Structural Sampling
for Statistical Software Testing

Michele Sebag
CNRS – Université Paris-Sud

Joint work: Nicolas Baskiotis, Marie-Claude Gaudel, Sandrine Gouraud

Entente Cordiale, 2007, May 21st
Contents

Autonomic Computing

Statistical Structural Software Testing

Machine Learning
 Discriminative vs Generative ML
 Prior knowledge and representation

S4T algorithm: Sampling for Statistical Structural Software Testing

Experimental Validation
"Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010."

-Gartner 6/2001
Autonomic Computing: Family of Applications

- Computer Science: ubiquitous complex systems
- Number of system administrators does not scale up
- Long term goal: Autonomic systems
- Starter: self-aware systems
- Behavioural modelling → Machine Learning
Some applications in Autonomic Computing

- Palatin-Wolf-Schuster
 Find misconfigured CPUs in a grid system
 KDD06

- Xiao et al.
 Active learning for game player modeling
 AAAI05

- Zheng et al.
 Use traces to identify bugs
 NIPS03-ICML06

- Baskiotis et al.
 Statistical Structural Software Testing
 IJCAI07
Software Testing

Algebraic approaches
 Model Checking

Statistical approaches
 For each test case, compare the program output/desired output
 Building set of test cases
 – Sampling the input variable domain
 – Sampling the program behaviours

miss exception branches
Statistical Structural Software Testing

Denise et al. ISSRE 2004

Program to be tested \rightarrow Control Flow Graph

Finite State Automaton
set of nodes Σ, set of transitions $\mathcal{V} \subset \Sigma \times \Sigma$
Control Flow Graph → Execution paths

$N(v, \ell)$: number of paths of length ℓ starting at node v

\[
N(v, \ell + 1) = \sum_{w \text{ successor of } v} N(w, \ell)
\]

Uniform sampling of T-length paths

$s[0] = v_s$; start node

For $t = 1 \ldots T$

Let $v = s[t - 1]$

Select w successor of v with probability $\propto N(w, T - t)$

$s[t] = w$
From an execution path to an input case

Program

read (x, y) 1
if (x < 0) 2
 then x := −x; y := 1/y; 3
p := 1; 4
while (x > 0) 5
do p := p * y; x := x − 1; 6
print p; 7

Path

s = 1.2.4.5.7

Path → Constraint Satisfaction Problem

x ≥ 0 AND x ≤ 0

CSP → Test case

x = 0
Statistical Structural Software Testing, overview

Repeat

Program

Execution Path Sampler

Constraint Solver

UNFEASIBLE

FEASIBLE \equiv \text{Input case}

Until sufficient coverage

Set of test cases
From execution paths to test cases

Path \rightarrow Constraint Solver $\rightarrow \begin{cases} \text{Feasible} & \rightarrow \text{Test case} \\ \text{Undecidable} \\ \text{Unfeasible} \end{cases}$

Limitation

- $\Pr(\text{path feasible } | \text{ real-world program}) \sim 10^{-10}, 10^{-15}$
- \Rightarrow Decompose the program by hand !@#!
Discriminant Machine Learning

Learn the “Feasible Path” concept

- Input: a set of feasible/unfeasible paths
- Output: approximate the semantics of the program

```
Repeat
  Execution Path Sampler → Classifier → ML
  Constraint Solver
  UNFEASIBLE → FEASIBLE
  Input case
Until sufficient coverage
```

Set of test cases
Discriminant Machine Learning

Fails
- Very few positive examples
- Complex instance space

More feasible paths are required for discriminant learning

But more feasible paths is all what SST needs
Generative Machine Learning

Generate execution paths such that

- They are feasible
- They are new

The goal is

- Not reinforcement learning
- Not really active learning
- Generative learning

paths must be new
only feasible paths matter
not distribution estimation
Prior knowledge: What makes a path unfeasible?

Violated dependencies

if (x)
 then y := ...
 else z := ...

[...]
if (x)
 then u := ...
 else w := ...

$s = ..12457...$ is unfeasible.

Domain dependent constraints

If there are 17 or 19 uranium beams to be examined
the number of times in the loop is 17 or 19.

Others

Last time in the loop, execute closing instructions

Non Markovian problems / Context sensitive grammars
Parikh Map

\text{string} \rightarrow \text{count Ngrams}

Efficient for testing language equivalence

if two FSAs have \sim Ngrams distribution,

$$\Pr(\text{FSAs are different}) < \varepsilon(N, \text{distance, samplesize, ..})$$

Efficient for learning context sensitive languages

\text{e.g. } a^n b^n \equiv |s|_a = |s|_b \text{ AND } |s|_{ba} = 0
Extended Parikh Map

- Count number of occurrences of symbols
- Record successor of i-th occurrence of symbols

$v \in \Sigma$
$(v, i) \in \Sigma \times \mathbb{N}$

\[
|v| : \Sigma^* \mapsto \mathbb{N} \\
\sigma_{v, i} : \Sigma^* \mapsto \Sigma
\]

$s|_v = \#v \text{ in } s$
$s|_{v, i} = \text{ successor of } i\text{-th occurrence of } v$

$s = vwvtxytx$ \rightarrow

\begin{array}{c|c|c|c|c}
\hline
s & v & w & t & \cdots \\
\hline
2 & 1 & 2 & \cdots \\
\hline
w & t & v & x \\
\end{array}
Path Generation using Parikh Maps

Input $\mathcal{E} = \{(x_i, y_i), x_i \in \Sigma^*, y_i \in \{1, -1\}, i = 1..n\}$

Generation

$s[0] = v_s$
For $t = 1 \ldots T$
Let $v = s[t-1]$

Ideally:

$$s[t] = \arg\max_w \{Pr(s' \text{ feasible} \mid \text{prefix}(s') = sw)\}$$

not enough evidence
Path Generation using Parikh Maps, 2

Approximation

\[|s|_v = i, \; |s|_w = j \]

\[s[t] = \operatorname{argmax}_w \left\{ \Pr(s' \text{ feasible in } \mathcal{E} \mid |s'|_{v,i} = w, |s'|_w > j) \right\} \]
Path Generation using Parikh Maps, 2

Approximation

\[s[t] = \arg\max_w \left\{ Pr(s' \text{ feasible in } E | s'_{v,i} = w, s'_{w} > j) \right\} \]

Fails: because of XORs
Mixing evidence from different subconcepts is misleading.

\[s \text{ feasible iff } s_{v,1} = s_{v,3} \]
S4T: Overview

Prior knowledge

Feasible Path = $C_1 \lor \ldots \lor C_K$

Get rid of XORs

Init

for each C_i represented in training set \mathcal{E}^+

identify $\hat{C}_i = \{s, s \in \mathcal{E}^+, s \prec C_i\}$

Generalize

for each \hat{C}_i, generate s' “close” to \hat{C}_i

if s' feasible, generalize \hat{C}_i
Init module

Feasible Path $= C_1 \lor \ldots \lor C_K$

Getting rid of XORS
By construction,

if s_i and s_j belong to C_k,

$\text{lgg}(s_i, s_j)$ is correct $\quad (\equiv \text{does not cover unfeasible paths})$
Init module: Getting rid of XORs, 2

\[\hat{R}(s_i, s_j) \sim s_i \text{ and } s_j \text{ in same } C_k \]

for \(t = 1, \ell \)

Generate \(s \) in \(lgg(s_i, s_j) \)

Return \(False \) if \(s \) unfeasible

Return \(True \)

Complete, \(Pr(\neg \hat{R}(s_i, s_j)|R(s_i, s_j)) = 0 \)

Incorrect, \(p = Pr(\hat{R}(s_i, s_j)|\neg R(s_i, s_j)) \ll 1 \)

Find clusters after \(\hat{R} \)

For \(i = 1 \ldots n \)

Construct clique \((s_i) \)
Init module: Construct clique(s_0)

\[\hat{C} = \{s_0\} \]
Define $H = \{s' \mid \forall s \in \hat{C}, R(s, s')\} \setminus \hat{C}$
Define $\text{degree}(s) = |\{s' \in H \mid R(s, s')\}|$
While ($H \neq \emptyset$)
Select $s_t = \arg\max_{s \in H}\{\text{degree}(s)\}$
\[\hat{C} := \hat{C} \cup \{s_t\} \]
Init module: Construct clique(s_0)

\[\hat{C} = \{s_0\} \]

Define \[H = \{ s' \mid \forall s \in \hat{C}, R(s, s') \} \setminus \hat{C} \]

Define \[\text{degree}(s) = |\{ s' \in H \mid R(s, s') \}| \]

While \((H \neq \emptyset)\)

Select \(s_t = \arg\max_{s \in H} \{\text{degree}(s)\} \)

\[\hat{C} := \hat{C} \cup \{s_t\} \]
Init module: Construct clique(s_0)

\[\hat{C} = \{s_0\} \]

Define \(H = \{s' \mid \forall s \in \hat{C}, R(s, s')\} \setminus \hat{C} \)

Define \(\text{degree}(s) = |\{s' \in H \mid R(s, s')\}| \)

While \((H \neq \emptyset) \)

Select \(s_t = \arg\max_{s \in H} \{\text{degree}(s)\} \)

\[\hat{C} := \hat{C} \cup \{s_t\} \]
Init module

Let s_0 in C_0; C_0 has n_0 representatives in E
H contains all n_0 paths in C_0 plus
r 'spurious' paths
with probability p^r

Probability P_{err} of selecting a spurious path:

degree(path in $C_0) \geq n_0$
degree(spurious paths) $ler + B(n_0, p)$

\[P_{Err} < r \times Pr(B(n_0, p) > n_0 - r) = r \times Pr(B(n_0, 1 - p) < r) \]

With

\[Pr(B(n_0, 1 - p) < r) \leq \exp(-\frac{2}{n_0}(n_0(1 - p) - r)^2) \]

Probability of selecting a spurious path

\[< \sum_{r=1}^{n-n_0} r \left(p \times e^{4(1-p)}\right)^r e^{-2r^2/n_0} < \frac{1-(pe^{4(1-p)-2/n})^{n-n_0+1}}{(1-pe^{4(1-p)-2/n})^2} \]
Generate module

Input \hat{C}

ϵ-Greedy generation

Select

$$w = \arg\max \{ Pr(s' \text{ feasible in } \hat{C} \mid s'_{v,i} = w, |s'|_w > j) \}$$

When $\forall s'$ in \hat{C} as above, select w with probability ϵ

Other variants
Multi-armed bandit
Near-miss based generalization
Select s' infeasible nearest miss to \hat{C}
Generate s'' in $\text{lgg}(\hat{C}, s') \setminus \hat{C}$
Experimental Validation

Real world problem
36 nodes, 46 edges, length 240, \(\Pr(\text{feasible}) = 10^{-5} \)

Artificial problems
BNF grammar
Generate FSAs (\# nodes in 20,40; length in 120,250)
Construct target concept
easy problems: \(\Pr(\text{feasible}) \) in \(10^{-3}, 10^{-2} \)
medium problems: \(\Pr(\text{feasible}) \) in \(10^{-8}, 10^{-5} \)
hard problems: \(\Pr(\text{feasible}) \) in \(10^{-15}, 10^{-10} \)

Performance
For each \(C \) represented in the training set
plot \((x, y)\): \(x \): initial representativity; \(y \) S4T representativity
Experimental Validation

Final vs Initial coverage

Final vs Initial coverage for $\epsilon = .1$, .5 and 1

Initial coverage \rightarrow gain

$< 10\%$ 2 to 5 orders of magnitude

$< 30\%$ gain factor 3
Experimental Validation on FCT4: with and without Init module
Conclusion and Perspectives

Contributions
- Extended Parikh representation
- Getting rid of long range dependencies
- Exploration vs Exploitation

Next
- Finding C_i non represented in the training set
- Coupling with software debugging

Zheng et al. 03-06