
NON FIRST NORMAL FORU RELATIONS

TO REPRESENT HIERARCHICALLY

ORGANIZED DATA

by Serge ABIIEBOUL(+)and Nicole BIDOIT(+)(*)

(+) Institut National de Recherche en Informatique et Automatique, 78153 Le'Chesnay, FRANCE.

(f) Laboratoire de Recherche en.Informatique, Uriiversit.6 de Paris-Sud, Orsay, FRANCE.

IRTRODUCTION

Several investigators have stressed that the
first normal form (1NF) condition [Co] is not
convenient for handling a variety of database
applications CM,K,JS,SPl. The first purpose of
this paper is to present a database model, namely,
the Verso model, where data is organized in non 1NF
relations. The values for some attributes in 8
Verso instance are atomic whereas the values for
other attributes are simpler Verso instances. As we
shall see, this recursive definition of the data
structure induces a hierarchical organization of
the data. Several models have ttiied to capture the
notion of hierarchical data organization [IMS,HY].
The advantage of our approach is that, by using
relation as underlying structure, we are able to
preserve some of the positive features of the
relational model, for instance, a simple algebraic
query language.

As mentioned earlier, the first major theme of
this paper is to formally present the data
structures and operations in Verso. In a Verso
schema, some dependencies (very similar to
Delobel’ s Generalized Hierarchical Dependencies
CD31 are implicitely specified. Therefore, some
semantic connections among the attributes are
implied by the choice of a Verso schema.
Furthermore, the operations that we propose on
Verso instances take advantage of these semantic
connections. In particular, some queries which
would typically require joins in the pure
relational model can be expressed by a selection in
the Verso model removing the need for the user to
specify access paths.

The second major theme of the paper is the
investigation of some key issues raised by this
data organization. In particular, data
restructuring is studied via the notions of schema
equivalence and dominance. Necessary and sufficient

Permission lo copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appcar,and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
olerwisc, or lo republish, requires a fee and/or specific permission.

Ed 1984 ACM 0-89791-l28-8/84/004/0191 $00.75

conditions of equivalence and dominance are
exhibited based on some elementary schema
transformations. Also, a natural connection
between Verso instances and relational database
instances satisfying the Universal Relation Scheme
Assumption [FMU,MW] is investigated.

In CSP,JSl a non 1NF extension to the
relational model (iF2) is also proposed. In an NF2
relation, a non atomic value is a set of atomic
values (which is a very restricted case of.the non
atomic values in Verso). Besides the operations of
the relational algebra, they propose to use two
new operations, namely nest and unnest, which
allow to transform a 1NF relation into an NF2 one,
and conversely. As we shall see, the operations in
the Verso model generalize all the operations of
the relational algebra. Furthermore, the nest and
unnest operations can be seen as very primitive
subcases of the data restructuring mechanisms
exhibited here.

1. PRELIMINARIES

In the following, we assume that the reader is
familiar with the relational model. In this
section, we briefly review some well-known
concepts apd present the notation used throughout
the paper.

We assume the existence of an infinite set U
of attributes, and for each A in U, of a set of
values called the domain of A and denoted dam(A).
A relational schema is a finite set of attributes.
Let V be a relational schema. A tuple v over V is

U a mapping from V into A In v dam(A) such that

v(A) is in dam(A) for each A. A (first normal
form) relation over V is a finite set of tuples
over V. The set of tuples over V is denoted
tuP(VL and the set of relations rel(V). The
reiational operations of union, intersection,
difference, join, projection and selection are
resoectively denoted U. rl , - , * , n and selectc
(whkre C ii an eleme%ar$ condition of the form
A < a, A s a, A = a, A 2 a, A > a for some A in U
and some a in dam(A)).

A relational database schema is a finite set
of relational schemas. A rela’tional (database)
instance r of some relational database schema R is

191

a mapping r from R such that, for each X in R,
r(X) is in rel(X). A relational instance satisfies
the Universal Relation Schema Assumption {URSA) if
r(X) zn,(r(Y)) for each X, Y in R and X EY.

In the paper, we also consider finite strings
of attributes. Let Al.. .A, be. a string of
attributes. An ordered tuple x over A1 . ..A. is an
element of the Cartesian product
dom(A1) x . ..dom(A.). The set of ordered tuples
over some string X is denoted Otup(X!. For each
string X of attributes, the set {A in X) is denoted
set(X) . For each ordered tuple x over X, the
corresponding tuple over set(X) is denoted map(x).

In general, A,B,... denote attributes, a,b,...
values, V,W,X,Y... relational schemas (or finite
strings of attributes), v,w,x,y... (ordered)
tuples, R,S,... relational database schemas and
r,s,... relational database instances. We also use
the classical convention of writing XY for the
union of two sets X and Y of attributes or for the
concatenation of two strings X and Y of attributes.

2.THEVERSO lloDEL

In this section, we present the data structure
and operations of the Verso model using the
auxiliary concept of format.

Let us consider first an exemple. A department
consists of a set of COURSES, the BOOKS for each
course, the STUDENTS in the course and their
GRADES. We can represent an instance of a
department like in Figure 2.1. Intuitively, the
department can be considered as a relation over
three attributes, say COURSE, A1 and A2. The values
in dom(COURSE) are atomic whereas the values in
dom(A1) and dom(A2) are simpler Verso instances.
Let us make two remarks. The first one is that, in
the example , there is no BOOK required for the
physics COURSE. (Thus, null values can be
represented in a Verso instance). The second remark
is that an implicit connection is assumed between
the attributes STUDENT and BOOK through the
attribute COURSE. In other word, a Itjoin” is forced
between COURSE STUDENT and COURSE BOOK.

In order to formalize the notion of Verso
instance, we need the auxiliary concept of format.
Intuitively , a format specifies the underlying
structure of a Verso instance.

DeSinition : A format is redursively defined by :

(1) let X be a finite string of attributes with no
repeated attribute, then X is a (flat) format
over the set X of attributes, and - -

(ii) let X be a finite string of attributes with no
repeated attribute, and fl,...f, some formats
over Ylp...,Yn, resp., such that the sets
x,y 1. ..Y,, are pairwaise disjoint, then the
string X(fl) * . ..(f.)* is a format over the
set XYl...Y,.

For instance, f=COURSE STUDENT GRADE is a flat
format over {COURSE,STUDENT,GRADE) and
g=COURSE(STUDENT(GRADE)*)*(BOOK)* is a format over
(COURSE,STUDENT,GRADE,BOOK).

In the following, we shall use a directed tree
representation for formats. The representation of
the format g is given in Figure 2.1.

We now define the Verso instances :

Definition : Let f be a format. The set of all
(E) instances over f, denoted inst.(f), is
recursively defined by :

(i) if f E X then inst(f) is a finite subset of
Otup(X), and

(ii) if f q X(f,)Y...
iff

(fn)* then I is in in&(f)

a) I is a finite subset of

Otup(X) x inst(fl) x . . . x inst(fn) , and .

b) if <u,I1, . . .I,> and <u’ ,I\, . . .I:> are in

I for some u,u’ ,I, ,I; ,... 1; then u f u’ or

<u,I 1)... In> = <u’,Ii)... I;>.

Intuitively , the (a) condition states that I
is atomic on the attributes in X ‘and not atomic on
the llattributesff fl , . . .f,. The (b) condition
forces X to be a key. It is clear that the
mathematical notation for Verso instance is
cumbersome and not really readable. Therefore, in
the following, instances will be presented using
the tlbuckett’ technique of [PSI . (See Figure
2.1).

In the relational model a database schema
consists of several schemas. Similarly, we have :

D&inltion : A Verso database schema S is a
finite set of formats. A Verso database instance s
of the schema S is a mapping from S in f iu s

in&(f) such that s(f) is an instance over f for
each f in S.

We now introduce four binary operations
(fusion, difference, join, and Cartesian product)
and four unary ones (projection, selection,
restriction and renaming) on Verso instances.
These operations are natural extensions of the
classical relational operations. We start by
presenting fusion and difference of instances over
identical formats. We shall then extend these two
operations to instances over not identical but
%ompatible” formats.

The first operation, namely fusion, allows to
“add” the information contents of two instances.

Definition : Let f be a format and I, J instances
z f. Then, the fusion of I and J, denoted
I $ J, is the instance over f recursively defined
bj;

1) if f sx, I BC: = I UJ

ii) if f zx(f,)* . . . (f,)*, n > 0, then

IeJ-
t

U(I,
I

UI
$ J1)...(In s Jn) u J 1 . ..I. in I

1 ,..Jn in J

U

192

/ u Il... In in I and
for all Jl...J,, u Jl...Jni J

U
/ u J1...

” J1.*.Jn /
Jn in J and

for all Il...&, u I ,...I,L I

An example of fusion is given in Figure 2.2.

The second operation, namely difference, allows
to “substract” the information contained in an
instance from the information contained in another
one.

Definition : Let f be a format, and I, J instances
over f. Then the difference of I and J, denoted
I 8 J, is an instance over f recursively defined
by :

(1) iffsX, 10J=I-Jand,

(2) if f EX(f,)* . . . (fn)*, n > 0 , then

I B J =,(“(I, 0 J,)...(I, 8 J,)/
u Il... I, in I, u Jl...J, in J
andIiBJif0forsomei 1

t

, u Il... I, in I and
u u Il... I, / for all Jl.. .J,, u Jl.. .J, 4 J

1
An extiple of difference is given in Figure 2.2.
Note that the physics COURSE disappeared whereas
the math COURSE is still in I 0 J. This results
from the condition “Ii 0 Ji 4 0 for some i” which
is true for math and not for physics.

As mentionned earlier, these two operations
will be extended to deal with instances over
different but l’compatible” formats. To do that, we
need the auxiliary concepts of format and instance
extensions. Intuitively, a format g is an extension
of a format f if the directed tree associated to g
can be obtained from the directed tree associated
to f by simple insertion of new subtrees.
Formally we have :

Definition : Let f be a format. Then an extension
g of f is a format recursively obtained as
follows :

(i) if f EX, then g EX(g,)*...(gm)* for some mt0

(ii) if f EX(f,)*...(fn)* then g I X(g,)*...(g,)*

and there exists a subsequence h, . ..h. of

g, **a gm such that hi is an extension of fi for

eachi, 161 6n.

Let f be a format and g an extension of f. Let I be
an instance over f. Intuitively, the extension of I
to g, denoted Ig, is obtained by “paddingl’ at each
level with empty instances. The following example
illustrates these two concepts.

Example 2.1 The format g = COURSE(STUDENT
CRADE*)*BOOK*(TIME ROOM)* is an extension of the
format f - COURSE(STUDENT)*(BOOK)*. The directed
trees, associated to f and g are shown in Figure

2.3. An instance over f and its extension over g
are also given in Figure 2.3.

We are now able to formally define the notion
of format compatibility.

Definition : Let f and g be two formats. Then f
and g are compatible iff there exists a format h
such that h is an extension of f and g. -

Then, in order to l’add” (respectively
llsubstractll) the information contained in an
instance I over f and J over g, f and g
compatible, it suffices to extend I and J to a
common extension h of f and g, and then use the
operations of fusion and difference.

The third binary operation, namely join, is
defined directly on instances over compatible
formats. It allows to f’combine’t the information
contents of two instances.

Definition : Let f and g be two compatible
formats and h an extension of both f and g. Let I,
J be instances over f, g respectively. Then the
join of I and J (according to h), denoted I sh J
is the instance over h recursively defined by :

(i) if h E X (so fZs) then I ah J = I J and,

(ii) if h E X(h,)*...(hp)*, f E X(f,)*...(fn)*,

g EX(g,)*...(g,)* then

I eh J = “1,. . .In in I, uJ 1 . . .Jm in J

and,

Kk’liehk Jj if hk is an extension of

fi and g
j

KW=Ii if hk is an extension of fi only

Kk=Jj if hk is an extension of gj only

To illustrate the previous definition, two
instances over compatible formats are given in
Figure 2.4, together with their join according to
the format COURSE(STUDENT)*(BOOK)*. The last
binary operation, namely Cartesian product, is
different from the preceeding ones in that its
first operand is required to be an instance over a
flat format.

Definition : Let f f X be a flat format and g a
format over Y such that X f) Y = 0. Let I, J be
instances over f, g respectively. The Cartesian
product of I and J, denoted I @J, is the instance
over X(g)* defined by :

I @J- (uJ / u E I)

Note that if f and g are both flat formats, and I,
J instances over f and g, respectively, then I @J
and J m I are different. So the Cartesian product
is not commutative.

We now turn to the unary operations. The first
one, namely (Verso) projection, allows to “project
outI’ some particular “subinstances’!. Formally :

193

Definition : Let g be a format and I an instance
aver g. Let f be a format such that g is an
extension of f. Then the projection of I over f,
denoted I [fl, is an instance over f recursively
defined by :

if f q X(f,)*...(fn)*, g = X(g,)*...(gm)*, and

for each 1 5 1, < i2...< in s m, gi is an
k

extension of fk then

1 Cfl - IUIi, [f,] . ..Iin[fn] / uI, . ..I. in I}

Intuitively, the result of the projection is
simply obtained by removing all the “subinstances”
corresponding to “subtreesl’ which are projected
out.
An example of projection can be found in Figure
2.5.

The second unary operation is the (Verso)
selection. Besides the relational like conditions
of the form “Attribut comparator Value”, the Verso
selection allows some existential and non
existential conditions on some ltintermediary”
results,

Definition : Let f be a format. Then a
(Versa-)selection S over f is an expression
recursively defined in the following way.

(1) if f F X then S E selectC where C is the

conjonction of elementary conditions(l) on,

attributes in X.

(2) if f fX(f,)*...(fn)* then

S E select <S, . . ,Sn>C where Si is a Verso

selection over fi for each i, 1 6 1 5 n, and C

is a conjoncton of

(a) elementary conditions on attributes in X
(b) conditions of the form Si f 0 or Si = 0
for some i.

The result of a selection is defined in the
following way.

Definition : Let S Z select <Sl . ..S,>C be a
Verso-selection over the format X(fl)*...(f,)*. Let
I be an instance over f. Then the result of the
application of S to I, denoted S(I), is defined by

s(I)-; (uS,(I,)...Sn(In) /

u k c for each elementary condition c in C

Si(Ii) = 0 ,if Si = 0 in C

Si(Ii) d 0 if Si f 0 in Cl

These definitions are illustrated in the following
Example :

(1) An elementarv condition on some attribute A is
a condition of the form A=a, Afa, A<a, Asa, A>a
of AZa for some a in dome(A).

Example 2.3. Let f = COURSE(STUDENT(CRADE)*)*

Ql
: Give the list of math students who got a

grade larger than 10.
Q2 : Give the courses in which some student is

registered and didn’t get any grade for this
course.

The query Q, is answered by the selection S, :

‘1 - se1ect “\ >couRsE=math with

S
1

E select <S” > 1 S”f0 where
1

S’; E selectGRADE > ,. .

The query Q2 is answered by the selection S2 :

S2 E select <S> > with

% E select <S$ >s,, =0 where
2

S’; is the identity

Examples of applications of these two queries are
given in Figure 2.5. Due to space limitation, we
won’t define the last two unary operations.
However, an example of an application of each of
them can be found in Figure 2.6.

A Verso query is obtained by combining the
four binary operations (fusion, difference, join
and Cartesian product), the four unary ones
already presented (projection, selection,
restriction and renaming) plus another operation
which will be presented in Section 4, namely
restructuring. Together these operations will be
shown to be llcompletefl in .%XtiOn 5.

3. URSA IRTERPRETATIOR OF TRR VERSO MODEL

In this section, we exhibit a strong
connection between format instances and relational
database instances satisfying the universal
relation schema assumption. We also give an
Wfinterpretation” of the Verso operations in
terms of classical relational operations.

In order to do that, we need the notion of
format skeleton. Intuitively, the format skeleton
of a format f is the relational database schema
which describes, in a non hierarchical way, the
structure of instances over f.

Definition : Let f be a format. Then the format
skeleton of f, denoted Skel(f), is the relational
database schema recursively defined by :

(i) if f EX then Skel(f) = {set(X)] and,

(ii) if f ZX(f,)*...(fn)* then

Skel(f) - lset(X)l U

{set(X)Y / Y in Skel(fi), i in [l,n]).

For example the format skeleton of
COURSE(STUDENT)*(BOOK)* is the relational schema
[COURSE,COURSE STUDENT,COURSE BOOK). Using these

194

format skeletons, we are now able to “describe” a
format instance by a relational database instance.

Definition : Let P be a format and I an instance
over P. The instance skeleton of I, denoted
skel(1). is the relational database instance over
Skel(P) defined by :

(i) if P 3 X (SO Skel(P) = {set(X))) then

skel(I)(X) = (map(u) / u in I]

(ii) if P f X(f,)“... (fn)* (so Skel(P)={set(X)} IJ

(set(X)Y 1 Y in Skel(fi), i in Cl ,n]})

then skel(I)(X) = {map(x) 1 x11.,.1, is in I)
and skel(I)(XY) = (map(x)*skel(Ii)(Y) 1

UI1... I, is in I, Ii f 0}

where Y is in Skel(Pi)

In the previous definition, since X fl Y = 0,
the join is in Pact a relational Cartesian product.
However, in the present paper, we use the symbol x
to denote (ordered) Cartesian product only. Figure
3.1 exhibits the instance skeleton of the instance
OP Figure 2.1.

We established a correspondance between formats
and relational database schemas (Skel), and between
instances over format and relational database
instances (skel). It is clear that (1) not all
relational database schemas correspond to some
formats and (2) even if a relational database
schema R corresponds to a format f, not all
instances over R correspond to instances over P.
This leads to the two following results.

Theorem 3.1 : [Ba2] Let R be a relational database
schema. Then R is a format skeleton iff

(1) R is closed under intersection, and
(2) for each X in A, X fl R is totally ordered

by inclusion.

Theorem 3.2 : Let f be a format and R=Skel(P). Let
r be an instance over R. Then the following two
assertions are equivalent :

(1) r=skel(I) for some I over P, and
(2) r satisPies the URSA.

By the previous theorem, skel is a mapping from
instances over f onto relational database instances
over Skel(f) satisfying the URSA. The,refore, it
would be interesting to characterize the
Verso-operations on instances in terms 0P
relational operations on relational database
instances. Indeed, for binary operations such a
characterization is given in Theorem 3.3.

Theorem 3.3. Let P and g be two compatible formats
and h an extension of both f and g, Let I and J be
instances over f and g respectively. Let
r = skel(Ih) and s = skel(Jh). Then

(1) V X in Skel(h), skel(1 e J)(X) = r(X) U s(X) ,

(2) V X in Skel(h),

skel(IBJ)(X)=r(X)-s(X)UXEY ?rxCrU)-SW1

Y in Skel(h)

and,

(3) V X in Skel(f) fl Skel(g),

skel(1 @ J)(X) = r(X) fl s(X)

V X in Skel(f) - Skel(g),

skel(1 @J)(X) = r(X)iyCX S(Y)
Yin Skel(g)

V X in Skel(g)-Skel(f),

skel(I @J)(X) = s(x)*Y C x r(Y)
Y Tn Skel(f)

and,

V X E Skel(h)-(Skel(f) IJ Skel(g)),

skel(1 e J)(X) = 0

Note that in the previous theorem
skel(1 sJ) = r U s. It turns out that simple
characterization of join and difference can also
be obtained using set operations on relational
schema instances.

Proposition 3.1. Let f and g be two compatible
formats, h an extension of P and g. Let I and J be
instances over P and g respectively. Let r =
skel(Ih) and s = skel(Jh). Then

(1) skel(1 $ J) = r U s
(2) skel(1 0 J) is the smallest (2) URSA-instance

over Skel(h) containing r-s and,
(3) skel(1 (6, J) is the largest USRA-instance over

Skel(h) contained in the instance t over
Skel(h) defined by :

I;; :I:;
= r(X) fls(X) if X in Skel(f) n Skel(g)
= r(X) if X in Skel(f) - Skel(g)

(cl t(X) = SW if X in Skel(g) - Skel(f)
(d) t(X) = 0 otherwise

The previous two results give interpretations of
some Verso operations (fusion, join, difference)
in terms of relational operations. Although not
done here, the other operations can also be
interpreted using relational operations on the
corresponding relational database instance.

4. DATA FUBTRUCTURING

In order to define the last unary
Verso-operation, namely restructuring, we need to
examine the semant its associated to a Verso
instance. Thus, in the first part of this section,

(2) Let r and s be instances over the schema R
r 5 s ifP r(X)E s(X) for each X in R.

195

the focus is on the set of “facts” which can be
deduced from a format instance. These sets of facts
are then used to compare the representative power
of formats. Finally, some elementary format
transformations which allow data restructuring are
presented.

In the following, the elementary unit of
information, called a fact, is a tuple.

Two basic operations on sets of facts are
considered. They are : the closure under projection
and under join.

Definition : Let H be a set of facts. Then the
closure of H under projection, denoted x(H), is
defined by :

n(H) - (n,(x) / x in H nTUP(X)
for some X and Y CX)

Ind , the closure of H under join, denoted *(H) is
defined by :

(HI = f x in H, x / H’ E W.

Now, given a set of facts, it seems reasonable
to deduce new facts by projection of known facts.
The closure under join is already more arguable.
For instance, if “toto” is taking “math” and V1mathlt
is taught by “Miss Jones”, you don’t want to
conclude that “Miss Jones” is teaching “math” to
” toto” . The semantics that we are going to
associate with format instances states that the
lVlegallV joins are only the joins of tuples in the
instance skeleton. More formally, we have :

Definition : Let I be an instance over the format
f. Then the set of facts associated with I, denoted
fact(I), is defined by :

fact(I) - n(*(lJZ in Skelcfl skel(I)(Z))).

The previous definition is illustrated in Figure
4.1 where the set of facts associated with the
instance I of Figure 2.1 is given.

The notion of set of facts associated to a
format instance is used now to present the last
unary operation, namely restructuring. Intuitively,
this operation allows to modify the format of an
instance without modifying its information content.

Formally we have :

Definition : Let f be a format. Then a
restructuring is an expression of the form formatf.
Let I be an instance. If there exists an instance J
over f such that fact(I) = fact(J) then formatf is
defined for I and formatf(1) = J (otherwise
formatf is not defined for I).

Now the problem arises : given two formats f
and g, is it always possible to represent an
instance over g by an instance over f ?

In order to answer this guestion and therefore
present a way to compare the representative power
of formats, we need the following notation.

Notation : Let f be a format. Then SAT(f)=
(fact(I) / I is in Inst(f)).
This allows us to compare formats.

Definition : Let f and g be two formats : Then f
is dominated by g, denoted f L g, iff

SAT(f) c SAT(g).

Also f and g are equivalent, denoted f = g, iff
f 6 g and g ~5 f. (i.e., SAT(f) = SAT(g)).

Intuitively , f is dominated by g iff each
instance over f can be represented by an instance
over g containing the same information. Two
characterizations of format dominance are now
presented. The first one (Lemma 4.1) is based on
properties of the corresponding format skeletons.
The second one (Theorem 4.1) is based on some
elementary format transformations. We now present
the first characterization of format dominance.

Lemma 4.1. : Let f and g be two formats. Then

f 6 g iff Skel(f) c Skel(g).

Thus f = g iff Skel(f) = Skel(g). q

In order to present the second
characterization of format dominance, we exhibit
three format transformations. These
transformations are presented in their elementary
versions and then generalized.

Definition :

a) Let f s X(f,)*...(fn)* and g f Y(g,)*...(g,)*

then : g is obtained from f by elementary root

permutation iff

(1) fi E gi for each i in [l,n] , and

(ii) set(X) = set(Y).

g is obtained from f by elementary branch
permutation iff

(i) ‘for each i

[l,nl such

(ii) XEY

b) Let f s

in Cl ,nl , there exists j in

that gjzfi , and

XX,(f,)*...(fn)* and

,)*)* then g is obtained from f g E x(x,(f,)*...(f]~

by elementary compaction.

Now a root permutation on a format f is
obtained by ap 1 ing elementary root permutations
to subformatsP3r in f. Branch permutation and

(3) A subformat of a format f is a format
corresponding to ‘a subtree of the
representation tree of f.

196

compaction are obtained from elementary branch
permutation and elementary compaction in a similar
manner. Figure 4.2 exhibits a sequence of these
three transformations together with the extension
defined in Section 3.

Now we have :

Theorem 4.2. Let f and g be two formats. Then
f = g iff g can be obtained from f by a sequence of
root and branch permutations. Also f 4 g iff g can
be obtained from f by a sequence of root and branch
permutations, compactions and extensions. q

The proof follows easily from Lemma 4.1. Even
if f is not dominated by g, some particular
instances over f are representable by instances
over g, That is because those particular
instance satisfy some contraints on top of the
contraints that are implied by the format f. We now
define two kinds of dependencies which are going to
capture these contraints.

Definition : Let S be a relational database
schema and H be a set of facts. Then *S denotes the
schema join dependancy (SJD) associated with S,
and H satisfies *S, denoted H 1 *S, iff(4)

HI Ux :n S
= (*Hls)l u, ;n s’

Also, 3 S denotes the existence schema dependency
(ESD) associated with S and H satisfies 7 S,
denoted H k IS, iff H = n(H

IS
).

The next result uses the previous dependencies to
characterize the sets of facts which are
representable by a given format f.

Theorem 4.3 : Let f be a format and H be a set of
facts. Then H can be represented by an instance
over f iff

(1) H k *R for each R sSkel(f)

(ii) HI 3 S where S=[XlX= U Y
Y in R’

R s Skel(f))

Note that the SJDs are very similar to Delobel’s
Generalized Hierarchical Dependencies. To conclude
this section, we present a simple result on SED
implication.

Proposition 4.1. Let R and S be two relational
database schemas and H be a set of facts. Then the
following two assertions are equivalent :

(i) H k il Fi and H b IS,

(ii) H k 7 R I? S.

(4) For each set of facts H, and for each set X of
attributes H IX = (x/x in H n Tup(X)). For each

schema S, H
Is= U

X in S HIX.

5. Expressive power of Verso operations

We already mentionned that Verso operations
are 9elationally complete”. What we mean by that
is : given a Verso format f and its corresponding
database schema R = Skel(f), for every relational
query q on R there exists a Verso query q’ which
yield the same result(5).

If Verso operations are complete, they also
take advantage of the joins implicitely defined in
the schema. To illustrate this remark, we now
present a query which would typically require a
join in the relational model but can be simply
expressed by a selection in the Verso model.

Example 5.1.

Consider the format f=COURSE(STUDENT)*(EXAM-DAY)*
Now consider the query : “What are the courses
taken by toto which have an exam on November
first ?‘I. In the relational model, there would
typically be two relations COURSE STUDENT and
COURSE EXAM-DAY and the query would require a join
operation. This query can be answered by the Verso
selection :

-
s = Select <s, ,s2js, tioAs2ho where

‘1 q SelectSTUDENT=toto’ and

‘2 z SelectEXAM-DAY=november 1st '

Indeed, some very natural queries like “Give the
list of courses with no known exam day” can be
answered by a Verso selection whereas they would
require the use of difference in a pure relational
model.

To conclude this section, we propose a simple
extension of the Verso selection which
dramatically increases its power. Let us consider
the following query on COURSE(STUDENT(GRADE)*)* :
“Give the list of courses, students and grades
such that toto got an A in the course and a
student (not necessarily toto) got an F in the
course”. It should be noted that this query is
complicated by the fact that they are several
roles for the same attribute, namely STUDENT.
Typically, such a query would require several
joins in the classical relational model.

What we mean by such a query is in fact two

selections on GRADE, say S, E selectGRADEIA and

s2 S selectGRADEzF.

Now we need two selections on STUDENT(GRADE)* :

(5) To be precise, q’ yield “almost” the same
result since the result of a is a relation and
the result of q’ will be an instance over a
flat format, i.e., a set of ordered tuples.

197

“l Z se1ect <%TUDENT-toto AS 1 #0
S; Z select <S2>s2d0

The first one filters toto if he got an A, and the
second one any student who get an F. Now we can
have

S Z select <S, >sidO A s;dO where

S, is the identy on STUDENT(GRADE)*.

It should be noted that this is not a selection
as defined in Section 2 since two selections are
realized on the subf ormat STUDENT(GRADE)*.
Intuitively, these two selections S1l and S’2 should
be performed “in parallel,,. They are used
exclusively as conditions.

In the complete paper, this llsuper,, selection
is formally defined. The following result is proved
there :

Theor- 5.1 : Let f be a format, R-Skel(f) the
corrresponding database schema. Let q be a
selection-projection-join query on R such that
every projection in q is a projection on some union
of attribute sets in R. Then these exists a Verso
wry q’ consisting of a (Versa) super selection
followed by a (Versa) projection, and such that q,
is equivalent to q.

Conclusion

The Verso model is a database model based on
some particular (not first normal form) relations
allowing incomplete information representation and
implicit specification of meaningful joins.
Furthermore, a simple algebraic query language can
be defined for the Verso model. The Verso model is
a formalization of some of the concepts used in the
Verso database machine [Ball. The data structure
in the Verso machine is a Verso instance fully
sorted according to the format and stored
sequentially. This storage organization allows
fast access and processing [BRSI. Indeed, all the
operations presented in the paper (including the
“super” selection) but the format modification can
be realized by the specialized filter of the Verso
machine. Typically, some queries which would
require joins in the relational model can be
realized by the filter if the joins are implicit in
the Verso format. However, joins which are not
implicitely in the format remain quite costly since
they involve format modifications.

References

[Ball F. Bancilhon h al., “Versa : A Relational
Back End Data Base Machine,,, Proc. Inter.
Worshop on Database Machines, San Diego,
1982.

CBa21 F. Bancilhon & al., “Les V-relations :
Definitions, Modifications, Interrogation,,,
Tech. Notes VERSO 1, 1982.

CBRSI

cc1

CD1

CFMUI

CHYI

CIMSI

CJSI

LX1

CMail

CMWI

CMakl

c PSI

CSPI

GUI

CVI

F. Bancilhon, P. Richard, M. Scholl, “On
Line Processing of Compacted Relations,,,
Proc. Inter. Conf. on VLDB, Mexico, 1982.

E.F. Codd, “A Relational Model of Data for
Large Shared Data Banks,, , CACM 13, NO 6,
1970.

C. Delobel, ,lNormalization and
Hierarchical Dependencies in the
Relational Data Model,,, ACM Trans. on
Database Systems, 3, 1978.

R. Fagin, A. Mendelzon, J. Ullman, “A
Simplified Universal Relation Assumption
and its Properties,, , Trans. on Database
Systems, 7, 1982.

R. Hull, C.K. Yap, “The Format Model : A
Theory of Database Organization,,, Proc. of
Symp. on Print. of Database Systems, 1982.

Information Management System/36O, Version
2, General Information Manual, IBM form
#GH20-0765.

G. Jaeshke, H.J. Scheck, “Remarks on the
Algebra of Non First Normal Form
Relations,,, Proc. ACM SIGACT-SIGMOD, Los
Angeles, 1982.

I. Kobayashi , “An Overview of the Database
Management Technology,,, Techn. Report
TRCS-4-1, Sanno College, Kanagawa 259-11,
Japan, 1980.

D. Maier, “The Theory of Relational
Databases,‘, Computer Science Press.

D. Maier, D. Warren, “Specifying
Connections for a Universal Relation
Scheme Database,,, Proc. SIGMOD, 1982.

A. Makinouchi, “A Consideration on Normal
Form of Not-Necessarily-Normalized
Relation in the Relational Data Model’,,
Proc. Inter..Conf. on VLDB, Tokio, 1977.

P. Pauthe, Seznec, “An Editor for Verso
Relations,, D.E.A. Report, Orsay
University, 1983.

H-J Scheck, P. Pistor, “Data Structures
for an Integrated Data Base Management and
Information Retrieval Sys tern’, , Proc.
Inter. Conf. on VLDB, Mexico, 1982.

J.D. Ullman, l,Principles of Database
Syst ems” , Computer Science Press.

A. Verroust , llCharacterization of
Well-Behaved Database Schemetas and their
Update Semantics,‘, Proc. Inter. Conf. on
VLDB, Florence, 1983.

198

A &
COlJRSE(STUDENT(GRADE)*)*(BOOK)*

COURSE(STUDENT)*
---------------_
math tot0

1 I zaza -----

COURSE(BOOK)*

math bj

I I b ---- math / toto 1 i (1 w
(STUDENT) (BOOK)

b (GM El

gym I mimi I

phys 1 I ------

lrmsic (‘13-I

I zaza
-4
I

phys lpf4-l

"instance 1" "instance J" Phys
I - lulu I 9 I J m format g tot0 COURSE(STUDENT)*)(BOOK)*

----------------__------

math I::::) Ii:1 ------ ---- Figure 2.1

phys L-J L!!d
"instance I @ J"

COURSE(STUDENT)*(BOOK)* COURSE(STUDENT)*(BOOK)*
----------_--_---------- ----____________________

math I1”:,“: 1 l::_l q ath 1 f% 1 1-J

PhW L-.-l L!?3_1 music L -----I L--I
COURSE(STUDENT)*(BOOK)* COURSE(STUDENT)*(BOOK)*

----------------------- -----------------------
math tot0 I I !--_I zaza ----m-w phys Lto_tel IL!1

gym I mimi I I I v------ ----

music I~~~~~-! L!3!
PWs 1 ---! L!t!

"instance I $ J"

gym I mimi I I I ----e-e ---_- instance I instance J

"instance I 8 J"
COURSE(STUDENT)*(BOOK)* COURSE(STUDENT)*(BOOK)*
------------------------ -----------------------

Figure 2.4

PWs l&&?-l Lb_j-1 instance I 9 J

COURSE STUDENT* COURSE(STUDENT GRADE*)*
music L-J L---I

math zaza

I I
lulu
tot0 -v-w---

math zaza I--J

lulu IO
I I 9 _-_---

tot0 1’5 J -----

music I I

instance I $ J

Figure 2.2.

music I----!
COURSE(STUDENT)*(BOOK)*

PWs L----I &-I

instance I over f

phys rick
I I zoe -------

PW rick I 4 I ------

zoe 1 J ----- %OURSE(STUDENT)* (I)"

COURSE(STUDENT(GRADE)*)*(BOOK)*(TIMJZ ROOM)*
-----------____-_--------------------------
math

"instance 1"

Figure 2.5 (part I)

PWs 1 I P3-J I I
instance Ig over g

Figure 2.3

199

COURSE(STUDENT GRADE*)* COURSE(STUDENT GRADE*)*
---------------_--_____ -----------____________

math lulu 110 1 math za=a ----- l---J

tot0 I15 1
I I

phw

I
zoe I---! 1

COURSE UNIV. (STUDENT)*(BOOK)*
__-_-___----------------------
math orsay tot0

I I lulu
!y

phys orsay Imimi 1 1 1 - -

"S 1 (I) " "S (I)" 2

Figure 2.5 (part II)

EMP(PHONE BACK-UP-P)*
-_________--_-_______

Serge I3537 3468 1

Nicole 3468 3537 I
3329 3329

Franpois 1 3329 3329 I

EMP(PHONE BACK-UP-P)*
--------_-^----------
Nicole 1 3329 3329 1

Franpois I 3329 3329 I

"instance J" "restrictpHoNE=BAcK-up+~J~~

EMP (Pl P2)'
-----_----------

Serge I3537 3468 1

Nicole I 3468 3537 3329 3329 I

Franpois 1 3329 3329 1

tlrenamePHONE + Pl (J)”

BACK-UP-P + P2

Figure 2.6

(COURSE UNIVER.) (UNIVERS.)

I\ I
(STUDENT) (BOOK)

root permutation (BOdTLR#)

I
(GRADE)

(UNIVER. COURSE)

/\
(STUDENT) (BOOK)

II

branch permutation

extension

T
(UNIVERS.)

(UNIVER. COURSE)
I

(COURSE)

/\
(BOOK) (STUDENT)

/\
(BOOK) (STUDENT)

compaction
>

UNIVER.(COURSE(BOOK)*(STUDENT(GRADE)*)*(HOUR)*)*
--____-^--
orsay math lb I tot0 1 --! I

lulu 1 I

N-v 1 - mimi !J !J 1
I I

Figure 4.2

COUR. COUR. STUD COUR. STUD GRADE COUR. BOOK
----- ---------- --__--_--------_ __________
math math toto math toto 4 math b
PWs math zaza math toto 8 math. g

phys lulu phys lulu 9
phys toto phys toto 6

phys tot0 g

Figure 3.1

<math,toto,4.b>, <math,toto,8,b>,

<math,toto,4,g>, <math,toto,8,g>,

<math,toto,4>,...,<math,4>,...,<8,8),

<phys,lulu,!?. <phys,toto,6>, <phys,toto,g>,

<phis,lulu> ,...,<toto,g>,

Fact(I)

Figure 4.1

Figure 4.2 (Part I)

200

