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Position

One goal of
» Machine learning: optimal decision making
> Preference learning: optimization

This talk: black box optimization

When using preference learning ?
» when dealing with the user in the loop Herdy et al., 96

» when dealing with computationally expensive criteria

&

Herdy et al. 96 Surrogate models



Position

One goal of
» Machine learning: optimal decision making
> Preference learning: multi-objective optimization

This talk: black box multi-objective optimization

When using preference learning ?
» when dealing with the user in the loop Herdy et al., 96

» when dealing with computationally expensive criteria

Herdy et al. 96 Surrogate models



Optimizing coffee taste
Features

» Search space X ¢ R+ ¢
(recipe x: 33% arabica, 25% robusta, etc)

» A non-computable objective

» Expert can (by tasting) emit preferences x < x’.

Interactive optimization see also Viappiani et al. 11
1. Alg. generates two or more candidates x, x’, x ", ..

2. Expert emits preferences

3. goto 1.

Issues
» Asking as few questions as possible = active ranking
» Modelling the expert’s taste surrogate model

» Enforce the exploration vs exploitation trade-off



Expensive black-box optimization

Notations
» Search space: X ¢ RY
» Computable objective 7: X — R

» Not well behaved (non convex, non differentiable, etc).

Evolutionary optimization
1. Alg. generates candidate solutions (population) xi, ... x)
2. Compute F(x;) and rank x; accordingly

3. goto 1.

Issues
» Computational cost number of F computations
> Learn 7 surrogate model

» When to use F and when F ? when to refresh F ?



Overview

Black-box optimization...



Covariance-Matrix Adaptation (CMA-ES)
Rank-u Update

yi ~Ni(0,C),
Yw = Z¢:1 Wi Yi:x

x; =m+oy;, y; ~N(,C) Cu = ﬁZyMyEA mpew + ™M + ﬁZyM
Ce(l-1xCtixc,

new distribution

sampling of A = 150 calculating C from
solutions where w = 50 points,

Remark: the old (sample) distribution shape has a great influence on the new
distribution — iterations needed

» Source codes available:
https://ww.Iri.fr/~hansen/cmaes_i nmatl ab. ht m


https://www.lri.fr/~hansen/cmaes_inmatlab.html

Invariance: Guarantees for Generalization

Invariance properties of CMA-ES
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» Invariance to order preserving ’\ //
transformations in function space -
like all comparison-based algorithms

» Translation and rotation invariance
to affine transformations of the search space

CMA-ES is almost parameterless

» Tuning on a small set of functions Hansen & Ostermeier 2001

» Except: population size for multi-modal functions

More: IPOP-CMA-ES Auger & Hansen, 05
and BIPOP-CMA-ES Hansen, 09

Information-Geometric Optimization
Yann Ollivier et al. 2012



BBOB — Black-Box Optimization Benchmarking

» ACM-GECCO workshops: 2009, 2010, 2012
» Set of 25 benchmark functions, dimensions 2 to 40
» With known difficulties (non-separability, #local optima, condition
number...)
» Noisy and non-noisy versions
3 [—IBIPOP-GMAES
Competitors include 10D h
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Fraction of runs reaching specified accuracy vs number of F.computation.



Overview

. with surrogate models



Surrogate Models for CMA-ES

Exploiting first evaluated solutions as training set
€ = {(as, F(:)}
Using Ranking-SVM
» Builds F using Ranking-SVM
x; = x5 iff F(x;) < F(x5)
» Kernel and parameters problem-dependent

T. Runarsson (2006). "Ordinal Regression in Evolutionary Computation”

» ACM: Use C from CMA-ES as Gaussian kernel

I. Loschilov et al. (2010). "Comparison-based optimizers need comparison-based surrogates”
I. Loschilov et al. (2012). "Self-Adaptive Surrogate-Assisted CMA-ES”



About Model Learning

Non-separable Ellipsoid problem

(w;—wj)t (x;—xj) (wi—z)tCr @ —a))
. N = e T 252 - . ) = o
K(z;,zj)=e 20 i Keo(wi,z;)=e 2

Invariance to affine transformations of the search space.



The devil is in the hyper-parameters

SVM Learning

» Number of training points: Nyyqining = 30+/d for all problems,
except Rosenbrock and Rastrigin, where Ny qining = 70V/d
» Number of iterations: N, = 50000v/d

» Kernel function: RBF function with o equal to the average
distance of the training points

» The cost of constraint violation: C; = 10%(Ny,qining — 9)*°

Offspring Selection

» Number of test points: Ny.s; = 500
» Number of evaluated offsprings: \' = g
» Offspring selection pressure parameters: o2, = 202, = 0.8



Sensitivity analysis

The speed-up of ACM-ES is very sensitive
» w.r.t. number of training points.
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» w.r.t. lifelength of the surrogate model



Self-adaptation of F lifelength

Principle: iterated preference learning
» After n generations, gather new examples {z;, F(x;)}
» Evaluate rank loss of old F
» Low error: F could have been used for more generations
» High error: F should have been relearned earlier.

Self-adaptation R
n = g( rank loss(F))
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ACM-ES algorithm

optio

b

Build Surrogate Model f(x) of f(z)
using model hyper-parameters o

Optimize f(x) for 7 generations

v

Optimize f(z) for 1 generation

v

Estimate model error Err(o)
using last A evaluated points

v

Adjust number of generations n

nally *

Optimize Err(«) for 1 generation
« = new mean of distribution

}

Ranking SVM

CMA-ES #1
in space x

CMA-ES #1 Surrogate-assisted
i space CMA-ES with online
fraction of adaptation of model
misranking hyper-parametetS.

~ 1
e Err(a)

CMA-ES #2

in space «



Online adaptation of model hyper-parameters
F8 Rosenbrock 20-D
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Results on black-box optimization competition (BBOB)
BIPOP-**aACM and IPOP-*aACM (with restarts) on 24 noiseless 20 dimensional functions
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ACM-XX significantly improves on XX (BIPOP-CMA, IPOP-CMA)
progress on the top of advanced CMA-ES variants.



Overview

Multi-objective optimization



Multi-objective CMA-ES (MO-CMA-ES)

v

MO-CMA-ES = p,,, independent (1+1)-CMA-ES.

Each (1+1)-CMA samples new offspring. The size of the
temporary population is 2.

Only p,, best solutions should be chosen for new population
after the hypervolume-based non-dominated sorting.

Update of CMA individuals takes place.

v

v

v

(@) O Dominated

Objective 2

Objective 1



A Multi-Objective Surrogate Model

Rationale
» Rationale: find a unique function F(x) that defines the
aggregated quality of the solution « in multi-objective case.

» Idea originally proposed using a mixture of One-Class SVM and
regression-SVM?!
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1. Loshchilov, M. Schoenauer, M. Sebag (GECCO 2010). "A Mono Surrogate for Multiobjective Optimization"




Unsing the Surrogate Model

Filtering

» Generate Ny, form Pre-children

» For each pre-children A and the nearest parent B calculate
Gain(A, B) = Fsym(A) — Fopm(B)
» New children is the point with the maximum value of Gain

------ true Pareto
= = SVM Pareto




Dominance-Based Surrogate

Using Rank-SVM

Objective 2

Which ordered pairs?

» Considering all possible > relations may be too expensive.
» Primary constraints: x and its nearest dominated point

» Secondary constraints: any 2 points not belonging to the same
front (according to non-dominated sorting)

“>” - constraints:
— Primary
-—» Secondary

Objective 1

All primary constraints, and
a limited number of
secondary constraints



Dominance-Based Surrogate (2)

Construction of the surrogate model
» Initialize archive Q... as the set of Primary constraints , and
Qpassive s the set of Secondary constraints
» Learn the model for 1000 |Q,.tive| iterations.

» Add the most violated passive contraint from Q,,ssive 10 Qactive
and optimize the model for 10 |Qq,.tive | iterations.

» Repeat the last step 0.1|Qqctivc| times.



Experimental Validation
Parameters

Surrogate Models

» ASM - aggregated surrogate model based on One-Class SVM
and Regression SVM

» RASM - proposed Rank-based SVM

SVM Learning

» Number of training points: at most N;y4ining = 1000 points

> Number of iterations: 1000 |Qactive| + [Quctivel” & 2NZ 4ining

» Kernel function: RBF function with o equal to the average
distance of the training points

» The cost of constraint violation: C' = 1000

Offspring Selection

» Number of pre-children: p =2 and p = 10



Experimental Validation

Comparative Results

AHtarget 1 01 0.01 1le3 led |1 0.1 001 1le3 led
ZDT1 ZDT2
1100 3000 5300 7800 38800 | 1400 4200 6600 8500 32700
16 2 2 23 11 (1.8 1.7 18 23 1.2
A p=2 1.2 15 14 1.5 1.5 1.2 12 1.2 14 1
ASM- NSG A p=10 1. 1 1 1 . 1 1 1 1 .
RASM-NSGA p=2 12 14 14 16 i § 1.3 12 12 15 1
RASM-NSGA p=10 il 1 I 1.5 i 1 1 1.2
MO-CMA-ES 16.5 14.4 123 11.3 14.7 10.7 10 10.1
ASM-MO-CMA p=2 68 85 83 8 59 82 77 115
ASM-MO-CMA p=10 6.9 10.1 104 12.1 5
RASM-MO-CMA p=2 51 7.7 76 74 5.2
RASM-MO-CMA p=10 3.6 43 49 72 3.2 .
IHR1 THR2
500 2000 35300 41200 50300 | 1700 7000 12900 52900
SGA-1T 16 15 11 32 62
I-NSGA p=2 12 1.3 1. 3.9 49
ASM-NSGA p=10 1 5 14 64 46
RASM-NSGA p=2 1.2 15 . 3
RASM-NSGA p=10 e . . 1.2 5.1 4.8 .
0-CMA-ES 8.2 1.2 12 |58 27 21 1
ASM-MO-CMA p=2 4.6 1 1 31 16 14 11
ASM-MO-CMA p=10 9.2 1.2 59 26 24
RASM-MO-CMA p=2 26 21 22 1 1
-MO-CMA p=10 18

ASM and
Rank-based ASM
applied on top of
NSGA-II (with
hypervolume
secondary criterion)
and MO-CMA-ES,
on ZDT and IHR
functions.

N = How many more
true evaluations
than best performer



Discussion 1. Preferences — Optimization

Preference learning for robust black-box optimization

» ACM-ES: speed-up (x2, x4) on the state of the art on
uni-modal problems.

> Invariant to rank-preserving and orthogonal transformations of
the search space

» The cost of speed-up is O(d?)

» Source codes available: https://www.lri.fr/~ilya/

Lessons learned

» Preference learning repeatedly used in the optimization
platform

» Hyper-parameter adjustment is critical

» ML assessment criterion: not the average case: the worst case
a critical hyper-parameter: the stopping criterion.
[ll-conditioned Gram matrices are encountered with probability
1.


https://www.lri.fr/~ilya/

Discussion 2. Optimization — Preferences ?

Eliciting preferences ?

» Subjectiveness is an issue (phrasing of questions, choice of
units)

» Designing a questionaire: an optimization problem ?
» Which criterion: stability ?

Designing aggregation operators / voting rules 7

» A learning or an optimization problem ?
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