Michèle Sebag ; TP : Herilalaina Rakotoarison TAO, CNRS - INRIA - Université Paris-Sud

Nov. 19h, 2018

Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

Introduction

Position of the problems

Formalisation: the value function
Values

Types of Machine Learning problems

WORLD - DATA - USER

Observations

+ Target

+ Rewards

Understand Code Predict Classification/Regression

Decide Action Policy/Strategy

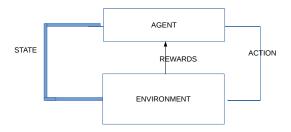
Unsupervised LEARNING Supervised LEARNING

Reinforcement LEARNING



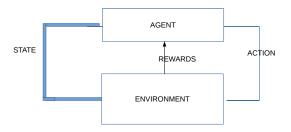
Position of the problem

- An agent, spatially and temporally situated
- ▶ Stochastic and uncertain environment
- ► Goal: select an action in each time step,
- ... in order maximize expected cumulative reward over a time horizon



Features

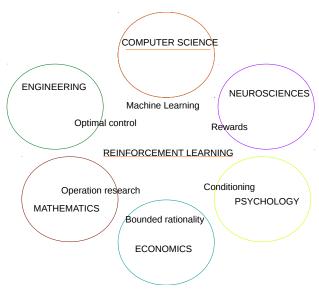
- ightharpoonup dimension(situation) \gg dimension(action) > dimension(reward) = 1
- Rewards:
 - ▶ enable the agent to evaluate itself in an autonomous way
 - ▶ with delay
 - only evaluate what the agent did (not what could/should be done)
- Exploration / Exploitation dilemma



Features

- ▶ dimension(situation) ≫ dimension(action) > dimension(reward) = 1
- Rewards:
 - ▶ enable the agent to evaluate itself in an autonomous way create its data
 - with delay
 - only evaluate what the agent did (not what could/should be done)
- Exploration / Exploitation dilemma

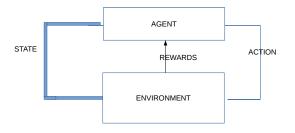
Reinforcement Learning & neighbor disciplines



Reinforcement Learning, terms

RL	synonyms
state	situation, stimulus
action	control, response
reward	payoff, gain, cost

Reinforcement Learning, output



What is learned?

A policy = strategy =
$$\{ \text{ state } \mapsto \text{ action } \}$$

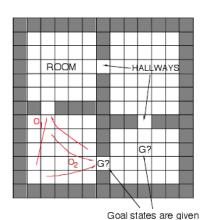
Context

An unknown world.

Some actions, in some states, bear rewards with some delay [with some probability]

a terminal value of 1

find policy (state \rightarrow action) Goal: maximizing the expected reward



4 rooms

4 hallways

4 unreliable primitive actions

8 multi-step options (to each room's 2 hallways)

Given goal location, quickly plan shortest route

All rewards zero $\gamma = .9$

The Reinforcement Learning AIC Master Module

Contents

1. Position of the problem, vocabulary

Markov Decision Process, policy, expected returns

2. Finite case

Dynamic Programming; Value estimation, Monte Carlo,

3 Infinite case

Function approximation, direct policy search

4. More

TD

Inverse RL, Multi-armed bandits, Deep RL

Evaluation

- Project
- Exam
- Voluntary contributions (15mn talks, adding resources)

Pointers

- ▶ "The Book"
 - ▶ "Reinforcement Learning: An Introduction", R. Sutton and A. Barto
 - ► On-line at: http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
- Slides on-line at
 - https://tao.lri.fr/tiki-index.php?page=Courses
 - http://perso.ensta-paristech.fr/~stulp/aic/
 - https://www.microsoft.com/en-us/research/video/tutorial-introduction-to-reinforcement-learning-with-function-approximation/

Suggested:

- See videos *before* the course
- Let's discuss during the course what is unclear, what could be done otherwise, what could be done.

Introduction

Position of the problems

Formalisation: the value function

Facets

Disciplines

- ► Machine Learning
- Economics
- Psychology
- Neurosciences
- Control
- Mathematics

Means

- ▶ Rewards, incentives, conditioning
- ► Bounded rationality

Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction to the animal will — others things being equal — be more firmly connected with the situation, so that when it recurs, they will more likely to recur;

those which are accompanied or closely followed by discomfort to the animal will — others things being equal — have their connection with the situation weakened, so that when it recurs, they will less likely to recur;

the greater the satisfaction or discomfort, the greater the strengthening or weakening of the link.

Thorndike, 1911

Formal background

Notations

- ightharpoonup State space ${\cal S}$
- ightharpoonup Action space \mathcal{A}
- ▶ Transition model $p(s, a, s') \mapsto [0, 1]$
- ▶ Reward *r*(*s*)

Goal

▶ Find policy $\pi: \mathcal{S} \mapsto \mathcal{A}$

Maximize $E[\pi] = Expected cumulative reward$

(detail later)

Applications

► Robotics

Navigation, football, walk, ...

- ► Control

 Helicopter, elevators, telecom, smart grids, manufacturing, ...
- ► Operation research
 Transport, scheduling, ...
- ► Games

 Backgammon, Othello, Tetris, Go, ...
- Other
 Computer Human Interfaces, ML (Feature Selection, Active learning, Natural Language Processing,...)

Myths

- 1. Pandora (the box)
- 2. Golem (Praga)
- 3. The chess player (The Turc) Edgar Allan Poe
- 4. Robota
- 5. Movies...

Myths

- 1. Pandora (the box)
- 2. Golem (Praga)
- 3. The chess player (The Turc) Edgar Allan Poe
- 4. Robota
- 5. Movies... Metropolis, 2001 Space Odyssey, AI, Her, ...

Types of robots: 1. Manufacturing

- *closed world, target behavior known
- $* task \ is \ decomposed \ in \ subtasks$
- *subtask: sequence of actions
- *no surprise

Types of robots: 2. Autonomous vehicles

- *open world
- *task is to navigate
- *action subject to precondition

Types of robots: 2. Autonomous vehicles

- *a wheel chair
- *controlled by voice
- *validation ?

Types of robots: 3. Home robots

open world

sequence of tasks

each task requires navigation and planning

Robot

 $https://www.microsoft.com/en-us/research/video/tutorial-introduction-to-reinforcement-learning-with-function-approximation/\\5:14$

Vocabulary 1/3

- State of the robot set of states S A state: all information related to the robot (sensor information; memory) Discrete? continuous? dimension?
- Action of the robot set of actions A values of the robot motors/actuators. e.g. a robotic arm with 39 degrees of freedom. (possible restrictions: not every action usable in any state).
- ▶ Transition model: how the state changes depending on the action deterministically $tr: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$ or $p: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto [0, 1]$ probabilistically Simulator; forward model. deterministic or probabilistic transition.

Vocabulary 2/3

- ▶ Rewards: any guidance available. $r: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ How to provide rewards in simulation ? in real-life ? What about the robot safety ?
- ▶ Policy: mapping from states to actions. deterministic $\pi: \mathcal{S} \mapsto \mathcal{A}$ or stochastic $\pi: \mathcal{S} \times \mathcal{A} \mapsto [0,1]$

this is the goal: finding a good policy

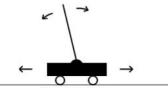
good means:

- *reaching the goal
- *receiving as many rewards as possible
- *as early as possible.

Vocabulary 3/3

Episodic task

- Reaching a goal (playing a game, painting a car, putting something in the dishwasher)
- ▶ Do it as soon as possible
- ► Time horizon is finite



Continual task

Single Pole Balancing

- Reaching and keeping a state (pole balancing, car driving)
- ▶ Do it as long as you can
- ▶ Time horizon is (in principle) infinite

Case 1. Optimal control 1/2

Case 1. Optimal control 2/2

Known dynamics and target behavior

- ▶ state u, action $a \rightarrow$ new state u'
- wanted: sequence of states

Approaches

- Inverse problem
- ► Optimal control

Challenges

- ▶ Model errors, uncertainties
- Stability

Case 2. Reactive behaviors

The 2005 Darpa Challenge

The terrain

The sensors

Case 3. Planning

An instance of reinforcement learning / planning problem

- 1. Solution = sequence of (state,action)
- 2. In each state, decide the appropriate action
- 3. ..such that in the end, you reach the goal

Case 3. Planning, 2/2

Approaches

- ► Reinforcement learning
- ▶ Inverse reinforcement learning
- ▶ Preference-based RL
- Direct policy search (= optimize the controller)
- Evolutionary robotics

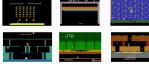
Challenges

- Design the objective function (define the optimization problem)
- Solve the optimization problem
- Assess the validity of the solution

Games

► Backgammon: TD-Gammon 1992

▶ Atari 2015



► Go: AlphaGo, AlphaZero 2016, 2017

Introduction

Position of the problems

Formalisation: the value function Values

Formalisation

Notations

- ightharpoonup State space $\mathcal S$
- ightharpoonup Action space \mathcal{A}
- ► Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $p(s, a, s') \in [0, 1]$.
- ► Reward *r*(*s*)

► Time horizon *H* (finite or infinite)

bounded

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- ▶ which maximizes (discounted) cumulative reward from now to timestep *H*

$$\sum_t r(s_t)$$

Formalisation

Notations

- ightharpoonup State space ${\cal S}$
- ightharpoonup Action space \mathcal{A}
- ► Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $p(s, a, s') \in [0, 1]$.
- ▶ Reward *r*(*s*)

bounded

► Time horizon *H* (finite or infinite)

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- ▶ which maximizes (discounted) cumulative reward from now to timestep H

$$\sum_{t=1}^{H} \gamma^t r(s_t) \qquad \gamma < 1$$

Formalisation

Notations

- ightharpoonup State space $\mathcal S$
- ightharpoonup Action space \mathcal{A}
- ► Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $p(s, a, s') \in [0, 1]$.
- ▶ Reward r(s)

bounded

► Time horizon *H* (finite or infinite)

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- ▶ which maximizes (discounted) cumulative reward from now to timestep *H*

$$\mathbb{E}_{s_0,\pi}[\sum_{t=1}^{\infty}\gamma^t r(s_t)]$$

Markov Decision Process

But can we define $P_{ss'}^a$ and r(s) ?

- ▶ YES, if all necessary information is in s
- ▶ NO. otherwise
 - ▶ If state is partially observable

Goal: arrive in the third branch

▶ If environment (reward and transition distribution) is changing Reward for *first* photo of an object by the satellite

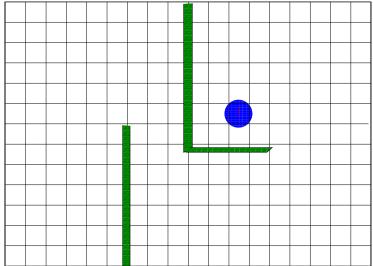
The Markov assumption

$$P(s_{h+1}|s_0 \ a_0 \ s_1 \ a_1 \dots s_h \ a_h) = P(s_{h+1}|s_h \ a_h)$$

Everything you need to know is the current (state, action).

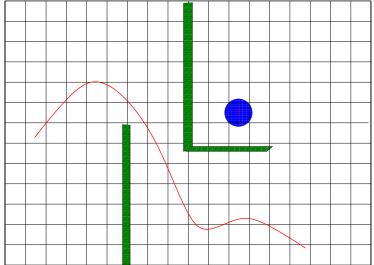
Find the treasure

Single reward: on the treasure.

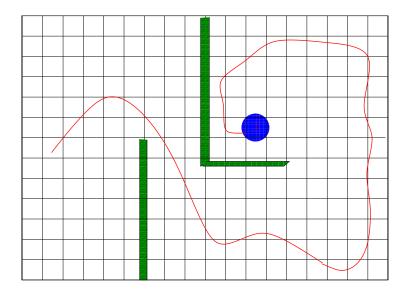


Wandering robot

Nothing happens...

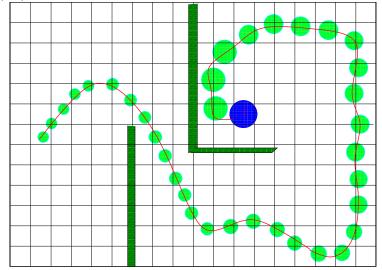


The robot finds it



Robot updates its value function

V(s,a) = "distance" to the treasure on the trajectory.



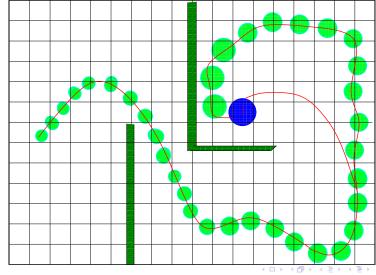
Reinforcement learning

- * Robot most often selects $a = \arg \max V(s, a)$
- st and sometimes explores (selects another action).

Reinforcement learning

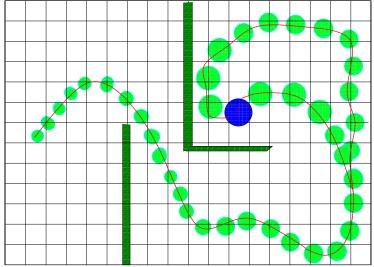
- * Robot most often selects $a = \arg\max V(s, a)$
- * and sometimes explores (selects another action).

* Lucky exploration: finds the treasure again



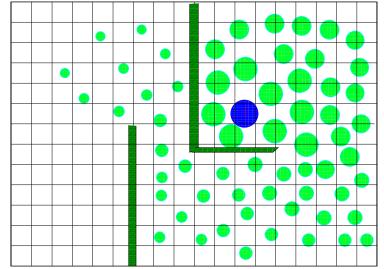
Updates the value function

* Value function tells how far you are from the treasure *given the known trajectories*.



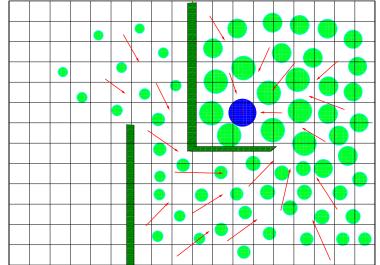
Finally

* Value function tells how far you are from the treasure



Finally

Let's be greedy: selects the action maximizing the value function



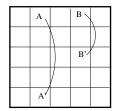
You are the learner

Rich. Sutton: https://www.microsoft.com/en-us/research/video/tutorial-introduction-to-reinforcement-learning-with-function-approximation/15:30

Exercize

Uniform policy

- ► States: squares
- Actions: north, south, east, west.
- Rewards: -1 if you would get outside; 10 in A; 5 in B
- ► Transitions: as expected, except: A → A': B → B'.



A -> A', reward 10

B -> B', reward 5

Compute the value function for

 $\pi(s) = \text{North for all } s$

 $\gamma=.9$