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Université Paris-Saclay in 1 slide

14 partners

I 3 Univ.

I 4 Grandes coles

I 7 Research Institutes

15% of French Research
5,500 PhD; 10,000 Faculty members
10 Field medals; 3 Nobel; 160 ERC.
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Some AI projects

I Center for Data Science
ML Higgs Boson Challenge (2015)

I Institute DataIA: AI for Society

I Big Data, Optimization and
Energy (See4C challenge)
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Two visions of AI − 1950 - 1960

Logical calculus can be achieved by machines !

I All men are mortal.

I Socrates is a man.

I Therefore, Socrates is mortal.

Primary operation: Deduction (reasoning) ? or Induction (learning)?

I Should we learn what we can reason with ?

I Should we reason with what we can learn ?

Alan Turing John McCarthy

HOW Learning Reasoning

VALIDATION Human assessment Pb Solving
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Alan Turing (1912-1954)

Muggleton, 2014

1950: Computing Machinery and Intelligence

I Storage will be ok

I But programming needs prohibitively large human resources

I Hence, machine learning.

by (...) mimicking education, we should hope to modify the machine until it
could be relied on to produce definite reactions to certain commands.

One could carry through the organization of an intelligent machine with only
two interfering inputs, one for pleasure or reward, and the other for pain or
punishment.
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The imitation game

The Turing test

Issues

I Human assessment; no golden standard.
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John McCarthy (1927-2011)

1956: The Dartmouth conference

I With Marvin Minsky, Claude Shannon, Nathaniel Rochester, Herbert
Simon, et al.

I The study is to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it. An attempt will be
made to find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve
themselves.
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Computational Logic for AI

I Declarative languages

I Symbolic methods, deduction

I Focussed domains (expert systems)

I Games and problem solving

Issues

I How to ground symbols ?

I Where does knowledge come from ?
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Automating Science using Robot Scientists
King et al, 04-19

From facts to hypotheses to experiments to new facts...
I A proper representation and domain theory

Benzene(A1,A2,A3,A4,A5,A6) : −Carbon(A1),Carbon(A2), . . .
Bond(A1,A2),Bond(A2,A3),Bond(A3,A4) . . .

I Active Learning − Design of Experiments
I Control of noise
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The Wave of AI
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Neural Nets, ups and downs in AI

(C) David McKay - Cambridge Univ. Press

History

1943 A neuron as a computable function y = f (x) Pitts, McCullough
Intelligence → Reasoning → Boolean functions

1960 Connexionism + learning algorithms Rosenblatt

1969 AI Winter Minsky-Papert

1989 Back-propagation Amari, Rumelhart & McClelland, LeCun

1992 NN Winter Vapnik

2005 Deep Learning Bengio, Hinton
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The revolution of Deep Learning

I Ingredients were known for decades

I Neural nets were no longer scientifically exciting (except for a few people)

I Suddenly... 2006
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Revival of Neural Nets

Bengio, Hinton 2006

1. Grand goal: AI

2. Requisites
I Computational efficiency
I Statistical efficiency
I Prior efficiency: architecture relies on human labor

3. Compositionality principle: skills built on the top of simpler skills
Piaget 1936
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The importance of being deep

A toy example: n-bit parity Hastad 1987

Pros: efficient representation
Deep neural nets are exponentially more compact

Cons: poor learning

I More layers → more difficult optimization problem

I Getting stuck in poor local optima.

I Handled through smart initialization Glorot et al. 10
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Convolutional NNs: Enforcing invariance
LeCun 98

Invariance matters

I Visual cortex of the cat Hubel & Wiesel 68
I cells arranged in such a way that
I ... each cell observes a fraction of the visual field receptive field
I ... their union covers the whole field

I Layer m: detection of local patterns (same weights)
I Layer m + 1: non linear aggregation of output of layer m
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Convolutional architectures

LeCun 1998

For images

For signals
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Gigantic architectures

LeCun 1998

Kryzhevsky et al. 2012

Properties
I Invariance to small transformations (over the region)
I Reducing the number of weights by several orders of magnitude

19 / 1



What is new ?
Former state of the art e.g. in computer vision

SIFT: scale invariant feature transform
HOG: histogram of oriented gradients

Textons: “vector quantized responses of a linear filter bank”
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What is new, 2

Traditional approach

→ Manually crafted
features

→ Trainable
classifier

Deep learning

→ Trainable
feature extractor

→ Trainable
classifier
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A new representation is learned

Bengio et al. 2006

22 / 1



Why Deep Learning now ?

CONS

I a non-convex optimization problem

I no theorems

I delivers a black box model

PROS

I Linear complexity w.r.t. #data

I Performance leaps if enough data and enough computational power.
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A leap in the state of the art: ImageNet

Deng et al. 12

15 million labeled high-resolution images; 22,000 classes.

Large-Scale Visual Recognition Challenge

I 1000 categories.

I 1.2 million training images,

I 50,000 validation images,

I 150,000 testing images.
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A leap in the state of the art, 2
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Super-human performances

karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Playing with representations
Gatys et al. 15, 16

I Style and contents in a convolutional NN are separable
I Use a trained VGG-19 Net:

I applied on image 1 (content)
I applied on image 2 (style)
I find input matching hidden representation of image 1 (weight α) and hidden

representation of image 2 (weight β)
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Beyond classifying, modifying data: generating data

“What I cannot create I do not understand” Feynman 88
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Generative Adversarial Networks

Goodfellow et al., 14

Goal: Find a generative model

I Classical: learn a distribution hard

I Idea: replace a distribution evaluation by a 2-sample test

Principle

I Find a good generative model, s.t. generated samples cannot be
discriminated from real samples

(not easy)
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Generative Adversarial Networks, 2
Goodfellow, 2017

Elements
I Dataset, true samples x ( real)
I Generator G, generated samples ( fake)
I Discriminator D: discriminates fake from real

A min-max game Embedding a Turing Test !

MinG MaxDIEx∈data[log(D(x))] + IEz∼px (z)[log(1− D(z))]
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Generative Adversarial Networks: successes

Mescheder, Geiger and Nowozin, 2018
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and monsters
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From Deep Learning to Differentiable Programming

Principle

I Most programs can be coded as a neural net.

I Define a performance criterion

I Let the program interact with the world and train itself:
programs that can learn

Revisiting Partial Differential Equations
1. Combining with simulations: recognizing Tropical Cyclones Kurth et al.

18

1152x768 spatial grid, 3 hours time step
3 classes: TCs (0.1%), Atmospheric Rivers (1.7%) and Background
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Physics Informed Deep Learning

Data driven solutions of PDE Raissi 19

Equation:
ut = N (t, u, x , ux , uxx , . . .)

residual:
f := ut −N (t, u, x , ux , uxx , . . .)

Initial and boundary conditions: (t iu, x
i
u, u

i ), i = 1 . . .N
Training points (t jf , x

j
f ), j = 1 . . .N ′

Train u(t, s) minimizing

1

N

N∑
i=1

|u(x i
u, t

i
u)− ui |2+

train test
u(0, x) = sin(πx/8) u(0, x) = −exp(−(x + 2)2)
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Issues with black-box models

Good performances 6⇒ Accurate model
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Robustness wrt perturbations

What can happen when perturbing an example ? Anything !

Malicious perturbations Goodfellow et al. 15
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Adversarial examples
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Artificial Intelligence / Machine Learning / Data Science

A Case of Irrational Scientific Exuberance

I Underspecified goals Big Data cures everything

I Underspecified limitations Big Data can do anything (if big enough)

I Underspecified caveats Big Data and Big Brother

Wanted: An AI with common decency

I Fair no biases

I Accountable models can be explained

I Transparent decisions can be explained

I Robust w.r.t. malicious examples
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ML & AI, 2

In practice

I Data are ridden with biases

I Learned models are biased (prejudices are transmissible to AI agents)

I Issues with robustness

I Models are used out of their scope

More

I C. O’Neill, Weapons of Math Destruction, 2016

I Zeynep Tufekci, We’re building a dystopia just to make people click on
ads, Ted Talks, Oct 2017.
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Machine Learning: discriminative or generative modelling
Given a training set iid samples ∼ P(X ,Y )

E = {(xi , yi ), xi ∈ IRd , i ∈ [[1, n]]}

Find

I Supervised learning: ĥ : X 7→ Y or P̂(Y |X )

I Generative model P̂(X ,Y )

Predictive modelling might be based on correlations
If umbrellas in the street, Then it rains
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The implicit big data promise:

If you can predict what will happen,
then how to make it happen what you want ?

Knowledge → Prediction → Control

ML models will be expected to support interventions:

I health and nutrition

I education

I economics/management

I climate
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Correlations do not support interventions

Causal models are needed to support interventions

Consumption of chocolate enables to predict # of Nobel prizes

but eating more chocolates does not increase # of Nobel prizes
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Discussion

Scientific Caveat

I Robustness of results

I Reproducibility of results (gigantic resources)

Economic Caveat

I Winner take all:
Value → Data → More Value

Societal Caveat

I Learning from biased data → carving prejudices in stone

I Accurate prediction of individual risks → ruins insurance mechanisms.
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