficult to

adjust

21 / 62

DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

22 / 62

Direct Policy Search. The model-based approach

Algorithm

1. Use data τi = (si,t , ai,t)
T
t=1 to learn a forward model p̂(s ′|s, a)

2. Use the model as a simulator
(you need the estimation, and the confidence of the estimation, for
exploration)

3. Optimize policy

4. (Use policy on robot and improve the model)

23 / 62

DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

24 / 62

Learning the model

Modeling

25 / 62

Learning the model

Modeling and predicting

25 / 62

Learning the model

Modeling

When optimizing a model: very useful to have a measure of uncertainty on the
prediction

25 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

26 / 62

Computing the gradient

Given

I Forward model
st+1 = f (st , at)

I Differentiable policy
a = π(st , θ)

It comes
V (θ) =

∑
t

γtrt+1

Exact gradient computation

∂V (θ)

∂θ
=
∑
t

γt ∂rt+1

∂θ

=
∑
t

γt ∂rt+1

∂st+1
.
∂st+1

∂θ

=
∑
t

γt ∂rt+1

∂st+1

(
∂st+1

∂st
.
∂st
∂θ

+
∂st+1

∂at
.
∂at

∂θ

)

27 / 62

Model-based Direct Policy Search, summary

Algorithm

I Learn a model (prediction and confidence interval)

I Derive the gradient of the policy return

I Optimize it standard gradient optimization, e.g. BFGS

Pros

I Sample efficient (= does not require tons of examples)

I Fast (standard gradient-based optimization)

I Best ever results on some applications (pendulum on a car, picking up
objects, controlling throttle valves)

Cons

I Gaussian processes (modelling also the confidence interval) hardly scale
up: in O(n3), with n the number of examples

I Require specific parametrizations of the policy and the reward function

I Only works if the model is good (otherwise, disaster)

28 / 62

DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

29 / 62

Evolutionary Robotics

1. Select the search space Θ

2. Define the objective function F(θ) in simulation or in-situ
Sky is the limit: controller; morphology of the robot; co-operation of several

robots...

3. Optimize: Evolutionary Computation (EC) and variants

4. Test the found solution reality gap

30 / 62

Covariance-Matrix-Adaptation-ES

Hansen-Ostermeier, 2001; Auger-Hansen, 2010-2017

θ ∼ Dk = N (µk ,Σk)

I easy to adapt µk

I Computationally heavy to adapt Σk

I does not scale up to high dimensions (> 200)

I Invariances under monotonous transform of optimization criterion and
affine transf. of Θ.

I A particular case of Information Geometry Optimization

31 / 62

Effects of step size

32 / 62

Search Space, 1

Neural Nets

I Universal approximators; continuity; generalization hoped for.

I Fast computation

I Can include priors in the structure

I Feedforward architecture: reactive policy

I Recurrent architecture: internal state
encoding memory (fast vanishing)

Critical issues

I Non-parametric optimization much more difficult

Other options

I Finite state automaton (find states; write rules; optimize thresholds...)
The Braitenberg controller.

I Genetic programming (optimization of programs)

33 / 62

Example: Swarm robots moving in column formation

Robot

34 / 62

Robotic swarm, 2

Representation

Constants
I1 blind zone
I2 sensor range
φ Vision angular range

Variables(t)
r(t), s(t) positions
θ(t) angular direction

35 / 62

Example of a (almost manual) controller

36 / 62

Toward defining F

37 / 62

Optimization criterion

Brooks 89-01

The promise: no need to decompose the goal

I Behavioral robotics hand crafted decomposition

I Evolutionary robotics emergence of a structure

38 / 62

In practice: fitness shaping

I All initial (random) individuals are just incompetent

I Fitness landscape: Needle in the Haystack ? (doesn’t work)

I Start with something simple

I Switch to more complex during evolution

I Example: visual recognition

39 / 62

Optimization criterion, 2

I Fonctional vs behavioral
state of controller vs distance walked

I Implicit vs explicit
Survival vs Distance to socket

I Internal vs external information
Sensors, ground truth

I Co-evolution: e.g. predator/prey
performance depends on the other robots

State of art

I Standard: function, explicit, external variables

I In-situ: behavioral, implicit, internal variables

I Interactive: behavioral, explicit, external variables

40 / 62

Optimization criterion, 3

Fitness shaping

I Obstacle avoidance

I Obstacle avoidance, and move !

I Obstacle avoidance, and (non circular) move !!

Finally Floreano Nolfi 2000

F(θ) =

∫
Texp.

A(1−
√

∆B)(1− i)

I A sum of wheel speed ri ∈ [−0.5, 0.5]
→ move

I ∆B = |r1 + r2|
→ ahead

I i maximum (normalised) of sensor values
→ obstacle avoidance

Behavioral, internal variables, explicit

41 / 62

Result analysis

I First generations
I Most rotate
I Best ones slowly go forward
I No obstacle avoidance
I Perf. depends on starting point

I After ≈ 20 gen.
I Obstacle avoidance
I No rotation

I Thereafter, gradually speed up

42 / 62

Result analysis, 2

I Max. speed 48mm/s (true max = 80)
Inertia, bad sensors

I Never stuck in a corner
contrary to Braitenberg

Going further

I Changing environment

I Changing robotic platform

Limitations

I From simulation to real-world Reality gap !

I Opportunism of evolution

I Roboticists not impressed...

43 / 62

Carl Sims

Goal

I Evolve both morphology and controller

I using a grammar (oriented graph)

I Heavy computational cost
simulation, several days on Connection Machine – 65000 proc.

I Evolving locomotion (walk, swim, jump)

I and competitive co-evolution (catch an object)

44 / 62

The creatures

Karl Sims, 1994

Video: https://www.youtube.com/watch?v=JBgG VSP7f8

45 / 62

Reset-Free Trial and Error

Jean-Baptiste Mouret, 17

https://www.youtube.com/watch?v=IqtyHFrb3BU

46 / 62

Intrinsic rewards, swarm robotics

https://www.youtube.com/watch?v=btNLWKdngq4 47 / 62

Internal rewards

Delarboulas et al., PPSN 2010
Requirements

1. No simulation

2. On-board training
I Frugal (computation, memory)
I No ground truth

3. Providing “interesting results”
“Human − robot communication”

Goal: self-driven Robots : Defining instincts

48 / 62

Starting from (almost) nothing

Robot ≡ a data stream

t → x [t] = (sensor [t],motor [t])

Trajectory = {x [t], t = 1 . . .T}
Robot trajectory

Computing the quantity of information of the stream
Given x1, . . . xn, visited with frequency p1 . . . pn,

Entropy(trajectory) = −
n∑

i=1

pi log pi

Conjecture
Controller quality ∝ Quantity of information of the stream

49 / 62

Starting from (almost) nothing

Robot ≡ a data stream

t → x [t] = (sensor [t],motor [t])

Trajectory = {x [t], t = 1 . . .T}
Robot trajectory

Computing the quantity of information of the stream
Given x1, . . . xn, visited with frequency p1 . . . pn,

Entropy(trajectory) = −
n∑

i=1

pi log pi

Conjecture
Controller quality ∝ Quantity of information of the stream

49 / 62

Building sensori-motor states

Avoiding trivial solutions...
If sensors and motors are continuous / high dimensional

I then all vectors x [t] are different

I then ∀i , pi = 1/T ; Entropy = log T

... requires generalization
From the sensori-motor stream sequence of points in IRd

to clusters sensori-motor states

Clusters in sensori-motor space (IR2)

Trajectory →
x1x2x3x1...

50 / 62

Clustering

k-Means

1. Draw k points x [ti]

2. Define a partition C in k subsets Ci Voronöı cells

Ci = {x/d(x , x [ti]) < d(x , x [tj]), j 6= i}

ε-Means

1. Init : C = {} Initial site list

2. For t = 1 to T loop on trajectory
I If d(x[t], C) > ε, C ← C ∪ {x[t]}

51 / 62

Curiosity Instinct

Search space

I Neural Net, 1 hidden layer.

Definition

I Controller F + environment → Trajectory

I Apply Clustering on Trajectory

I For each Ci , compute its frequency pi

F(F) = −
n∑

i=1

pi ∗ log(pi)

52 / 62

Curiosity instinct: Maximizing Controller IQ

Properties

I Penalizes inaction: a single state → entropy = 0

I Robust w.r.t. sensor noise (outliers count for very little)

I Computable online, on-board (use ε-clustering)

I Evolvable onboard

Limitations: does not work if

I Environment too poor
(in desert, a single state → entropy = 0)

I Environment too rich
(if all states are distinct, Fitness(controller) = log T)

both under and over-stimulation are counter-effective.

53 / 62

From curiosity to discovery

Intuition

I An individual learns sensori-motor states (x [ti] center of Ci)

I The SMSs can be transmitted to offspring

I giving the offspring an access to “history”

I The offspring can try to “make something different”

fitness(offspring) = Entropy(Trajectory(ancestors
⋃

offspring))

NB: does not require to keep the trajectory of all ancestors.
One only needs to store {Ci , ni}

54 / 62

From curiosity to discovery

Cultural evolution transmits genome + “culture”

1. parent = (controller genome, (C1, n1), . . . (CK , nK))

2. Perturb parent controller → offspring controller

3. Run the offspring controller and record x [1], . . . x [T]

4. Run ε-clustering variant.

Fitness(offspring) = −
∑̀
i=1

pi log pi

55 / 62

ε-clustering variant

Algorithm

1. Init : C = {(C1, n1), . . . (CK , nK))} Initial site list

2. For t = 1 to T loop on trajectory
I If d(x[t], C) > ε, C ← C ∪ {x[t]}

3. Define pi = ni/
∑

j nj

Fitness(offspring) = −
∑̀
i=1

pi log pi

56 / 62

Limitation

In stochastic environments

I High entropy in highly stochastic regions

Intrinsic motivations, neuro-curiosity Oudeyer et al. 2005-2017

I More exploration → more data

I Are these data useful ?

I Yes if Reduction of error of learned forward model.

https://www.youtube.com/watch?v=bkv83GKYpkI

57 / 62

Validation

Experimental setting
Robot = Cortex M3, 8 infra-red sensors, 2 motors.
Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas

 1
3

/0
4

/1
0

,
1

3
:1

5
,

m
ic

h
e
le

,
fi

c
h

:
M

e
d

iu
m

_
fr

a
m

e

100 300 500 700 900

100

300

500

 2
4

/0
4

/1
0

,
0

2
:3

1
,

m
ic

h
e
le

,
fi

c
h

:
H

a
r
d

_
fr

a
m

e

100 300 500 700

100

300

500

700

58 / 62

Validation, 2

Plot points in hard arena visited 10 times or more by the 100 best individuals.

PPSN 2010

59 / 62

Partial conclusions

Entropy-minimization

I computable on-board;
no need of prior knowledge/ground truth

I yields “interesting” behavior

I needs stimulating environment

60 / 62

DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

61 / 62

Not covered

I Inverse Reinforcement Learning
https://www.youtube.com/watch?v=VCdxqn0fcnE

I Programming by Feedback

I Deep Reinforcement Learning
https://www.youtube.com/watch?v=eKaYnXQUb2g

62 / 62

	DPS: The model-free approach
	DPS: The model-based approach
	Gaussian processes

	Evolutionary robotics
	Reminder
	Evolution of morphology

	Others

