Artificial Intelligence: News and Questions

Michele Sebag CNRS – INRIA – Univ. Paris-Saclay

ArenbergSymposium - Leuven - Nov. 27th, 2019

Credit for slides: Yoshua Bengio; Yann LeCun; Nando de Freitas; Léon Gatys; Max Welling; Victor Berger

1/1

Université Paris-Saclay in 1 slide

14 partners

- 3 Univ.
- 4 Grandes coles
- 7 Research Institutes

15% of French Research 5,500 PhD; 10,000 Faculty members 10 Field medals; 3 Nobel; 160 ERC.

Some AI projects

- Center for Data Science ML Higgs Boson Challenge (2015)
- Institute DataIA: AI for Society
- Big Data, Optimization and Energy (See4C challenge)

▲□▶ ▲圖▶ ▲ 툴▶ ▲ 툴▶ 툴 ∽) Q (~ 4/1

Two visions of AI - 1950 - 1960

Logical calculus can be achieved by machines !

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Primary operation: Deduction (reasoning) ? or Induction (learning)?

- Should we learn what we can reason with ?
- Should we reason with what we can learn ?

	Alan Turing John McCarth	
HOW	Learning	Reasoning
VALIDATION	Human assessment	Pb Solving

Alan Turing (1912-1954)

Muggleton, 2014

1950: Computing Machinery and Intelligence

- Storage will be ok
- But programming needs prohibitively large human resources
- ► Hence, machine learning.

by (...) mimicking education, we should hope to modify the machine until it could be relied on to produce definite reactions to certain commands.

One could carry through the organization of an intelligent machine with only two interfering inputs, one for pleasure or reward, and the other for pain or punishment.

The imitation game

The Turing test

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

7/1

Issues

Human assessment; no golden standard.

John McCarthy (1927-2011)

1956: The Dartmouth conference

- With Marvin Minsky, Claude Shannon, Nathaniel Rochester, Herbert Simon, et al.
- The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.

Computational Logic for AI

Declarative languages

- Symbolic methods, deduction
- Focussed domains (expert systems)
- Games and problem solving

Issues

- How to ground symbols ?
- Where does knowledge come from ?

Automating Science using Robot Scientists

King et al, 04-19

10/1

From facts to hypotheses to experiments to new facts...

A proper representation and domain theory

Benzene $(A_1, A_2, A_3, A_4, A_5, A_6)$: - Carbon (A_1) , Carbon (A_2) , ... Bond (A_1, A_2) , Bond (A_2, A_3) , Bond (A_3, A_4) ...

- Active Learning Design of Experiments
- Control of noise

The Wave of AI

E ∽へで 12/1

Neural Nets, ups and downs in AI

(C) David McKay - Cambridge Univ. Press

History

1943A neuron as a computable function $y = f(\mathbf{x})$
Intelligence \rightarrow Reasoning \rightarrow Boolean functionsPitts, McCullough1960Connexionism + learning algorithmsRosenblatt1969AI WinterMinsky-Papert1989Back-propagationAmari, Rumelhart & McClelland, LeCun1992NN WinterVapnik2005Deep LearningBengio, Hinton

The revolution of Deep Learning

- Ingredients were known for decades
- Neural nets were no longer scientifically exciting (except for a few people)
 Suddenly... 2006

Revival of Neural Nets

Bengio, Hinton 2006

- 1. Grand goal: AI
- 2. Requisites
 - Computational efficiency
 - Statistical efficiency
 - Prior efficiency: architecture relies on human labor
- 3. Compositionality principle: skills built on the top of simpler skills

Piaget 1936

15/1

イロト イヨト イヨト イヨト 二日

Revival of Neural Nets

Bengio, Hinton 2006

- 1. Grand goal: AI
- 2. Requisites
 - Computational efficiency
 - Statistical efficiency
 - Prior efficiency: architecture relies on student labor
- 3. Compositionality principle: skills built on the top of simpler skills

Piaget 1936

15/1

イロト イヨト イヨト イヨト 二日

The importance of being deep

A toy example: *n*-bit parity

Pros: efficient representation Deep neural nets are exponentially more compact

Cons: poor learning

- More layers \rightarrow more difficult optimization problem
- Getting stuck in poor local optima.
- Handled through smart initialization

Glorot et al. 10

Hastad 1987

<ロト<部ト<E>< E> E のQで 16/1

Convolutional NNs: Enforcing invariance

Invariance matters

- Visual cortex of the cat
 - cells arranged in such a way that
 - ... each cell observes a fraction of the visual field
 - ... their union covers the whole field

Hubel & Wiesel 68

receptive field

LeCun 98

Convolutional architectures

LeCun 1998

18/1

For images

For signals

Gigantic architectures

LeCun 1998

Kryzhevsky et al. 2012

 $\equiv b$

Properties

- Invariance to small transformations (over the region)
- Reducing the number of weights by several orders of magnitude.

19/1

What is new ? Former state of the art

SIFT: scale invariant feature transform

HOG: histogram of oriented gradients

Textons: "vector quantized responses of a linear filter bank"

20/1

э

What is new, 2

Traditional approach

A new representation is learned

Why Deep Learning now ?

CONS

- a non-convex optimization problem
- no theorems
- delivers a black box model

PROS

- Linear complexity w.r.t. #data
- Performance leaps if enough data and enough computational power.

A leap in the state of the art: ImageNet

Deng et al. 12

15 million labeled high-resolution images; 22,000 classes.

Large-Scale Visual Recognition Challenge

- 1000 categories.
- 1.2 million training images,
- 50,000 validation images,
- 150,000 testing images.

A leap in the state of the art, 2

2012 Teams	%error	2013 Teams	%error	2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NY∪ spinoff)	11.7	GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7
		Adobe	15.2	TTIC-ECP	10.2
		VGG (Oxford)	15.2	хүх	11.2
		VGG (Oxford)	23.0	UvA	12.1

Y. LeCun StatLearn tutorial

Super-human performances

- 2012 Alex Net
- 2013 ZFNet
- 2014 VGG
- 2015 GoogLeNet / Inception
- 2016 Residual Network

Playing with representations

Used for Content

Used for Style

- Style and contents in a convolutional NN are separable
- Use a trained VGG-19 Net:
 - applied on image 1 (content)
 - applied on image 2 (style)
 - ▶ find input matching hidden representation of image 1 (weight α) and hidden representation of image 2 (weight β) $\langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle$

Decrease α/β

28 / 1

Beyond classifying, modifying data: generating data

"What I cannot create I do not understand"

Feynman 88

9 connot oreato. Why const × sort. I do not understand. TouEARM Bothe Ansetz Prodo. Know how to robe lovery 20 Hale; problem that has been robed acces. Temp Non Linear Orained High O f = U(r, a)+ Z) U(1. 2) DI f=2/ria/14ia © Copyright California Institute of Technology. All rights reserved. Commercial use or modification of this material is prohibited.

Generative Adversarial Networks

Goodfellow et al., 14

Goal: Find a generative model

- Classical: learn a distribution
- Idea: replace a distribution evaluation by a 2-sample test

Principle

Find a good generative model, s.t. generated samples cannot be discriminated from real samples

(not easy)

hard

Generative Adversarial Networks, 2

Goodfellow, 2017

Elements

- Dataset, true samples x (real)
- Generator G, generated samples (fake)
- Discriminator D: discriminates fake from real

A min-max game

Embedding a Turing Test !

 $Min_G Max_D \mathbb{E}_{x \in data}[\log(D(\mathbf{x}))] + \mathbb{E}_{z \sim p_x(z)}[\log(1 - D(z))]$

31/1

Generative Adversarial Networks: successes

Mescheder, Geiger and Nowozin, 2018

and monsters

(Goodfellow 2016)

From Deep Learning to Differentiable Programming

Principle

- Most programs can be coded as a neural net.
- Define a performance criterion
- Let the program interact with the world and train itself: programs that can learn

Revisiting Partial Differential Equations

1. Combining with simulations: recognizing Tropical Cyclones 18

Kurth et al.

1152x768 spatial grid, 3 hours time step 3 classes: TCs (0.1%), Atmospheric Rivers (1.7%) and Background

Physics Informed Deep Learning

Data driven solutions of PDE

Equation:

$$u_t = \mathcal{N}(t, u, x, u_x, u_{xx}, \ldots)$$

residual:

$$f := u_t - \mathcal{N}(t, u, x, u_x, u_{xx}, \ldots)$$

Initial and boundary conditions: $(t_u^i, x_u^i, u^i), i = 1...N$ Training points $(t_f^i, x_f^i), j = 1...N'$ Train u(t, s) minimizing

$$rac{1}{N}\sum_{i=1}^{N}|u(x_{u}^{i},t_{u}^{i})-u^{i}|^{2}+$$

Raissi 19

Physics Informed Deep Learning

Data driven solutions of PDE

Equation:

$$u_t = \mathcal{N}(t, u, x, u_x, u_{xx}, \ldots)$$

Raissi 19

residual:

$$f := u_t - \mathcal{N}(t, u, x, u_x, u_{xx}, \ldots)$$

Initial and boundary conditions: $(t_u^i, x_u^i, u^i), i = 1...N$ Training points $(t_f^i, x_f^i), j = 1...N'$ Train u(t, s) minimizing

$$rac{1}{N}\sum_{i=1}^{N}|u(x_{u}^{i},t_{u}^{i})-u^{i}|^{2}+$$

Issues with black-box models

Good performances \Rightarrow **Accurate model**

Robustness wrt perturbations

What can happen when perturbing an example ? Anything !

Malicious perturbations

Goodfellow et al. 15

 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

=

 $\begin{array}{c} \boldsymbol{x} + \\ \epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \\ \text{"gibbon"} \\ 99.3 \ \% \ \text{confidence} \end{array}$

Adversarial examples

Artificial Intelligence / Machine Learning / Data Science

A Case of Irrational Scientific Exuberance

- Underspecified goals
- Underspecified limitations
- Underspecified caveats

Big Data cures everything Big Data can do anything (if big enough) Big Data and Big Brother

Wanted: An AI with common decency

► Fair	no biases
Accountable	models can be explained
Transparent	decisions can be explained
Robust	w.r.t. malicious examples

ML & AI, 2

In practice

- Data are ridden with biases
- Learned models are biased (prejudices are transmissible to AI agents)

Issues with robustness

Models are used out of their scope

More

- C. O'Neill, Weapons of Math Destruction, 2016
- Zeynep Tufekci, We're building a dystopia just to make people click on ads, Ted Talks, Oct 2017.

Machine Learning: discriminative or generative modellingGiven a training setiid samples $\sim P(X, Y)$

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathbb{R}^d, i \in [[1, n]]\}$$

Find

• Supervised learning:
$$\hat{h}: X \mapsto Y$$
 or $\widehat{P}(Y|X)$

• Generative model $\widehat{P}(X, Y)$

Predictive modelling might be based on correlations If umbrellas in the street, Then it rains

 $\bullet \equiv \bullet$

E

The implicit big data promise:

If you can predict what will happen,

then how to make it happen what you want ?

43/1

```
\textbf{Knowledge} \rightarrow \textbf{Prediction} \rightarrow \textbf{Control}
```

ML models will be expected to support interventions:

- health and nutrition
- education
- economics/management
- climate

Correlations do not support interventions

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Causal models are needed to support interventions

Consumption of chocolate enables to predict # of Nobel prizes but eating more chocolates does not increase # of Nobel prizes

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ かへへ
45/1

Discussion

Scientific Caveat

- Robustness of results
- Reproducibility of results (gigantic resources)

Economic Caveat

Winner take all:

 $Value \rightarrow Data \rightarrow More \ Value$

Societal Caveat

- \blacktriangleright Learning from biased data \rightarrow carving prejudices in stone
- Accurate prediction of individual risks \rightarrow ruins insurance mechanisms.