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Position

One goal of

I Machine learning: optimal decision making

I Preference learning: optimization

This talk: black box optimization

When using preference learning ?

I when dealing with the user in the loop Herdy et al., 96

I when dealing with computationally expensive criteria

Herdy et al. 96 Surrogate models



Position

One goal of

I Machine learning: optimal decision making

I Preference learning: multi-objective optimization

This talk: black box multi-objective optimization

When using preference learning ?

I when dealing with the user in the loop Herdy et al., 96

I when dealing with computationally expensive criteria

Herdy et al. 96 Surrogate models



Optimizing co�ee taste

Features

I Search space X ⊂ IR
+ d

(recipe x : 33% arabica, 25% robusta, etc)

I A non-computable objective

I Expert can (by tasting) emit preferences x ≺ x ′.

Interactive optimization see also Viappiani et al. 11

1. Alg. generates two or more candidates x , x ′, x“, ..

2. Expert emits preferences

3. goto 1.

Issues

I Asking as few questions as possible 6= active ranking

I Modelling the expert's taste surrogate model

I Enforce the exploration vs exploitation trade-o�



Expensive black-box optimization

Notations

I Search space: X ⊂ IR
d

I Computable objective F : X 7→ IR

I Not well behaved (non convex, non di�erentiable, etc).

Evolutionary optimization

1. Alg. generates candidate solutions (population) x1, . . . xλ

2. Compute F(xi ) and rank xi accordingly

3. goto 1.

Issues

I Computational cost number of F computations

I Learn F̂ surrogate model

I When to use F and when F̂ ? when to refresh F̂ ?



Overview

Motivations

Black-box optimization...

... with surrogate models

Multi-objective optimization



Covariance-Matrix Adaptation (CMA-ES)
Rank-µ Update

xi = m + σ yi, yi ∼ Ni (0,C) ,
m←m + σyw yw =

∑µ
i=1 wi yi:λ

xi = m + σ yi, yi ∼ N (0,C)

sampling of λ = 150
solutions where
C = I and σ = 1

Cµ = 1
µ

∑
yi:λy

T
i:λ

C← (1 − 1) × C + 1 × Cµ

calculating C from
µ = 50 points,

w1 = · · · = wµ = 1
µ

mnew←m + 1
µ

∑
yi:λ

new distribution

Remark: the old (sample) distribution shape has a great influence on the new
distribution −→ iterations needed

◮ Source codes available:
https://www.lri.fr/~hansen/cmaes_inmatlab.html

https://www.lri.fr/~hansen/cmaes_inmatlab.html


Invariance: Guarantees for Generalization

Invariance properties of CMA-ES

◮ Invariance to order preserving
transformations in function space

like all comparison-based algorithms

◮ Translation and rotation invariance
to affine transformations of the search space

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

CMA-ES is almost parameterless

◮ Tuning on a small set of functions Hansen & Ostermeier 2001

◮ Except: population size for multi-modal functions
More: IPOP-CMA-ES Auger & Hansen, 05

and BIPOP-CMA-ES Hansen, 09

Information-Geometric Optimization
Yann Ollivier et al. 2012



BBOB – Black-Box Optimization Benchmarking

◮ ACM-GECCO workshops: 2009, 2010, 2012

◮ Set of 25 benchmark functions, dimensions 2 to 40

◮ With known difficulties (non-separability, #local optima, condition
number...)

◮ Noisy and non-noisy versions

Competitors include

◮ BFGS (Matlab version),

◮ Fletcher-Powell,

◮ DFO (Derivative-Free
Optimization, Powell 04)

◮ Differential Evolution

◮ Particle Swarm Optimization

◮ and others.

Fraction of runs reaching specified accuracy vs number of F computation.
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Surrogate Models for CMA-ES

Exploiting first evaluated solutions as training set

E = {(xi,F(xi)}

Using Ranking-SVM
◮ Builds F̂ using Ranking-SVM

xi ≻ xj iff F(xi) < F(xj)

◮ Kernel and parameters problem-dependent
T. Runarsson (2006). "Ordinal Regression in Evolutionary Computation"

◮ ACM: Use C from CMA-ES as Gaussian kernel

I. Loschilov et al. (2010). "Comparison-based optimizers need comparison-based surrogates”

I. Loschilov et al. (2012). "Self-Adaptive Surrogate-Assisted CMA-ES”



About Model Learning
Non-separable Ellipsoid problem

K(xi, xj) = e−
(xi−xj)

t(xi−xj)

2σ2 ; KC(xi, xj) = e−
(xi−xj)

tC−1
µ (xi−xj)

2σ2
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Invariance to affine transformations of the search space.



The devil is in the hyper-parameters

SVM Learning

◮ Number of training points: Ntraining = 30
√
d for all problems,

except Rosenbrock and Rastrigin, where Ntraining = 70
√
d

◮ Number of iterations: Niter = 50000
√
d

◮ Kernel function: RBF function with σ equal to the average
distance of the training points

◮ The cost of constraint violation: Ci = 106(Ntraining − i)2.0

Offspring Selection

◮ Number of test points: Ntest = 500

◮ Number of evaluated offsprings: λ′ = λ
3

◮ Offspring selection pressure parameters: σ2
sel0 = 2σ2

sel1 = 0.8



Sensitivity analysis

The speed-up of ACM-ES is very sensitive
◮ w.r.t. number of training points.
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◮ w.r.t. lifelength of the surrogate model



Self-adaptation of F̂ lifelength
Principle: iterated preference learning

◮ After n generations, gather new examples {xi,F(xi)}
◮ Evaluate rank loss of old F̂
◮ Low error: F̂ could have been used for more generations
◮ High error: F̂ should have been relearned earlier.

Self-adaptation
n = g( rank loss(F̂))

Model Error
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ACM-ES algorithm

Surrogate-assisted
CMA-ES with online
adaptation of model
hyper-parametets.



Online adaptation of model hyper-parameters
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improves on optimally tuned hyper-parameters



Results on black-box optimization competition (BBOB)
BIPOP-s∗aACM and IPOP-s∗aACM (with restarts) on 24 noiseless 20 dimensional functions
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ACM-XX significantly improves on XX (BIPOP-CMA, IPOP-CMA)
progress on the top of advanced CMA-ES variants.
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Multi-objective CMA-ES (MO-CMA-ES)

◮ MO-CMA-ES = µmo independent (1+1)-CMA-ES.
◮ Each (1+1)-CMA samples new offspring. The size of the

temporary population is 2µmo.
◮ Only µmo best solutions should be chosen for new population

after the hypervolume-based non-dominated sorting.
◮ Update of CMA individuals takes place.
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A Multi-Objective Surrogate Model

Rationale
◮ Rationale: find a unique function F (x) that defines the

aggregated quality of the solution x in multi-objective case.
◮ Idea originally proposed using a mixture of One-Class SVM and

regression-SVM1
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1 I. Loshchilov, M. Schoenauer, M. Sebag (GECCO 2010). "A Mono Surrogate for Multiobjective Optimization"



Unsing the Surrogate Model

Filtering

◮ Generate Ninform pre-children
◮ For each pre-children A and the nearest parent B calculate

Gain(A,B) = Fsvm(A)− Fsvm(B)

◮ New children is the point with the maximum value of Gain

X1

X
2

true Pareto
SVM Pareto



Dominance-Based Surrogate
Using Rank-SVM

Which ordered pairs?

◮ Considering all possible ≻ relations may be too expensive.
◮ Primary constraints: x and its nearest dominated point
◮ Secondary constraints: any 2 points not belonging to the same

front (according to non-dominated sorting)
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a limited number of
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Dominance-Based Surrogate (2)

Construction of the surrogate model

◮ Initialize archive Ωactive as the set of Primary constraints , and
Ωpassive as the set of Secondary constraints .

◮ Learn the model for 1000 |Ωactive| iterations.
◮ Add the most violated passive contraint from Ωpassive to Ωactive

and optimize the model for 10 |Ωactive| iterations.
◮ Repeat the last step 0.1|Ωactive| times.



Experimental Validation
Parameters

Surrogate Models

◮ ASM - aggregated surrogate model based on One-Class SVM
and Regression SVM

◮ RASM - proposed Rank-based SVM

SVM Learning

◮ Number of training points: at most Ntraining = 1000 points

◮ Number of iterations: 1000 |Ωactive| + |Ωactive|2 ≈ 2N2
training

◮ Kernel function: RBF function with σ equal to the average
distance of the training points

◮ The cost of constraint violation: C = 1000

Offspring Selection

◮ Number of pre-children: p = 2 and p = 10



Experimental Validation
Comparative Results

ASM and
Rank-based ASM
applied on top of
NSGA-II (with
hypervolume
secondary criterion)
and MO-CMA-ES,
on ZDT and IHR
functions.

N = How many more
true evaluations
than best performer



Discussion 1. Preferences → Optimization

Preference learning for robust black-box optimization

I ACM-ES: speed-up (×2, ×4) on the state of the art on
uni-modal problems.

I Invariant to rank-preserving and orthogonal transformations of
the search space

I The cost of speed-up is O(d3)
I Source codes available: https://www.lri.fr/~ilya/

Lessons learned

I Preference learning repeatedly used in the optimization
platform

I Hyper-parameter adjustment is critical

I ML assessment criterion: not the average case: the worst case
a critical hyper-parameter: the stopping criterion.
Ill-conditioned Gram matrices are encountered with probability
1.

https://www.lri.fr/~ilya/


Discussion 2. Optimization → Preferences ?

Eliciting preferences ?

I Subjectiveness is an issue (phrasing of questions, choice of
units)

I Designing a questionaire: an optimization problem ?

I Which criterion: stability ?

Designing aggregation operators / voting rules ?

I A learning or an optimization problem ?
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