Reinforcement Learning

Michèle Sebag ; TP : Herilalaina Rakotoarison TAO, CNRS – INRIA – Université Paris-Sud

Nov. 26th, 2018 Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

Where we are

MDP Main Building block

General settings

	Model-based	Model-free
Finite	Dynamic Programming	Discrete RL
Infinite	(optimal control)	Continuous RL

More about the Exploration vs Exploitation Dilemma

This course: Multi-Armed Bandits ; Monte-Carlo Tree Search

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Action selection as a Multi-Armed Bandit problem

In a casino, one wants to maximize one's gains *while playing*.

Lifelong learning

Exploration vs Exploitation Dilemma

- Play the best arm so far ?
- But there might exist better arms...

Lai, Robbins 85

イロト イロト イヨト イヨト 二日

Exploitation Exploration

4 / 90

Formalization

- ▶ K options a.k.a. arms
- Arms are independent
- The *i*-th arm yields a reward *r* drawn iid along distribution ν_i In the following, ν_i = Bernoulli(μ_i)

(return 1 with proba μ_i , 0 otherwise).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

5/90

Goals

Find the best arm:

$$i^* = rg\max_i \mathbb{E}[
u_i]$$

Find a policy $\pi: t \to i_t$, gets reward r_t s.t. the sum of rewards is maximal in expectation

 $\pi = \arg \max \mathbb{E}[r_0 + r_1 + \dots$

Applications

- Find the best cure/drug for a disease.
 r = 1 if patient is cured, 0 otherwise
- Find the best ad for a Web site/user r = 1 if user clicks on the ad, 0 otherwise
- Find the best action for a robot
 r = 1 if the robot grasps the banana, 0 otherwise
 (What is different here ?)

(日) (四) (三) (三) (三)

6/90

The multi-armed bandit (MAB) problem

Algorithmic setting

Unknown parameters: K unknown probability distributions on [0,1]Known parameters: the set of arms $1 \dots K$, the number of rounds T

For each round $t = 1, 2, \ldots, T$

- (1) the learner chooses $i_t \in 1...K$ according to its own strategy.
- (2) the learner incurs and observes the reward $r_t \sim \nu_{i_t}$ independently from the past given rewards.

・ロン ・四 と ・ 日 と ・ 日 ・

7/90

T: time horizon

When T unknown, algorithm is anytime

The multi-armed bandit (MAB) problem

K arms

• Each arm gives reward 1 with probability μ_i , 0 otherwise

• Let
$$\mu^* = \operatorname{argmax}\{\mu_1, \dots, \mu_K\}$$
, with $\Delta_i = \mu^* - \mu_i$

In each time t, one selects an arm it and gets a reward rt

 $\begin{array}{rcl} n_{i,t} & = & \sum_{u=1}^{t} 1\!\!1_{j_{u}^{*}=i} & number \ of \ times \ i \ has \ been \ selected \\ \hat{\mu}_{i,t} & = & \frac{1}{n_{i,t}} \sum_{i_{u}^{*}=i} r_{u} & \text{average reward of arm } i \end{array}$

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

Minimize Regret
$$(t) = \sum_{u=1}^{t} (\mu^* - r_u) = t\mu^* - \sum_{i=1}^{K} n_{i,t} \hat{\mu}_{i,t} \approx \sum_{i=1}^{K} n_{i,t} \Delta_i$$

8/90

Objective

 \Leftrightarrow

Goal: Maximize $\sum_{u=1}^{t} r_u$

$$\mathsf{Minimize Regret} \ (t) = \sum_{u=1}^t (r \sim \nu^* - r_u)$$

Regret: extra-loss incurred w.r.t. the oracle (who knows i^*).

Why using the regret ?

"Kind of" normalization w.r.t. problem difficulty: the more difficult the problem, the lower the oracle's gain; what matters is how well one fares compared to the expert.

(Additive normalization).

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

Conclusion and perspectives

Notations

- $n_{i,t}$: number of times *i* has been selected up to *t*
- $\hat{\mu}_{i,t}$ empirical reward of *i*-th arm as of *t*

$$\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{u=1}^{t} r_u.\mathbb{I}_{i_u=i}$$

with $1_e = 1$ iff *e* holds true

- $\blacktriangleright \ \mu_i = \mathbb{E}[\nu_i]$
- Δ_i : margin of *i*-th arm

$$\Delta_i = \mu^* - \mu_i$$

Scientific questions

- ▶ How does the regret increase with *T* (linear ? quadratic ? logarithmic ?)
- What are the factors of difficulty of the MAB problem ?

Greedy algorithm

Draw once each arm

$$\hat{\mu}_i = \mathbf{r} \sim \nu_i$$

• At time u, select arm i_t s.t.

$$i_t = argmax\{\hat{\mu}_{i,t-1}, i = 1 \dots K\}$$

Example

- 2 arms:
 - arm 1, $\mu_1 = .8;$
 - arm 2, $\mu_2 = .2$.
- Assume the first two drawings yield:
 - ▶ arm 1, r₁ = 0;
 - ▶ arm 2, *r*₂ = 1.
- What happens ?

The ϵ -greedy algorithm

At each time t,

► With probability 1 - ε select the arm with best empirical reward

 $i_t = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$

• Otherwise, select i_t uniformly in $\{1 \dots K\}$

What is the regret ?

The ϵ -greedy algorithm

At each time t,

► With probability 1 - ε select the arm with best empirical reward

 $i_t = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$

• Otherwise, select i_t uniformly in $\{1 \dots K\}$

What is the regret ?

Regret $(t) > \varepsilon t \frac{1}{K} \sum_{i} \Delta_{i}$

But: Optimal regret rate: log(t)

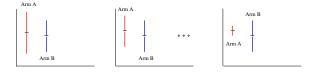
Lai Robbins 85

13/90

Upper Confidence Bound

Auer et al. 2002

Select
$$i_t = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{2 \frac{\log(t)}{n_{i,t}}} \right\}$$



Decision: Optimism in front of unknown !

<□> < 部> < 書> < 書> < 書> ● ● ○ Q () 14/90

Upper Confidence bound, 2

Thm: UCB achieves the optimal regret rate log(t)

If
$$i_t = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Then

$$extsf{Regret}(t) \leq 8 \sum_{i
eq i^*} rac{1}{\Delta_i} log(t) + \left(1 + rac{\pi^2}{3}\right) \sum_i \Delta_i$$

Proof

$$\textit{Regret}(t) = \sum_{i
eq i^*} \textit{n}_{i,t} \Delta_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

15 / 90

Upper Confidence bound, 3

The very useful Hoeffding inequality

Given $r_1, \ldots r_n$ iid in [0, 1] drawn after p, with expectation μ , Define empirical mean $\hat{\mu}_n = 1/n \sum_{u=1}^n r_u$, then

$$\begin{split} \mathbb{P}\left(\hat{\mu}_n - \mu \ge \varepsilon\right) &\leq \exp\left(-2\,\varepsilon^2 n\right), \\ \mathbb{P}\left(\mu - \hat{\mu}_n \ge \varepsilon\right) &\leq \exp\left(-2\,\varepsilon^2 n\right), \\ \mathbb{P}\left(|\hat{\mu}_n - \mu| \ge \varepsilon\right) &\leq 2\exp\left(-2\,\varepsilon^2 n\right) \end{split}$$

16 / 90

Sketch of the proof

Auer et al., 02

$$\mathsf{Regret}(\mathsf{t}) = \sum_{i \neq i^*} \Delta_i \times \mathit{n}_{i,t}$$

with $n_{i,t}$ = number of times *i*-th arm is played until step *t*. Let $\ell_i = \frac{8ln(t)}{\Delta_i^2}$. Then, for $n_{i,t} > \ell_i$,

$$\mu_i + 2\sqrt{\frac{2\ln(t)}{n_{i,t}}} < \mu^*$$

For $n_{i,t} > \ell_i$, wrong choice (one selects the *i*-th arm instead of the optimal i^* one) $\Rightarrow \widehat{\mu^*}$ is underestimated and $\widehat{\mu_i^*}$ is overestimated:

(A)
$$\widehat{\mu^*} < \mu^* - \sqrt{\frac{2ln(t)}{n_{i^*,t}}}$$

(B) $\widehat{\mu^*_i} > \mu^*_i + \sqrt{\frac{2ln(t)}{n_{i,t}}}$

Hoeffding \Rightarrow Events (A) and (B) occur with probability less than $exp\{-4 \ln(t)\} = t^{-4}$

17 / 90

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Sketch of the proof, 2

Hence:

$$\mathbb{E}[n_{i,t}] \leq \ell_i + \sum_{t=1}^{\infty} \sum_{n_{i,t}=\ell_i}^{t-1} (P(A) + P(B))$$

(first term: assume that it's always wrong in the first ℓ_i steps; second term, $n_{i,t} \ge \ell_i$; if it goes wrong, the two estimates are far from their expectations.

$$\mathbb{E}[n_{i,t}] \leq \frac{8\ln(t)}{\Delta_i} + \sum_{t=\ell}^{\infty} 2t^{-4}$$

Which concludes the proof (UCB regret is logarithmic):

$$Regret(t) \leq 8 \sum_{i \neq i^*} \frac{1}{\Delta_i} log(t) + \left(1 + \frac{\pi^2}{3}\right) \sum_i \Delta_i$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 少 9 ()
18 / 90

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

Conclusion and perspectives

Around MAB algorithms

- UCB is great, but not optimal. See KL-UCB Garivier et al. 2012
- ▶ In practice, play with *C*. control the exploration/exploitation trade-off
- Take into account the standard deviation of $\hat{\mu}_i$: Select $i_t = \operatorname{argmax}$

$$\left\{\hat{\mu}_{i,t} + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}} + \min\left(\frac{1}{4}, \hat{\sigma}_{i,t}^2 + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}}}\right)}\right\}$$

When there are many arms: tendency to over-explore...

Extensions

- When there is some side information: contextual bandits
- When arm distributions are not stationary: restless bandits

A particular algorithm: BESA

Best Empirical Sampled Average Intuition

Baransi Maillard 2014

- Case 1: you compare two arms with same number of reward samples.
 Easy: take the one with best average.
- Case 2: there is an arm A with many samples, and an arm B with few samples (say k).
 Easy: subsample k rewards for arm A and get back to Case 1.

Nota-bene

Same results with one hyper-parameter less == much better.

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

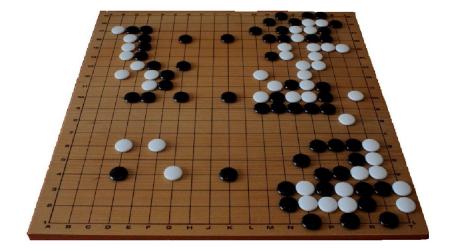
Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

Conclusion and perspectives

MCTS: computer-Go as explanatory example



Not just a game: same approaches apply to optimal energy policy

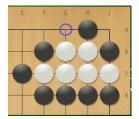
MCTS for computer-Go and MineSweeper

Go: deterministic transitions MineSweeper: probabilistic transitions

The game of Go in one slide

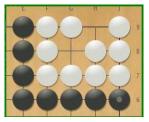
Rules

- Each player puts a stone on the goban, black first
- Each stone remains on the goban, except:



group w/o degree freedom is killed

The goal is to control the max. territory



a group with two eyes can't be killed

Go as a sequential decision problem

Features

- Size of the state space 2.10¹⁷⁰
- Size of the action space 200
- No good evaluation function
- Local and global features (symmetries, freedom, ...)
- A move might make a difference some dozen plies later

Setting

- $\blacktriangleright \ \, {\rm State \ space \ } {\cal S}$
- \blacktriangleright Action space ${\cal A}$
- Known transition model: p(s, a, s')
- Reward on final states: win or lose

Baseline strategies do not apply:

- Cannot grow the full tree
- Cannot safely cut branches
- Cannot be greedy

Monte-Carlo Tree Search

- An any-time algorithm
- Iteratively and asymmetrically growing a search tree

most promising subtrees are more explored and developed

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

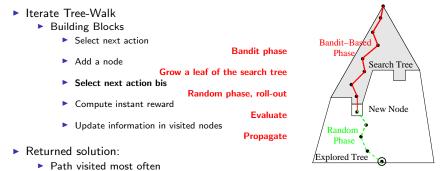
Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

Conclusion and perspectives

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:



Random phase - Roll-out policy

Monte-Carlo-based

Brügman 93

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Random phase - Roll-out policy

Monte-Carlo-based

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Improvements ?

Put stones randomly in the neighborhood of a previous stone

Brügman 93

- Put stones matching patterns
- Put stones optimizing a value function

prior knowledge

Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

▶ For each node (*s*, *a*) in the tree-walk

$$\begin{array}{rcl} \textit{n}_{s,a} & \leftarrow \textit{n}_{s,a} + 1 \\ \hat{\mu}_{s,a} & \leftarrow \hat{\mu}_{s,a} + \frac{1}{\textit{n}_{s,a}}(r - \mu_{s,a}) \end{array}$$

Evaluation and Propagation

The tree-walk returns an evaluation r

Propagate

▶ For each node (*s*, *a*) in the tree-walk

$$\begin{array}{rcl} n_{s,a} & \leftarrow n_{s,a} + 1 \\ \hat{\mu}_{s,a} & \leftarrow \hat{\mu}_{s,a} + \frac{1}{n_{s,a}} (r - \mu_{s,a}) \end{array}$$

Variants

Kocsis & Szepesvári, 06

$$\hat{\mu}_{s,a} \leftarrow \begin{cases} \min\{\hat{\mu}_x, x \text{ child of } (s, a)\} & \text{ if } (s, a) \text{ is a black node} \\ \max\{\hat{\mu}_x, x \text{ child of } (s, a)\} & \text{ if } (s, a) \text{ is a white node} \end{cases}$$

win(black)

Dilemma

- ► smarter roll-out policy → more computationally expensive → less tree-walks on a budget
- ▶ frugal roll-out \rightarrow more tree-walks \rightarrow more confident evaluations

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

Conclusion and perspectives

Action selection revisited

Select
$$a^* = \operatorname{argmax} \left\{ \hat{\mu}_{s,a} + \sqrt{c_e \frac{\log(n_s)}{n_{s,a}}} \right\}$$

- Asymptotically optimal
- But visits the tree infinitely often !

Being greedy is excluded

not consistent

35 / 90

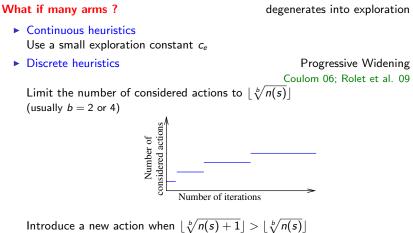
Frugal and consistent

Select
$$a^* = \operatorname{argmax} \frac{\operatorname{Nb} \operatorname{win}(s, a) + 1}{\operatorname{Nb} \operatorname{loss}(s, a) + 2}$$

Further directions

Optimizing the action selection rule

Controlling the branching factor



(which one ? See RAVE, below).

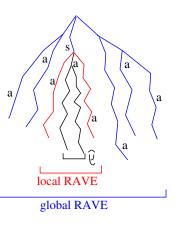
RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

- ▶ It needs some time to decrease the variance of $\hat{\mu}_{s,a}$
- Generalizing across the tree ?

```
RAVE(s, a) =
average {\hat{\mu}(s', a), s \text{ parent of } s'}
```



<ロ> (四) (四) (注) (日) (三)

37 / 90

Rapid Action Value Estimate, 2

Using RAVE for action selection

In the action selection rule, replace $\hat{\mu}_{s,a}$ by

$$\alpha \hat{\mu}_{s,a} + (1 - \alpha) \left(\beta RAVE_{\ell}(s, a) + (1 - \beta)RAVE_{g}(s, a)\right)$$

 $\alpha = \frac{3}{n_{s,a} + c_1}$

$$=\frac{n_{parent(s)}}{n_{parent(s)}+c_2}$$

◆□ → ◆□ → ◆注 → ◆注 → □ □

38 / 90

Using RAVE with Progressive Widening

- ▶ PW: introduce a new action if $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$
- Select promising actions: it takes time to recover from bad ones
- Select argmax $RAVE_{\ell}(parent(s))$.

A limit of RAVE

- Brings information from bottom to top of tree
- Sometimes harmful:

B2 is the only good move for white

- B2 only makes sense as first move (not in subtrees)
- \Rightarrow RAVE rejects B2.

Improving the roll-out policy π

 π_0 Put stones uniformly in empty positions π_{random} Put stones uniformly in the neighborhood of a previous stone π_{MoGo} Put stones matching patternsprior knowledge π_{RLGO} Put stones optimizing a value functionSilver et al. 07

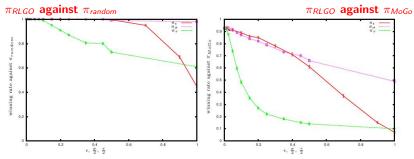
Beware!

Gelly Silver 07

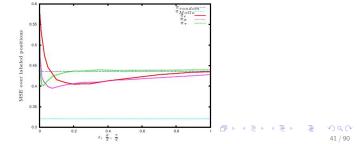
 π better $\pi' \Rightarrow MCTS(\pi)$ better $MCTS(\pi')$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (* 40 / 90

Improving the roll-out policy π , followed



Evaluation error on 200 test cases



Interpretation

What matters:

- Being biased is more harmful than being weak...
- Introducing a stronger but biased rollout policy π is detrimental.

if there exist situations where you (wrongly) think you are in good shape then you go there and you are in bad shape...

42 / 90

Using prior knowledge

Assume a value function $Q_{prior}(s, a)$

▶ Then when action *a* is first considered in state *s*, initialize

The best of both worlds

- Speed-up discovery of good moves
- Does not prevent from identifying their weaknesses

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

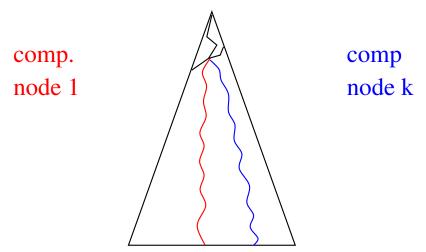
Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

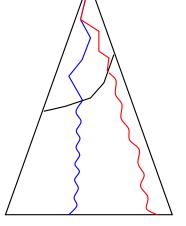
Conclusion and perspectives

Parallelization. 1 Distributing the roll-outs



Distributing roll-outs on different computational nodes does not work.

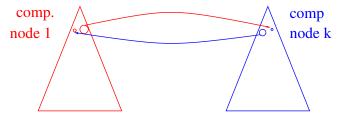
Parallelization. 2 With shared memory



- Launch tree-walks in parallel on the same MCTS
- (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

Parallelization. 3. Without shared memory



- Launch one MCTS per computational node
- k times per second
 - Select nodes with sufficient number of simulations

 $> .05 \times \#$ total simulations

k = 3

Aggregate indicators

Good news

Parallelization with and without shared memory can be combined.

It works !

32 cores against	Winning rate on 9×9	Winning rate on $19 imes19$
1	75.8 ± 2.5	95.1 ± 1.4
2	66.3 ± 2.8	82.4 ± 2.7
4	62.6 ± 2.9	73.5 ± 3.4
8	$59.6\pm$ 2.9	63.1 ± 4.2
16	52± 3.	63 ± 5.6
32	48.9± 3.	48 ± 10

Then:

- Try with a bigger machine ! and win against top professional players !
- Not so simple... there are diminishing returns.

Increasing the number N of tree-walks

N	2N against N		
	Winning rate on 9×9	Winning rate on $19 imes19$	
1,000	71.1 ± 0.1	90.5 ± 0.3	
4,000	68.7 ± 0.2	$84.5\pm0,3$	
16,000	66.5 ± 0.9	80.2 ± 0.4	
256,000	61± 0,2	58.5 ± 1.7	

The limits of parallelization

R. Coulom

Improvement in terms of performance against humans

 \ll

Improvement in terms of performance against computers

 \ll

Improvements in terms of self-play

More: https://hal.inria.fr/inria-00512854/document

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 ペ
50 / 90

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

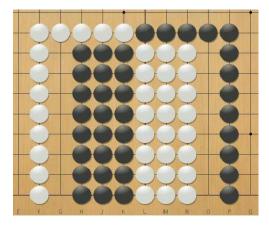
Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

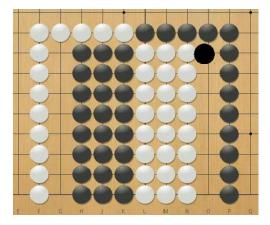
Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatior

Conclusion and perspectives

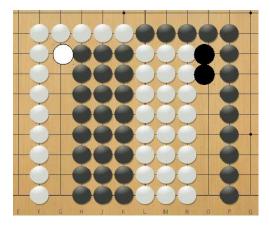


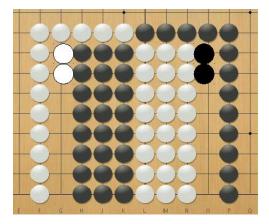
◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ペ
52/90



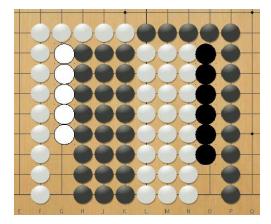


◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ペ
52/90

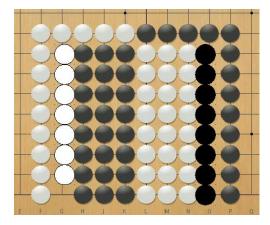




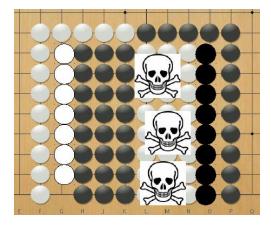
◆□ → < ⑦ → < 差 → < 差 → 差 の へ ペ 52/90



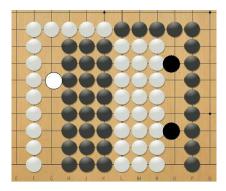
◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ (~ 52 / 90



◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ (~ 52 / 90



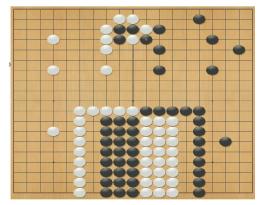
・ロ ・ ・ 日 ・ ・ 注 ・ く 注 ・ 注 ・ う Q (や 52 / 90



Why does it fail

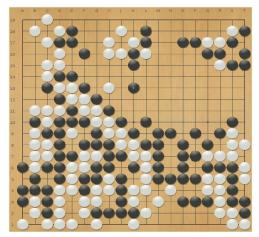
- First simulation gives 50%
- Following simulations give 100% or 0%
- But MCTS tries other moves: doesn't see all moves on the black side are equivalent.

Implication 1



MCTS does not detect invariance \rightarrow too short-sighted and parallelization does not help.

Implication 2



MCTS does not build abstractions \rightarrow too short-sighted and parallelization does not help.

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

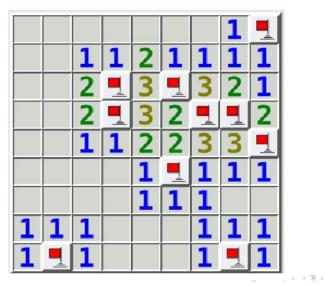
Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

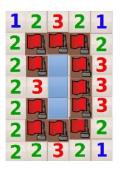
Conclusion and perspectives

MCTS for one-player game

- ► The MineSweeper problem
- Combining CSP and MCTS



ク Q (~ 57 / 90

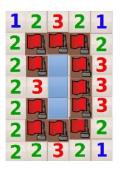


• All locations have same probability of death 1/3

<ロ> (四) (四) (注) (日) (三)

58 / 90

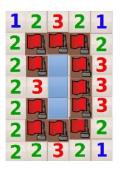
Are then all moves equivalent ?



- All locations have same probability of death 1/3
- Are then all moves equivalent ?
 NO !

<ロ> (四) (四) (注) (日) (三)

58 / 90

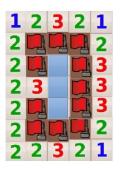


- All locations have same probability of death 1/3
- Are then all moves equivalent ?
 NO !

<ロ> (四) (四) (注) (日) (三)

58 / 90

Top, Bottom: Win with probability 2/3



- All locations have same probability of death 1/3
- Are then all moves equivalent ? NO !

58 / 90

- ▶ Top, Bottom: Win with probability 2/3
- MYOPIC approaches LOSE.

MineSweeper, State of the art

Markov Decision Process

Very expensive; 4×4 is solved

59 / 90

Single Point Strategy (SPS)

local solver

CSP

- Each unknown location j, a variable x[j]
- \blacktriangleright Each visible location, a constraint, e.g. $\mathit{loc}(15) = 4 \rightarrow$

x[04] + x[05] + x[06] + x[14] + x[16] + x[24] + x[25] + x[26] = 4

- Find all N solutions
- P(mine in j) = $\frac{\text{number of solutions with mine in } j}{N}$
- Play j with minimal P(mine in j)

Constraint Satisfaction for MineSweeper

State of the art

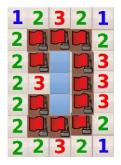
- ▶ 80% success beginner (9×9, 10 mines)
- ▶ 45% success *intermediate* (16×16, 40 mines)
- 34% success expert (30×40, 99 mines)

PROS

Very fast

CONS

- Not optimal
- Beware of first move (opening book)



Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

- Cannot compete with CSP in terms of speed
- But consistent (find the optimal solution if given enough time)

Lesson learned

- Initial move matters
- UCT improves on CSP

- 3x3, 7 mines
- Optimal winning rate: 25%
- Optimal winning rate if uniform initial move: 17/72
- ▶ UCT improves on CSP by 1/72

(日) (部) (注) (注) (言)

UCT for MineSweeper

Another example

- ▶ 5x5, 15 mines
- GnoMine rule

(first move gets 0)

- ▶ if 1st move is center, optimal winning rate is 100 %
- UCT finds it; CSP does not.

The best of both worlds

CSP

- Fast
- Suboptimal (myopic)

UCT

- Needs a generative model
- Asymptotic optimal

Hybrid

UCT with generative model based on CSP

UCT needs a generative model

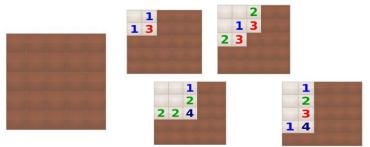
Given

- A state, an action
- Simulate possible transitions

Initial state, play top left

probabilistic transitions

ヘロン 人間と 人間と 人間と



Simulating transitions

Using rejection (draw mines and check if consistent)
 Using CSP
 FAST

The algorithm: Belief State Sampler UCT

- One node created per simulation/tree-walk
- Progressive widening
- Evaluation by Monte-Carlo simulation
- Action selection: UCB tuned (with variance)
- Monte-Carlo moves
 - If possible, Single Point Strategy (can propose riskless moves if any)
 - Otherwise, move with null probability of mines (CSP-based)
 - Otherwise, with probability .7, move with minimal probability of mines (CSP-based)

65 / 90

 Otherwise, draw a hidden state compatible with current observation (CSP-based) and play a safe move.

The results

- BSSUCT: Belief State Sampler UCT
- CSP-PGMS: CSP + initial moves in the corners

Format	CSP-PGMS	BSSUCT
4 mines on 4x4	64.7 %	$70.0\%\pm0.6\%$
1 mine on 1x3	100 %	$100\%~(2000~{\rm games})$
3 mines on 2x5	22.6%	$25.4\%\pm\mathbf{1.0\%}$
10 mines on 5x5	8.20%	9% (p-value: 0.14)
5 mines on $1x10$	12.93%	$18.9\%\pm0.2\%$
10 mines on 3x7	4.50%	${\bf 5.96\%\pm0.16\%}$
15 mines on 5x5	0.63%	$0.9\%\pm0.1\%$

Partial conclusion

Given a myopic solver

- ▶ It can be combined with MCTS / UCT:
- Significant (costly) improvements

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

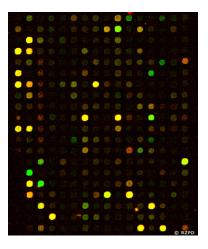
Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Feature Selection

BioInformatics



- ▶ 30 000 genes
- Find genes relevant to (cancer, obesity, you name it)

Position of the problem

Goals

- Selection
- Ranking

Formalization

Given feature set $\mathcal{F} = \{f_1, ... f_d\}$. Define

$$\begin{array}{lll} \mathcal{G}:\mathcal{P}(\mathcal{F}) & \mapsto \mathbb{R} \\ F \subset \mathcal{F} & \mapsto \textit{Err}(F) = \text{ min error of models using } F \end{array}$$

Find $Argmin(\mathcal{G})$

70 / 90

Difficulties

- Combinatorial optimization problem (2^d)
- \mathcal{F} unknown; noisy

Some approaches

- Filter approaches [1]
- Wrapper approaches
 - Tackling combinatorial optimization [2,3,4]
- Embedded approaches
 - Using the learned hypothesis [5,6]
 - Using a regularization term [7,8]
 - Restricted to linear models [7] or linear combinations of kernels [8]

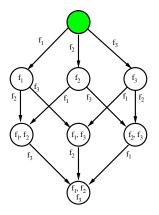
◆□ → ◆□ → ◆注 → ◆注 → □ □

- [1] K. Kira, and L. A. Rendell ML'92
- [2] D. Margaritis NIPS'09
- [3] T. Zhang NIPS'08
- [4] M. Boullé J. Mach. Learn. Res. 07
- [5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Mach. Learn. 2002
- [6] J. Rogers, and S. R. Gunn SLSFS'05
- [7] R. Tibshirani Journal of the Royal Statistical Society 94
- [8] F. Bach NIPS'08

FS as A Markov Decision Process

Set of features \mathcal{F} Set of states $\mathcal{S} = 2^{\mathcal{F}}$ Initial state \emptyset Set of actions $A = \{ \text{add } f, f \in \mathcal{F} \}$ Final state any state Reward function $V : \mathcal{S} \mapsto [0, 1]$

Goal: Find argmin $\operatorname{Err} (\mathcal{A}(F, D))$

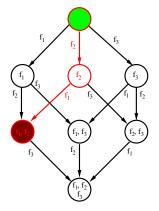


<ロ> (四) (四) (注) (日) (三)

Optimal Policy

Policy $\pi : S \to A$ Final state following a policy F_{π} Optimal policy $\pi^* = \underset{\pi}{\operatorname{argmin}} \operatorname{Err} (\mathcal{A}(F_{\pi}, \mathcal{E}))$ Bellman's optimality principle $\pi^*(F) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} V^*(F \cup \{f\})$

$$V^{*}(F) = \begin{cases} \mathsf{Err}(\mathcal{A}(F)) & \text{if final}(F) \\ \min_{f \in \mathcal{F}} V^{*}(F \cup \{f\}) & \text{otherwise} \end{cases}$$



In practice

- π^* intractable \Rightarrow approximation using UCT
- Computing Err(F) using a fast estimate

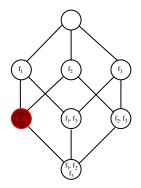
FS as a game

Exploration vs Exploitation tradeoff

- Virtually explore the whole lattice
- Gradually focus the search on most promising Fs
- Use a frugal, unbiased assessment of F

How ?

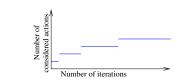
Monte-Carlo Tree Search

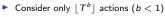


イロト イヨト イヨト イヨト 三日

FUSE: bandit-based phase The many arms problem

- Bottleneck
 - A many-armed problem (hundreds of features)
 - \Rightarrow need to guide UCT
- How to control the number of arms?
 - Continuous heuristics [1]
 - Use a small exploration constant c_e
 - Discrete heuristics [2,3]: Progressive Widening





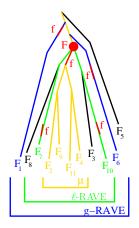
- [2] R. Coulom Computer and Games 2006
- [3] P. Rolet, M. Sebag, and O. Teytaud ECML'09

75 / 90

FUSE: bandit-based phase Sharing information among nodes

- How to share information among nodes?
 - Rapid Action Value Estimation (RAVE) [1]

$$\mathsf{RAVE}(f) = \mathsf{average reward when } f \in F$$



イロン イヨン イヨン イヨン

Э

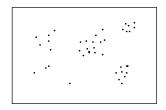
76 / 90

[1] S. Gelly, and D. Silver ICML'07

FUSE: random phase Dealing with an unknown horizon

- Bottleneck
 - Finite unknown horizon
- Random phase policy

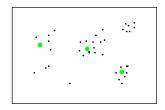
- Requisite
 - fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - k-NN like
 - + AUC criterion *
- Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - *m* Size of sub-sample $(m \ll n)$



・ロト ・日下・ ・日下・ ・日下・

2

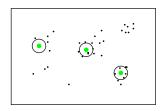
- Requisite
 - fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - k-NN like
 - + AUC criterion *
- Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - *m* Size of sub-sample $(m \ll n)$



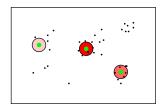
・ロト ・日下・ ・日下・ ・日下・

2

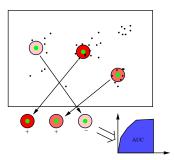
- Requisite
 - fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - k-NN like
 - + AUC criterion *
- Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - *m* Size of sub-sample $(m \ll n)$



- Requisite
 - fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - k-NN like
 - + AUC criterion *
- Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - *m* Size of sub-sample $(m \ll n)$



- Requisite
 - fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - k-NN like
 - + AUC criterion *
- Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - *m* Size of sub-sample $(m \ll n)$

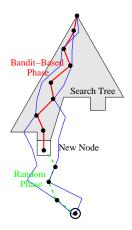


・ロト ・回ト ・ヨト ・ヨト

Э

FUSE: update

- Explore a graph
 - $\Rightarrow\,$ Several paths to the same node
- Update only current path



The FUSE algorithm

- \blacktriangleright On the feature subset, use end learner ${\cal A}$
 - Any Machine Learning algorithm
 - Support Vector Machine with Gaussian kernel in experiments

Experimental setting

Questions

- ► FUSE vs FUSE^R
- Continuous vs discrete exploration heuristics
- FS performance w.r.t. complexity of the target concept
- Convergence speed
- Experiments on

Data set	SAMPLES	Features	Properties
MADELON [1]	2,600	500	XOR-LIKE
Arcene [1]	200	10,000	Redundant features
Colon	62	2,000	"Easy"

[1] NIPS'03

Experimental setting

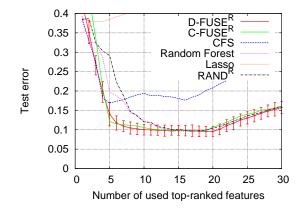
Baselines

- CFS (Constraint-based Feature Selection) [1]
- Random Forest [2]
- Lasso [3]
- RAND^R: RAVE obtained by selecting 20 random features at each iteration

・ロン ・四 と ・ 日 と ・ 日 ・

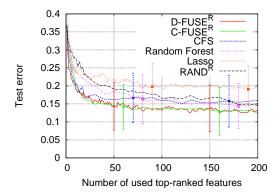
- Results averaged on 50 splits (10×5 fold cross-validation)
- End learner
 - Hyper-parameters optimized by 5 fold cross-validation
- [1] M. A. Hall ICML'00
- [2] J. Rogers, and S. R. Gunn SLSFS'05
- [3] R. Tibshirani Journal of the Royal Statistical Society 94

Results on Madelon after 200,000 iterations



- Remark: $FUSE^R$ = best of both worlds
 - Removes redundancy (like CFS)
 - Keeps conditionally relevant features (like Random Forest)

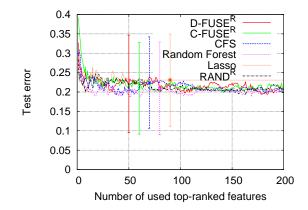
Results on Arcene after 200,000 iterations



- Remark: $FUSE^R$ = best of both worlds
 - Removes redundancy (like CFS)
 - Keeps conditionally relevant features (like Random Forest)

⁰T-test "CFS vs. $FUSE^{R_{"}}$ with 100 features: p-value=0.036

Results on Colon after 200,000 iterations



Remark

All equivalent

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
85 / 90

NIPS 2003 Feature Selection challenge

Test error on the NIPS 2003 Feature Selection challenge

On an disjoint test set

DATABASE	ALGORITHM	CHALLENGE	SUBMITTED	IRRELEVANT
		ERROR	FEATURES	FEATURES
MADELON	FSPP2 [1]	$6.22\% (1^{st})$	12	0
	D-FUSE ^{<i>R</i>}	$6.50\% (24^{th})$	18	0
	Bayes-nn-red [2]	7.20% (1 st)	100	0
Arcene	D-FUSE ^R (on all)	8.42% (3 rd)	500	34
	D-FUSE ^{<i>R</i>}	$9.42\% 500 (8^{th})$	500	0

Remarks

- Selected features: accurate
- Promising results

[1] K. Q. Shen, C. J. Ong, X. P. Li, E. P. V. Wilder-Smith Mach. Learn. 2008

[2] R. M. Neal, and J. Zhang Feature extraction, foundations and applications, Springer 2006

Conclusion and Perspectives

Contributions

- Formalization of Feature Selection as a Markov Decision Process
- Efficient approximation of the optimal policy (based on UCT)
 - \Rightarrow Any-time algorithm
- Experimental results
 - State of the art
 - High computational cost (45 minutes on Madelon)
- Perspectives
 - Other end learners
 - Extend to Feature construction
 - Inspired by [1]



[1] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel ICML'09

Multi-Armed Bandit Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Conclusion

Take-home message: MCTS/UCT

- enables any-time smart look-ahead for better sequential decisions in front of uncertainty.
- is an integrated system involving two main ingredients:
 - Exploration vs Exploitation rule

UCB, UCBtuned, others

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ • ○ ≪

89 / 90

- Roll-out policy
- can take advantage of prior knowledge

Caveat

- The UCB rule was not an essential ingredient of MoGo
- ▶ Refining the roll-out policy ⇒ refining the system Many tree-walks might be better than smarter (biased) ones.

On-going

Extensions

- \blacktriangleright Continuous bandits: action ranges in a ${\rm I\!R}$
- Contextual bandits: state ranges in ${\rm I\!R}^d$
- Multi-objective sequential optimization
- Duelling bandits

Controlling the size of the search space

- Building abstractions
- Considering nested MCTS (partially observable settings, e.g. poker)