> Surrogate models for Single and Multi-Objective Stochastic Optimization: Integrating Support Vector Machines and Covariance-Matrix Adaptation-ES

Ilya Loshchilov, Marc Schoenauer, Michèle Sebag

TAO CNRS – INRIA – Univ. Paris-Sud

May 23rd, 2011

Michèle Sebao

NRIA

Surrogate optimization: SVM for CMA

Motivations

Find Argmin $\{\mathcal{F}: X \mapsto \mathbb{R}\}$

Context: ill-posed optimization problems

- Function \mathcal{F} (fitness function) on $X \subset \mathbb{R}^d$
- Gradient not available or not useful
- \mathcal{F} available as an oracle (black box)

$$\begin{array}{c} x \\ \hline f(x) \\ \hline \\ \mathsf{Build} \left\{ \mathbf{x_1}, \mathbf{x_2}, \ldots \right\} \rightarrow \mathsf{Argmin}(\mathcal{F}) \end{array}$$

Black-box approaches

- + Applicable
- + Robust

comparison-based approaches are invariant

- High computational costs: number of function evaluations

Michèle Sebag

Surrogate optimization: SVM for CMA

continuous

Surrogate optimization

Principle

- Gather $\mathcal{E} = \{(x_i, \mathcal{F}(x_i))\}$
- Build $\hat{\mathcal{F}}$ from \mathcal{E}

learn surrogate model

training set

- Use surrogate model $\hat{\mathcal{F}}$ for some time:
 - Optimization: use $\hat{\mathcal{F}}$ instead of true \mathcal{F} in std algo
 - Filtering: select promising $\mathbf{x_i}$ based on $\hat{\mathcal{F}}$ in population-based algo.
- Compute $\mathcal{F}(\mathbf{x_i})$ for some $\mathbf{x_i}$
- Update $\hat{\mathcal{F}}$
- Iterate

Surrogate optimization, cont

Issues

- Learning
 - Hypothesis space (polynoms, neural nets, Gaussian processes,...)
 - Selection of training set (prune, update, ...)
 - What is the learning target ?
- Interaction of Learning & Optimization modules
 - Schedule (when to relearn)
 - * How to use $\hat{\mathcal{F}}$ to support optimization search
 - ** How to use search results to support learning $\hat{\mathcal{F}}$

This talk

- Using Covariance-Matrix Estimation within Support Vector Machines
- ** Using SVM for multi-objective optimization

Content

- Covariance Matrix Adaptation-Evolution Strategy
 - Evolution Strategies
 - CMA-ES
 - The state-of-the-art of (Stochastic) Optimization
- Support Vector Machines
 - Statistical Machine Learning
 - Linear classifiers
 - The kernel trick
- Comparison-Based Surrogate Model for CMA-ES
 - Previous Work
 - Mixing Rank-SVM and Local Information
 - Experiments
- Dominance-based Surrogate Model for Multi-Objective Optimization
 - Background
 - Dominance-based Surrogate
 - Experimental Validation

Dominance-based Surrogate Model for Multi-Objective Optimi: Stochastic Search

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set sample size $\lambda \in \mathbb{N}$ While not terminate

- Sample distribution $P\left(oldsymbol{x} | oldsymbol{ heta}
 ight) o oldsymbol{x}_1, \ldots, oldsymbol{x}_\lambda \in \mathbb{R}^n$
- 2 Evaluate $oldsymbol{x}_1,\ldots,oldsymbol{x}_{oldsymbol{\lambda}}$ on f

Solution Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Covers

- Deterministic algorithms,
- Evolutionary Algorithms, PSO, DE *P* implicitly defined by the variation operators
- Estimation of Distribution Algorithms

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

The (μ, λ) -Evolution Strategy

Gaussian Mutations

$$oldsymbol{x}_i \sim oldsymbol{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \qquad ext{for } i = 1, \dots, \lambda$$

as perturbations of m

where $\boldsymbol{x}_i, \boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, and $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $\boldsymbol{m} \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

How to update m, σ , and C?

History

The one-fifth rule

- - One single parameter σ for the whole population
 - Measure empirical success rate
 - Increase σ if too large, decrease σ if too small

Often wrong in non-smooth landscapes

Self-adaptive mutations

- Each individual carries its own mutation parameter
- Log-normal mutation of mutation parameters
- (Normal) mutation of individual

Adaptation is slow for full covariance case

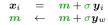
8/47

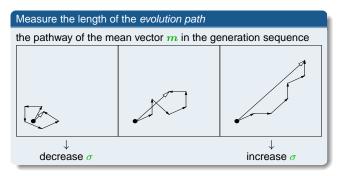
Evolution Strategies

from 1 to $\frac{n^2 - n}{2}$

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Cumulative Step-Size Adaptation (CSA)



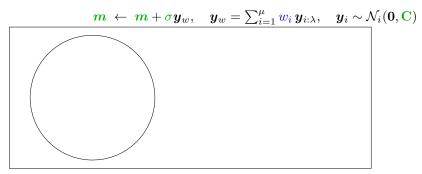


loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update

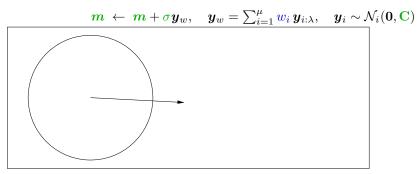


initial distribution, C = I

- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, yw, to appear again

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update

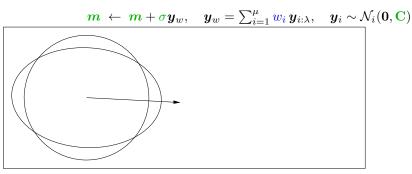


 y_w , movement of the population mean m (disregarding σ)

- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, y_w, to appear again

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update

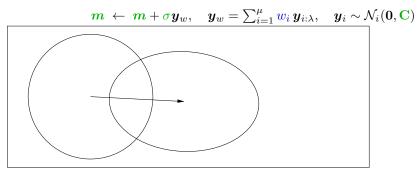


mixture of distribution C and step y_w , C $\leftarrow 0.8 \times C + 0.2 \times y_w y_w^T$

- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, y_w, to appear again

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update

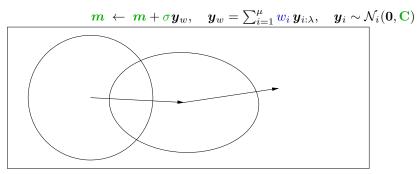


new distribution (disregarding σ)

- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, yw, to appear again

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update

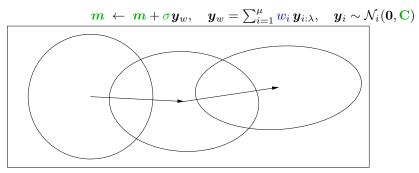


movement of the population mean m

- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, y_w, to appear again

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update



mixture of distribution C and step y_w , C $\leftarrow 0.8 \times C + 0.2 \times y_w y_w^T$

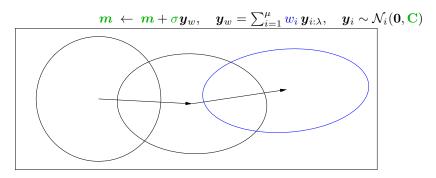
- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, y_w, to appear again

Michèle Sebag

Surrogate optimization: SVM for CMA

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Covariance Matrix Adaptation Rank-One Update



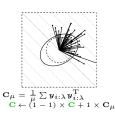
- new distribution: $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}$
- ruling principle: the adaptation increases the probability of successful steps, yw, to appear again

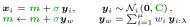
Covariance Matrix Adaptation-Evolution Strategy

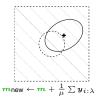
Support Vector Machines Comparison-Based Surrogate Model for CMA-ES Dominance-based Surrogate Model for Multi-Objective Optimization

Rank- μ Update

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization







new distribution

sampling of $\lambda = 150$ solutions where C = I and $\sigma = 1$

 $\boldsymbol{x}_{i} = \boldsymbol{m} + \sigma \, \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}(\boldsymbol{0}, \mathbf{C})$

calculating C from $\mu = 50$ points, $w_1 = \cdots = w_{\mu} = \frac{1}{\mu}$

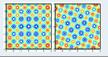
Remark: the old (sample) distribution shape has a great influence on the new distribution \longrightarrow iterations needed

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

Invariance: Guarantee for Generalization

Invariance properties of CMA-ES

- Invariance to order preserving transformations in function space like all comparison-based algorithms
- Translation and rotation invariance to rigid transformations of the search space



CMA-ES is almost parameterless

Tuning of a small set of functions

- Hansen & Ostermeier 2001
- Default values generalize to whole classes
- Exception: population size for multi-modal functions

but try the Restart-CMA-ES Auger & Hansen, 2005

Evolution Strategies CMA-ES The state-of-the-art of (Stochastic) Optimization

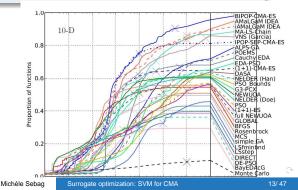
State-of-the-art Results

BBOB - Black-Box Optimization Benchmarking

- ACM-GECCO workshop, in 2009 and 2010
- Set of 25 benchmark functions, dimensions 2 to 40
- With known difficulties (ill-conditioning, non-separability, ...)
- Noisy and non-noisy versions

Competitors include

- BFGS (Matlab version),
- Fletcher-Powell,
- DFO (Derivative-Free Optimization, Powell 04)
- Differential Evolution
- Particle Swarm Optimization
- and many more



Contents

- Covariance Matrix Adaptation-Evolution Strategy
 - Evolution Strategies
 - CMA-ES
 - The state-of-the-art of (Stochastic) Optimization
- Support Vector Machines
 - Statistical Machine Learning
 - Linear classifiers
 - The kernel trick
- Comparison-Based Surrogate Model for CMA-ES
 - Previous Work
 - Mixing Rank-SVM and Local Information
 - Experiments
- Dominance-based Surrogate Model for Multi-Objective Optimization
 - Background
 - Dominance-based Surrogate
 - Experimental Validation

Statistical Machine Learning Linear classifiers The kernel trick

Supervised Machine Learning

Context

 $egin{array}{c} \mathsf{Oracle} \ \mathsf{Universe} o \mathsf{instance} \ \mathbf{x}_i o & \downarrow \ y_i \end{array}$

Input:Training set $\mathcal{E} = \{(\mathbf{x}_i, y_i), i = 1 \dots n, \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}\}$ Output:Hypothesis $h : \mathcal{X} \mapsto \mathcal{Y}$ Criterion:Quality of h

Statistical Machine Learning Linear classifiers The kernel trick

Supervised Machine Learning, 2

Definitions

•
$$\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1 \dots n\}$$

- Classification : $\mathcal Y$ finite
- Regression : $\mathcal{Y} \subseteq {\rm I\!R}$
- Hypothesis space $\mathcal{H}:\mathcal{X} \rightarrow \mathcal{Y}$

failure/ok time to failure

Tasks

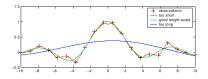
- Select \mathcal{H} model selection
- Assess $h \in \mathcal{H}$ expected accuracy $\mathbb{E}[h(\mathbf{x}) \neq y]$
- Find h* in H minimizing the error cost in expectation

$$h^* = \operatorname{Arg\,min} \left\{ \mathbb{E}[\ell(h(\mathbf{x}) \neq y), h \in \mathcal{H} \right\}$$

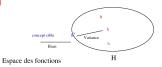
Dilemma

Statistical Machine Learning Linear classifiers The kernel trick

Fitting the data



Bias variance tradeoff



イロト イポト イヨト イヨ

Statistical Machine Learning Linear classifiers The kernel trick

Statistical Machine Learning

Minimize expected loss

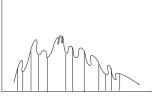
Minimize $\mathbb{E}[\ell(h(\mathbf{x}), y)]$

Principle

If h is well-behaved on the training set, if the training set is "representative" and if h is "regular",

then h is well-behaved in expectation.

$$E[F] \le \frac{\sum_{i=1}^{n} F(x_i)}{n} + c(F, n)$$



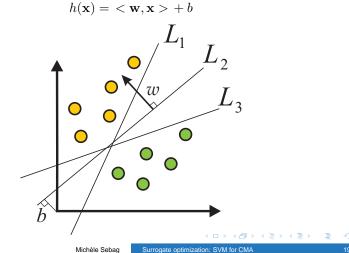
A D M A A A M M

Statistical Machine Learning Linear classifiers The kernel trick

Linear classification; the noiseless case

 $H: X \subset \mathbb{R}^d \mapsto \mathbb{R}$

prediction = $sgn(h(\mathbf{x}))$



Statistical Machine Learning Linear classifiers The kernel trick

Linear classification; the noiseless case, 2

$\mathsf{Example} \to \mathsf{Constraint}$

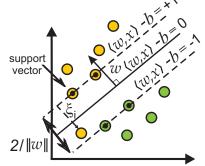
$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq margin \geq 0$$

Maximize minimum margin 2/||w||

Formalisation

 $\begin{cases} \text{Minimize} & \frac{1}{2} \\ \text{subject to} & \forall \\ \end{cases}$

$$\frac{1}{2} ||\mathbf{w}||^2 \forall i, y_i (<\mathbf{w}, \mathbf{x}_i > + b) > 1$$



Statistical Machine Learning Linear classifiers The kernel trick

Linear classification; the noiseless case, 3

Primal form

$$\begin{cases} \begin{array}{ll} \text{Minimize} & \frac{1}{2} ||\mathbf{w}||^2 \\ \text{subject to} & \forall \ i, \ y_i (<\mathbf{w}, \mathbf{x}_i > + b) \geq 1 \end{array} \end{cases}$$

Using Lagrange multipliers:

$$\text{Minimize }_{\mathbf{w},b} \max_{\alpha} \left\{ \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x_i} - b) - 1] \right\}$$

Dual form

$$\mathsf{Maximize}_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle \right\}$$

subject to $\alpha_i \geq 0, i = 1 \dots n$

Optimization: quadratic programming

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

Statistical Machine Learning Linear classifiers The kernel trick

Linear classification; the noisy case

Allow constraint violation; consider slack variables

Primal form

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to} & \forall i, \ y_i (<\mathbf{w}, \mathbf{x}_i > + b) \ge 1 - \xi_i, \quad 0 \le \xi_i \end{array}$$

Lagrange multipliers:

Minimize $_{\mathbf{w},b,\xi} \max_{\alpha,\beta}$

$$\left\{\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x_i} - b) - 1 + \xi_i] - \sum_{i=1}^n \beta_i \xi_i\right\}$$

Dual form

Solution

$$\begin{split} \text{Maximize}_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle \right\} \\ \text{subject to } 0 \leq \alpha_{i} \leq C, i = 1 \dots n, \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ \text{support vectors} \end{split}$$

$$h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \sum_{i=1}^{n} \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle, \quad \text{for a first field of } \mathbf{x}_i \rangle$$

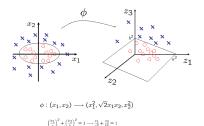
Michèle Sebag

Statistical Machine Learning Linear classifiers The kernel trick

The kernel trick

Intuition

$$\begin{array}{rccc} X & \mapsto & \Omega \\ \Phi : \mathbf{x} = (x_1, x_2) & \mapsto & (x_1^2, \sqrt{2}x_1.x_2, x_2^2) \end{array}$$



Principle: choose Φ, K such that

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}')
angle = K(\mathbf{x}, \mathbf{x}')$$

Statistical Machine Learning Linear classifiers The kernel trick

The kernel trick, 2

SVM only considers the scalar product

$$\begin{split} h(\mathbf{x}) &= \sum_{i} \alpha_{i} y_{i} \langle \mathbf{x}_{i}, \mathbf{x} \rangle & \text{ linear case } \\ h(\mathbf{x}) &= \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) & mboxkerneltrick \end{split}$$

PROS

- A rich hypothesis space
- No computational overhead: no explicit mapping on the feature space
- Open problem: kernel design

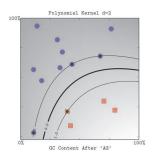
Statistical Machine Learning Linear classifiers The kernel trick

The kernel trick, 3

Kernels

- Polynomial: $k(x_i, x_j) = (\langle x_i, x_j \rangle + 1)^d$
- Gaussian or Radial Basis Function: $k(x_i, x_j) = exp(\frac{||x_i x_j||^2}{2\sigma^2})$
- Hyperbolic tangent: $k(x_i, x_j) = tanh(k \langle x_i, x_j \rangle + c)$

Examples for Polynomial (left) and Gaussian (right) Kernels:



< □ > < □ > < □ > < □ >

Statistical Machine Learning Linear classifiers The kernel trick

Rank-based SVM

Learning to order things

- On training set $\mathcal{E} = \{\mathbf{x_i}, i = 1 \dots n\}$
- expert gives preferences: $(\mathbf{x_{i_k}} \succ \mathbf{x_{j_k}})$, $k = 1 \dots K$
- underconstrained regression

Order constraints

Primal form

$$\begin{cases} \begin{array}{ll} \mathsf{Minimize} & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{k=1}^{K} \xi_k \\ \mathsf{subject to} & \forall k, \ \langle \mathbf{w}, \mathbf{x_{i_k}} \rangle - \langle \mathbf{w}, \mathbf{x_{j_k}} \rangle \ge 1 - \xi_k \end{cases} \end{cases}$$

Contents

- Covariance Matrix Adaptation-Evolution Strategy
 - Evolution Strategies
 - CMA-ES
 - The state-of-the-art of (Stochastic) Optimization
- Support Vector Machines
 - Statistical Machine Learning
 - Linear classifiers
 - The kernel trick
- Comparison-Based Surrogate Model for CMA-ES
 - Previous Work
 - Mixing Rank-SVM and Local Information
 - Experiments
- Dominance-based Surrogate Model for Multi-Objective Optimization
 - Background
 - Dominance-based Surrogate
 - Experimental Validation

Previous Work Mixing Rank-SVM and Local Information Experiments

Surrogate Models for CMA-ES

Imm-CMA-ES

- Build a full quadratic meta-model around current point
- Weighted by Mahalanobis distance from covariance matric
- Speed-up: a factor of 2-3 for $n \ge 4$
- Complexity: from $O(n^4)$ to $O(n^6)$ (intractable for n>16)
- Rank-invariance is lost

S. Kern et al. (2006). "Local Meta-Models for Optimization Using Evolution Strategies"

Z. Bouzarkouna et al. (2010). "Investigating the Imm-CMA-ES for Large Population Sizes"

Previous Work Mixing Rank-SVM and Local Information Experiments

Surrogate Models for CMA-ES, cont

Using Rank-SVM

Builds a global model using Rank-SVM

 $\mathbf{x_i}\succ \mathbf{x_j} \text{ iff } \mathcal{F}(\mathbf{x_i}) < \mathcal{F}(\mathbf{x_j})$

- Kernel and parameters highly problem-dependent
- Note: no use of information from current state of CMA

T. Runarsson (2006). "Ordinal Regression in Evolutionary Computation"

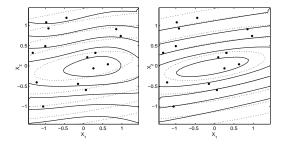
ACM Algorithm

• Use C from CMA-ES as Gaussian kernel

I. Loschilov et al. (2010). "Comparison-based optimizers need comparison-based surrogates"

Previous Work Mixing Rank-SVM and Local Information Experiments

Model Learning Non-separable Ellipsoid problem



Rank-SVM regression in original coordinate system

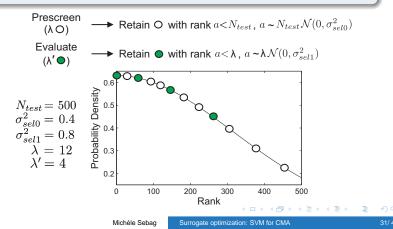
Rank-SVM regression in transformed coordinate system given by current covariance matrix C and mean m:

$$x' = C^{-\frac{1}{2}}(x-m)$$

Previous Work Mixing Rank-SVM and Local Information Experiments

Using the Surrogate Model

- Optimization: Significant Speed-Up ... if global and accurate model
- Filtering: "Guaranteed" Speed-Up



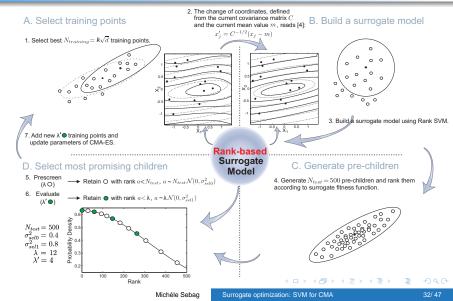
Covariance Matrix Adaptation-Evolution Strategy Support Vector Machines

Comparison-Based Surrogate Model for CMA-ES

Dominance-based Surrogate Model for Multi-Objective Optimization

Previous Work Mixing Rank-SVM and Local Information Experiments

ACM-ES Optimization Loop



Parameters

Previous Work Mixing Rank-SVM and Local Information Experiments

SVM Learning

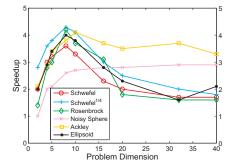
- Number of training points: $N_{training} = 30\sqrt{d}$ for all problems, except Rosenbrock and Rastrigin, where $N_{training} = 70\sqrt{d}$
- Number of iterations: $N_{iter} = 50000\sqrt{d}$
- Kernel function: RBF function with *σ* equal to the average distance of the training points

• The cost of constraint violation: $C_i = 10^6 (N_{training} - i)^{2.0}$

Offspring Selection

- Number of test points: $N_{test} = 500$
- Number of evaluated offsprings: $\lambda' = \frac{\lambda}{3}$
- Offspring selection pressure parameters: $\sigma_{sel0}^2 = 2\sigma_{sel1}^2 = 0.8$

Results Speed-up Previous Work Mixing Rank-SVM and Local Information Experiments

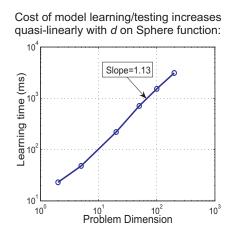


Function	n	λ	λ	е	ACM-ES	spu	CMA-ES	
Schwefel	10	10	3		801 ± 36	3.3	2667±87	
	20	12	4		3531 ± 179	2.0	7042 ± 172	
	40	15	5		13440 ± 281	1.7	22400 ± 289	
Schwefel ^{1/4}	10	10	3		1774 ± 37	4.1	7220 ±206	
	20	12	4		6138 ± 82	2.5	15600 ± 294	
	40	15	5		22658 ± 390	1.8	41534 ± 466	
Rosenbrock	10	10	3		2059 ± 143 (0.95) 3.7	7669 ± 691	(0.90)
	20	12	4		11793 ± 574 (0.75) 1.8	21794 ± 1529	
	40	15	5		49750 ± 2412 (0.9) 1.6	82043 ± 3991	
NoisySphere	10	10	3	0.15	766±90 (0.95) 2.7	2058 ± 148	
	20	12	4	0.11	1361 ± 212	2.8	3777 ± 127	
	40	15	5	0.08	2409 ± 120	2.9	7023 ± 173	
Ackley	10	10	3		892 ± 28	4.1	3641 ± 154	
	20	12	4		1884 ± 50	3.5	6641 ± 108	
	40	15	5		3690 ± 80	3.3	12084 ± 247	
Ellipsoid	10	10	3		1628 ± 95	3.8	6211 ± 264	
	20	12	4		8250 ± 393	2.3	19060±501	
	40	15	5		33602 ± 548	2.1	69642±644	
Rastrigin	5	140	70		23293 ±1374 (0.3) 0.5	12310 ±1098	(0.75)

イロト イヨト イヨト イヨト

Previous Work Mixing Rank-SVM and Local Information Experiments

Results Learning Time



ACM-ES: conclusion

Previous Work Mixing Rank-SVM and Local Information Experiments

ACM-ES

- From 2 to 4 times faster on Uni-Modal Problems
- Invariance to rank-preserving transformations preserved
- Computation complexity is O(n)
- Available online at http://www.lri.fr/~ilya/publications/ACMESppsn2010.zip

Open Issues

- Extention to multi-modal optimization
- On-line adaptation of selection pressure and surrogate model complexity

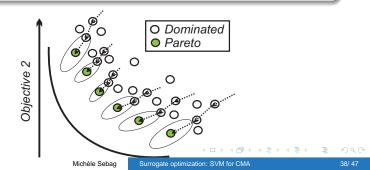
Contents

Background Dominance-based Surrogate Experimental Validation

- Covariance Matrix Adaptation-Evolution Strategy
 - Evolution Strategies
 - CMA-ES
 - The state-of-the-art of (Stochastic) Optimization
- Support Vector Machines
 - Statistical Machine Learning
 - Linear classifiers
 - The kernel trick
- Comparison-Based Surrogate Model for CMA-ES
 - Previous Work
 - Mixing Rank-SVM and Local Information
 - Experiments
- Dominance-based Surrogate Model for Multi-Objective Optimization
 - Background
 - Dominance-based Surrogate
 - Experimental Validation

Multi-objective CMA-ES (MO-CMA-ES)

- MO-CMA-ES = μ_{mo} independent (1+1)-CMA-ES.
- Each (1+1)-CMA samples new offspring. The size of the temporary population is $2\mu_{mo}$.
- Only μ_{mo} best solutions should be chosen for new population after the hypervolume-based non-dominated sorting.
- Update of CMA individuals takes place.



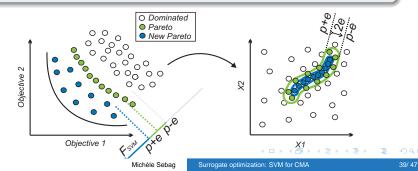
Background Dominance-based Surrogate Experimental Validation

A Multi-Objective Surrogate Model

Rationale

- Rationale: find a unique function F(x) that defines the aggregated quality of the solution x in multi-objective case.
- Idea originally proposed using a mixture of One-Class SVM and regression-SVM^a

^aI. Loshchilov, M. Schoenauer, M. Sebag (GECCO 2010). "A Mono Surrogate for Multiobjective Optimization"

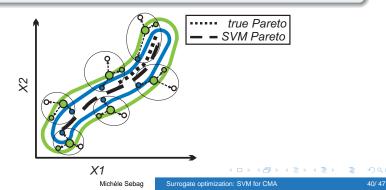


Background Dominance-based Surrogate Experimental Validation

Unsing the Surrogate Model

Filtering

- Generate N_{inform} pre-children
- For each pre-children A and the nearest parent B calculate $Gain(A, B) = F_{svm}(A) F_{svm}(B)$
- New children is the point with the maximum value of Gain

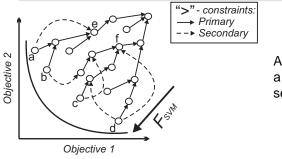


Background Dominance-based Surrogate Experimental Validation

Dominance-Based Surrogate Using Rank-SVM

Which ordered pairs?

- Considering all possible > relations may be too expensive.
- Primary constraints: x and its nearest dominated point
- Secondary constraints: any 2 points not belonging to the same front (according to non-dominated sorting)



All primary constraints, and a limited number of secondary constraints

Background Dominance-based Surrogate Experimental Validation

Dominance-Based Surrogate (2)

Construction of the surrogate model

- Initialize archive Ω_{active} as the set of **Primary constraints**, and $\Omega_{passive}$ as the set of **Secondary constraints**.
- Learn the model for $1000 |\Omega_{active}|$ iterations.
- Add the most violated passive contraint from $\Omega_{passive}$ to Ω_{active} and optimize the model for $10 |\Omega_{active}|$ iterations.
- Repeat the last step $0.1|\Omega_{active}|$ times.

Background Dominance-based Surrogate Experimental Validation

Experimental Validation Parameters

Surrogate Models

- ASM aggregated surrogate model based on One-Class SVM and Regression SVM
- RASM proposed Rank-based SVM

SVM Learning

- Number of training points: at most $N_{training} = 1000$ points
- Number of iterations: $1000 |\Omega_{active}| + |\Omega_{active}|^2 \approx 2N_{training}^2$
- Kernel function: RBF function with *σ* equal to the average distance of the training points
- The cost of constraint violation: C = 1000

Offspring Selection

• Number of pre-children: p = 2 and p = 10

Background Dominance-based Surrogate Experimental Validation

Experimental Validation

Δ Htarget	1	0.1	0.01	1e-3	1e-4	1	0.1	0.01	1e-3	1e-4
	ZDT1					ZDT2				
Best	1100	3000	5300	7800	38800	1400	4200	6600	8500	32700
S-NSGA-II	1.6	2	2	2.3	1.1	1.8	1.7	1.8	2.3	1.2
ASM-NSGA p=2	1.2	1.5	1.4	1.5	1.5	1.2	1.2	1.2	1.4	1
ASM-NSGA p=10	1	1	1	1		1	1	1	1	
RASM-NSGA p=2	1.2	1.4	1.4	1.6	1	1.3	1.2	1.2	1.5	1
RASM-NSGA p=10	1	1.1	1.1	1.5		1.1	1	1	1.2	
MO-CMA-ES	16.5	14.4	12.3	11.3		14.7	10.7	10	10.1	
ASM-MO-CMA p=2	6.8	8.5	8.3	8		5.9	8.2	7.7	7.5	
ASM-MO-CMA p=10	6.9	10.1	10.4	12.1		5				
RASM-MO-CMA p=2	5.1	7.7	7.6	7.4		5.2		8		
RASM-MO-CMA p=10	3.6	4.3	4.9	7.2		3.2				
	IHR1					IHR2				
Best	500	2000	35300	41200	50300	1700	7000	12900	52900	
S-NSGA-II	1.6	1.5		2		1.1	3.2	6.2	2.53	
ASM-NSGA p=2	1.2	1.3				1	3.9	4.9		
ASM-NSGA p=10	1	1.5	22			1.4	6.4	4.6		
RASM-NSGA p=2	1.2	1.2	8	8		1.5		8		
RASM-NSGA p=10	1	1				1.2	5.1	4.8		
MO-CMA-ES	8.2	6.5	1.1	1.2	1.2	5.8	2.7	2.1	1	
ASM-MO-CMA p=2	4.6	2.9	1	1	1	3.1	1.6	1.4	1.1	
ASM-MO-CMA p=10	9.2	6.1	1.3	1.2		5.9	2.6	2.4		3
RASM-MO-CMA p=2	2.6	2.3	2.4	2.1		2.2	1	1		
RASM-MO-CMA p=10	1.8	1.9		14						

ASM and Rank-based ASM applied on top of NSGA-II (with hypervolume secondary criterion) and MO-CMA-ES, on ZDT and IHR functions.

N = How many more true evaluations than best performer

Discussion

Background Dominance-based Surrogate Experimental Validation

Results on ZDT and IHR problems

- Rank-SVM versions are
 - 1.5 times faster for p = 2
 - **2-5** for p = 10

before the algorithm reaches nearly-optimal Pareto points

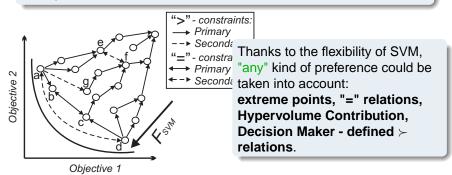
 premature convergence of approximation of optimal μ-distribution:

the **surrogate** model only enforces **convergence** toward Pareto front, but does **not** care about **diversity**.

Background Dominance-based Surrogate Experimental Validation

Dominance-based Surrogate: Conclusion

- The proposed aggregated surrogate model is invariant to >preserving transformation of the objective functions.
- The speed-up is significant, but limited to the convergence to the optimal Pareto front.



Michèle Sebao

Machine Learning for Optimization: Discussion

Learning about the landscape

- Using available samples
- Using prior knowledge / constraints

...using it to speed-up the search

- Dilemma Exploration vs Exploitation
- Multi-modal optimization

very doable; more difficult

easy