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IRTRODUCTION 

Several investigators have stressed that the 
first normal form (1NF) condition [Co] is not 
convenient for handling a variety of database 
applications CM,K,JS,SPl. The first purpose of 
this paper is to present a database model, namely, 
the Verso model, where data is organized in non 1NF 
relations. The values for some attributes in 8 
Verso instance are atomic whereas the values for 
other attributes are simpler Verso instances. As we 
shall see, this recursive definition of the data 
structure induces a hierarchical organization of 
the data. Several models have ttiied to capture the 
notion of hierarchical data organization [IMS,HY]. 
The advantage of our approach is that, by using 
relation as underlying structure, we are able to 
preserve some of the positive features of the 
relational model, for instance, a simple algebraic 
query language. 

As mentioned earlier, the first major theme of 
this paper is to formally present the data 
structures and operations in Verso. In a Verso 
schema, some dependencies (very similar to 
Delobel’ s Generalized Hierarchical Dependencies 
CD31 are implicitely specified. Therefore, some 
semantic connections among the attributes are 
implied by the choice of a Verso schema. 
Furthermore, the operations that we propose on 
Verso instances take advantage of these semantic 
connections. In particular, some queries which 
would typically require joins in the pure 
relational model can be expressed by a selection in 
the Verso model removing the need for the user to 
specify access paths. 

The second major theme of the paper is the 
investigation of some key issues raised by this 
data organization. In particular, data 
restructuring is studied via the notions of schema 
equivalence and dominance. Necessary and sufficient 

Permission lo copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appcar,and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
olerwisc, or lo republish, requires a fee and/or specific permission. 

Ed 1984 ACM 0-89791-l28-8/84/004/0191 $00.75 

conditions of equivalence and dominance are 
exhibited based on some elementary schema 
transformations. Also, a natural connection 
between Verso instances and relational database 
instances satisfying the Universal Relation Scheme 
Assumption [FMU,MW] is investigated. 

In CSP,JSl a non 1NF extension to the 
relational model (iF2) is also proposed. In an NF2 
relation, a non atomic value is a set of atomic 
values (which is a very restricted case of.the non 
atomic values in Verso). Besides the operations of 
the relational algebra, they propose to use two 
new operations, namely nest and unnest, which 
allow to transform a 1NF relation into an NF2 one, 
and conversely. As we shall see, the operations in 
the Verso model generalize all the operations of 
the relational algebra. Furthermore, the nest and 
unnest operations can be seen as very primitive 
subcases of the data restructuring mechanisms 
exhibited here. 

1. PRELIMINARIES 

In the following, we assume that the reader is 
familiar with the relational model. In this 
section, we briefly review some well-known 
concepts apd present the notation used throughout 
the paper. 

We assume the existence of an infinite set U 
of attributes, and for each A in U, of a set of 
values called the domain of A and denoted dam(A). 
A relational schema is a finite set of attributes. 
Let V be a relational schema. A tuple v over V is 

U a mapping from V into A In v dam(A) such that 

v(A) is in dam(A) for each A. A (first normal 
form) relation over V is a finite set of tuples 
over V. The set of tuples over V is denoted 
tuP(VL and the set of relations rel(V). The 
reiational operations of union, intersection, 
difference, join, projection and selection are 
resoectively denoted U. rl , - , * , n and selectc 
(whkre C ii an eleme%ar$ condition of the form 
A < a, A s a, A = a, A 2 a, A > a for some A in U 
and some a in dam(A)). 

A relational database schema is a finite set 
of relational schemas. A rela’tional (database) 
instance r of some relational database schema R is 
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a mapping r from R such that, for each X in R, 
r(X) is in rel(X). A relational instance satisfies 
the Universal Relation Schema Assumption {URSA) if 
r(X) zn,(r(Y)) for each X, Y in R and X EY. 

In the paper, we also consider finite strings 
of attributes. Let Al.. .A, be. a string of 
attributes. An ordered tuple x over A1 . ..A. is an 
element of the Cartesian product 
dom(A1) x . ..dom(A.). The set of ordered tuples 
over some string X is denoted Otup(X!. For each 
string X of attributes, the set {A in X) is denoted 
set(X) . For each ordered tuple x over X, the 
corresponding tuple over set(X) is denoted map(x). 

In general, A,B,... denote attributes, a,b,... 
values, V,W,X,Y... relational schemas (or finite 
strings of attributes), v,w,x,y... (ordered) 
tuples, R,S,... relational database schemas and 
r,s,... relational database instances. We also use 
the classical convention of writing XY for the 
union of two sets X and Y of attributes or for the 
concatenation of two strings X and Y of attributes. 

2.THEVERSO lloDEL 

In this section, we present the data structure 
and operations of the Verso model using the 
auxiliary concept of format. 

Let us consider first an exemple. A department 
consists of a set of COURSES, the BOOKS for each 
course, the STUDENTS in the course and their 
GRADES. We can represent an instance of a 
department like in Figure 2.1. Intuitively, the 
department can be considered as a relation over 
three attributes, say COURSE, A1 and A2. The values 
in dom(COURSE) are atomic whereas the values in 
dom(A1) and dom(A2) are simpler Verso instances. 
Let us make two remarks. The first one is that, in 
the example , there is no BOOK required for the 
physics COURSE. (Thus, null values can be 
represented in a Verso instance). The second remark 
is that an implicit connection is assumed between 
the attributes STUDENT and BOOK through the 
attribute COURSE. In other word, a Itjoin” is forced 
between COURSE STUDENT and COURSE BOOK. 

In order to formalize the notion of Verso 
instance, we need the auxiliary concept of format. 
Intuitively , a format specifies the underlying 
structure of a Verso instance. 

DeSinition : A format is redursively defined by : 

(1) let X be a finite string of attributes with no 
repeated attribute, then X is a (flat) format 
over the set X of attributes, and - - 

(ii) let X be a finite string of attributes with no 
repeated attribute, and fl,...f, some formats 
over Ylp...,Yn, resp., such that the sets 
x,y 1. ..Y,, are pairwaise disjoint, then the 
string X(fl ) * . ..(f.)* is a format over the 
set XYl...Y,. 

For instance, f=COURSE STUDENT GRADE is a flat 
format over {COURSE,STUDENT,GRADE) and 
g=COURSE(STUDENT(GRADE)*)*(BOOK)* is a format over 
(COURSE,STUDENT,GRADE,BOOK). 

In the following, we shall use a directed tree 
representation for formats. The representation of 
the format g is given in Figure 2.1. 

We now define the Verso instances : 

Definition : Let f be a format. The set of all 
(E) instances over f, denoted inst.(f), is 
recursively defined by : 

(i) if f E X then inst(f) is a finite subset of 
Otup(X), and 

(ii) if f q X(f,)Y... 
iff 

(fn)* then I is in in&(f) 

a) I is a finite subset of 

Otup(X) x inst(fl) x . . . x inst(fn) , and . 

b) if <u,I1, . . .I,> and <u’ ,I\, . . .I:> are in 

I for some u,u’ ,I, ,I; ,... 1; then u f u’ or 

<u,I 1 )... In> = <u’,Ii )... I;>. 

Intuitively , the (a) condition states that I 
is atomic on the attributes in X ‘and not atomic on 
the llattributesff fl , . . .f,. The (b) condition 
forces X to be a key. It is clear that the 
mathematical notation for Verso instance is 
cumbersome and not really readable. Therefore, in 
the following, instances will be presented using 
the tlbuckett’ technique of [PSI . (See Figure 
2.1). 

In the relational model a database schema 
consists of several schemas. Similarly, we have : 

D&inltion : A Verso database schema S is a 
finite set of formats. A Verso database instance s 
of the schema S is a mapping from S in f iu s 

in&(f) such that s(f) is an instance over f for 
each f in S. 

We now introduce four binary operations 
(fusion, difference, join, and Cartesian product) 
and four unary ones (projection, selection, 
restriction and renaming) on Verso instances. 
These operations are natural extensions of the 
classical relational operations. We start by 
presenting fusion and difference of instances over 
identical formats. We shall then extend these two 
operations to instances over not identical but 
%ompatible” formats. 

The first operation, namely fusion, allows to 
“add” the information contents of two instances. 

Definition : Let f be a format and I, J instances 
z f. Then, the fusion of I and J, denoted 
I $ J, is the instance over f recursively defined 
bj; 

1) if f sx, I BC: = I UJ 

ii) if f zx(f,)* . . . (f,)*, n > 0, then 

IeJ- 
t 

U(I, 
I 

UI 
$ J1)...(In s Jn) u J 1 . ..I. in I 

1 ,..Jn in J 

U 
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/ u Il... In in I and 
for all Jl...J,, u Jl...Jni J 

U 
/ u J1... 

” J1.*.Jn / 
Jn in J and 

for all Il...&, u I ,...I,L I 

An example of fusion is given in Figure 2.2. 

The second operation, namely difference, allows 
to “substract” the information contained in an 
instance from the information contained in another 
one. 

Definition : Let f be a format, and I, J instances 
over f. Then the difference of I and J, denoted 
I 8 J, is an instance over f recursively defined 
by : 

(1) iffsX, 10J=I-Jand, 

(2) if f EX(f,)* . . . (fn)*, n > 0 , then 

I B J =,(“(I, 0 J,)...(I, 8 J,)/ 
u Il... I, in I, u Jl...J, in J 
andIiBJif0forsomei 1 

t 

, u Il... I, in I and 
u u Il... I, / for all Jl.. .J,, u Jl.. .J, 4 J 

1 
An extiple of difference is given in Figure 2.2. 
Note that the physics COURSE disappeared whereas 
the math COURSE is still in I 0 J. This results 
from the condition “Ii 0 Ji 4 0 for some i” which 
is true for math and not for physics. 

As mentionned earlier, these two operations 
will be extended to deal with instances over 
different but l’compatible” formats. To do that, we 
need the auxiliary concepts of format and instance 
extensions. Intuitively, a format g is an extension 
of a format f if the directed tree associated to g 
can be obtained from the directed tree associated 
to f by simple insertion of new subtrees. 
Formally we have : 

Definition : Let f be a format. Then an extension 
g of f is a format recursively obtained as 
follows : 

(i) if f EX, then g EX(g,)*...(gm)* for some mt0 

(ii) if f EX(f,)*...(fn)* then g I X(g,)*...(g,)* 

and there exists a subsequence h, . ..h. of 

g, **a gm such that hi is an extension of fi for 

eachi, 161 6n. 

Let f be a format and g an extension of f. Let I be 
an instance over f. Intuitively, the extension of I 
to g, denoted Ig, is obtained by “paddingl’ at each 
level with empty instances. The following example 
illustrates these two concepts. 

Example 2.1 The format g = COURSE(STUDENT 
CRADE*)*BOOK*(TIME ROOM)* is an extension of the 
format f - COURSE(STUDENT)*(BOOK)*. The directed 
trees, associated to f and g are shown in Figure 

2.3. An instance over f and its extension over g 
are also given in Figure 2.3. 

We are now able to formally define the notion 
of format compatibility. 

Definition : Let f and g be two formats. Then f 
and g are compatible iff there exists a format h 
such that h is an extension of f and g. - 

Then, in order to l’add” (respectively 
llsubstractll) the information contained in an 
instance I over f and J over g, f and g 
compatible, it suffices to extend I and J to a 
common extension h of f and g, and then use the 
operations of fusion and difference. 

The third binary operation, namely join, is 
defined directly on instances over compatible 
formats. It allows to f’combine’t the information 
contents of two instances. 

Definition : Let f and g be two compatible 
formats and h an extension of both f and g. Let I, 
J be instances over f, g respectively. Then the 
join of I and J (according to h), denoted I sh J 
is the instance over h recursively defined by : 

(i) if h E X (so fZs) then I ah J = I J and, 

(ii) if h E X(h,)*...(hp)*, f E X(f,)*...(fn)*, 

g EX(g,)*...(g,)* then 

I eh J = “1,. . .In in I, uJ 1 . . .Jm in J 

and, 

Kk’liehk Jj if hk is an extension of 

fi and g 
j 

KW=Ii if hk is an extension of fi only 

Kk=Jj if hk is an extension of gj only 

To illustrate the previous definition, two 
instances over compatible formats are given in 
Figure 2.4, together with their join according to 
the format COURSE(STUDENT)*(BOOK)*. The last 
binary operation, namely Cartesian product, is 
different from the preceeding ones in that its 
first operand is required to be an instance over a 
flat format. 

Definition : Let f f X be a flat format and g a 
format over Y such that X f) Y = 0. Let I, J be 
instances over f, g respectively. The Cartesian 
product of I and J, denoted I @J, is the instance 
over X(g)* defined by : 

I @J- (uJ / u E I) 

Note that if f and g are both flat formats, and I, 
J instances over f and g, respectively, then I @J 
and J m I are different. So the Cartesian product 
is not commutative. 

We now turn to the unary operations. The first 
one, namely (Verso) projection, allows to “project 
outI’ some particular “subinstances’!. Formally : 
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Definition : Let g be a format and I an instance 
aver g. Let f be a format such that g is an 
extension of f. Then the projection of I over f, 
denoted I [fl, is an instance over f recursively 
defined by : 

if f q X(f,)*...(fn)*, g = X(g,)*...(gm)*, and 

for each 1 5 1, < i2...< in s m, gi is an 
k 

extension of fk then 

1 Cfl - IUIi, [f,] . ..Iin[fn] / uI, . ..I. in I} 

Intuitively, the result of the projection is 
simply obtained by removing all the “subinstances” 
corresponding to “subtreesl’ which are projected 
out. 
An example of projection can be found in Figure 
2.5. 

The second unary operation is the (Verso) 
selection. Besides the relational like conditions 
of the form “Attribut comparator Value”, the Verso 
selection allows some existential and non 
existential conditions on some ltintermediary” 
results, 

Definition : Let f be a format. Then a 
(Versa-)selection S over f is an expression 
recursively defined in the following way. 

(1) if f F X then S E selectC where C is the 

conjonction of elementary conditions(l) on, 

attributes in X. 

(2) if f fX(f,)*...(fn)* then 

S E select <S, . . ,Sn>C where Si is a Verso 

selection over fi for each i, 1 6 1 5 n, and C 

is a conjoncton of 

(a) elementary conditions on attributes in X 
(b) conditions of the form Si f 0 or Si = 0 
for some i. 

The result of a selection is defined in the 
following way. 

Definition : Let S Z select <Sl . ..S,>C be a 
Verso-selection over the format X(fl)*...(f,)*. Let 
I be an instance over f. Then the result of the 
application of S to I, denoted S(I), is defined by 

s(I)-; (uS,(I,)...Sn(In) / 

u k c for each elementary condition c in C 

Si(Ii) = 0 ,if Si = 0 in C 

Si(Ii) d 0 if Si f 0 in Cl 

These definitions are illustrated in the following 
Example : 

(1) An elementarv condition on some attribute A is 
a condition of the form A=a, Afa, A<a, Asa, A>a 
of AZa for some a in dome(A). 

Example 2.3. Let f = COURSE(STUDENT(CRADE)*)* 

Ql 
: Give the list of math students who got a 

grade larger than 10. 
Q2 : Give the courses in which some student is 

registered and didn’t get any grade for this 
course. 

The query Q, is answered by the selection S, : 

‘1 - se1ect “\ >couRsE=math with 

S 
1 

E select <S” > 1 S”f0 where 
1 

S’; E selectGRADE > ,. . 

The query Q2 is answered by the selection S2 : 

S2 E select <S> > with 

% E select <S$ >s,, =0 where 
2 

S’; is the identity 

Examples of applications of these two queries are 
given in Figure 2.5. Due to space limitation, we 
won’t define the last two unary operations. 
However, an example of an application of each of 
them can be found in Figure 2.6. 

A Verso query is obtained by combining the 
four binary operations (fusion, difference, join 
and Cartesian product), the four unary ones 
already presented (projection, selection, 
restriction and renaming) plus another operation 
which will be presented in Section 4, namely 
restructuring. Together these operations will be 
shown to be llcompletefl in .%XtiOn 5. 

3. URSA IRTERPRETATIOR OF TRR VERSO MODEL 

In this section, we exhibit a strong 
connection between format instances and relational 
database instances satisfying the universal 
relation schema assumption. We also give an 
Wfinterpretation” of the Verso operations in 
terms of classical relational operations. 

In order to do that, we need the notion of 
format skeleton. Intuitively, the format skeleton 
of a format f is the relational database schema 
which describes, in a non hierarchical way, the 
structure of instances over f. 

Definition : Let f be a format. Then the format 
skeleton of f, denoted Skel(f), is the relational 
database schema recursively defined by : 

(i) if f EX then Skel(f) = {set(X)] and, 

(ii) if f ZX(f,)*...(fn)* then 

Skel(f) - lset(X)l U 

{set(X)Y / Y in Skel(fi), i in [l,n] ). 

For example the format skeleton of 
COURSE(STUDENT)*(BOOK)* is the relational schema 
[COURSE,COURSE STUDENT,COURSE BOOK). Using these 
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format skeletons, we are now able to “describe” a 
format instance by a relational database instance. 

Definition : Let P be a format and I an instance 
over P. The instance skeleton of I, denoted 
skel(1). is the relational database instance over 
Skel(P) defined by : 

(i) if P 3 X (SO Skel(P) = {set(X))) then 

skel(I)(X) = (map(u) / u in I] 

(ii) if P f X(f,)“... (fn)* (so Skel(P)={set(X)} IJ 

(set(X)Y 1 Y in Skel(fi), i in Cl ,n]}) 

then skel(I)(X) = {map(x) 1 x11.,.1, is in I) 
and skel(I)(XY) = (map(x)*skel(Ii)(Y) 1 

UI1... I, is in I, Ii f 0} 

where Y is in Skel(Pi) 

In the previous definition, since X fl Y = 0, 
the join is in Pact a relational Cartesian product. 
However, in the present paper, we use the symbol x 
to denote (ordered) Cartesian product only. Figure 
3.1 exhibits the instance skeleton of the instance 
OP Figure 2.1. 

We established a correspondance between formats 
and relational database schemas (Skel), and between 
instances over format and relational database 
instances (skel). It is clear that (1) not all 
relational database schemas correspond to some 
formats and (2) even if a relational database 
schema R corresponds to a format f, not all 
instances over R correspond to instances over P. 
This leads to the two following results. 

Theorem 3.1 : [Ba2] Let R be a relational database 
schema. Then R is a format skeleton iff 

(1) R is closed under intersection, and 
(2) for each X in A, X fl R is totally ordered 

by inclusion. 

Theorem 3.2 : Let f be a format and R=Skel(P). Let 
r be an instance over R. Then the following two 
assertions are equivalent : 

(1) r=skel(I) for some I over P, and 
(2) r satisPies the URSA. 

By the previous theorem, skel is a mapping from 
instances over f onto relational database instances 
over Skel(f) satisfying the URSA. The,refore, it 
would be interesting to characterize the 
Verso-operations on instances in terms 0P 
relational operations on relational database 
instances. Indeed, for binary operations such a 
characterization is given in Theorem 3.3. 

Theorem 3.3. Let P and g be two compatible formats 
and h an extension of both f and g, Let I and J be 
instances over f and g respectively. Let 
r = skel(Ih) and s = skel(Jh). Then 

(1) V X in Skel(h), skel(1 e J)(X) = r(X) U s(X) , 

(2) V X in Skel(h), 

skel(IBJ)(X)=r(X)-s(X)UXEY ?rxCrU)-SW1 

Y in Skel(h) 

and, 

(3) V X in Skel(f) fl Skel(g), 

skel(1 @ J)(X) = r(X) fl s(X) 

V X in Skel(f) - Skel(g), 

skel(1 @J)(X) = r(X)iyCX S(Y) 
Yin Skel(g) 

V X in Skel(g)-Skel(f), 

skel(I @J)(X) = s(x)*Y C x r(Y) 
Y Tn Skel(f) 

and, 

V X E Skel(h)-(Skel(f) IJ Skel(g)), 

skel(1 e J)(X) = 0 

Note that in the previous theorem 
skel(1 sJ) = r U s. It turns out that simple 
characterization of join and difference can also 
be obtained using set operations on relational 
schema instances. 

Proposition 3.1. Let f and g be two compatible 
formats, h an extension of P and g. Let I and J be 
instances over P and g respectively. Let r = 
skel(Ih) and s = skel(Jh). Then 

(1) skel(1 $ J) = r U s 
(2) skel(1 0 J) is the smallest (2) URSA-instance 

over Skel(h) containing r-s and, 
(3) skel(1 (6, J) is the largest USRA-instance over 

Skel(h) contained in the instance t over 
Skel(h) defined by : 

I;; :I:; 
= r(X) fls(X) if X in Skel(f) n Skel(g) 
= r(X) if X in Skel(f) - Skel(g) 

(cl t(X) = SW if X in Skel(g) - Skel(f) 
(d) t(X) = 0 otherwise 

The previous two results give interpretations of 
some Verso operations (fusion, join, difference) 
in terms of relational operations. Although not 
done here, the other operations can also be 
interpreted using relational operations on the 
corresponding relational database instance. 

4. DATA FUBTRUCTURING 

In order to define the last unary 
Verso-operation, namely restructuring, we need to 
examine the semant its associated to a Verso 
instance. Thus, in the first part of this section, 

(2) Let r and s be instances over the schema R 
r 5 s ifP r(X)E s(X) for each X in R. 
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the focus is on the set of “facts” which can be 
deduced from a format instance. These sets of facts 
are then used to compare the representative power 
of formats. Finally, some elementary format 
transformations which allow data restructuring are 
presented. 

In the following, the elementary unit of 
information, called a fact, is a tuple. 

Two basic operations on sets of facts are 
considered. They are : the closure under projection 
and under join. 

Definition : Let H be a set of facts. Then the 
closure of H under projection, denoted x(H), is 
defined by : 

n(H) - (n,(x) / x in H nTUP(X) 
for some X and Y CX) 

Ind , the closure of H under join, denoted *(H) is 
defined by : 

*(HI = f* x in H, x / H’ E W. 

Now, given a set of facts, it seems reasonable 
to deduce new facts by projection of known facts. 
The closure under join is already more arguable. 
For instance, if “toto” is taking “math” and V1mathlt 
is taught by “Miss Jones”, you don’t want to 
conclude that “Miss Jones” is teaching “math” to 
” toto” . The semantics that we are going to 
associate with format instances states that the 
lVlegallV joins are only the joins of tuples in the 
instance skeleton. More formally, we have : 

Definition : Let I be an instance over the format 
f. Then the set of facts associated with I, denoted 
fact(I), is defined by : 

fact(I) - n(*(lJZ in Skelcfl skel(I)(Z))). 

The previous definition is illustrated in Figure 
4.1 where the set of facts associated with the 
instance I of Figure 2.1 is given. 

The notion of set of facts associated to a 
format instance is used now to present the last 
unary operation, namely restructuring. Intuitively, 
this operation allows to modify the format of an 
instance without modifying its information content. 

Formally we have : 

Definition : Let f be a format. Then a 
restructuring is an expression of the form formatf. 
Let I be an instance. If there exists an instance J 
over f such that fact(I) = fact(J) then formatf is 
defined for I and formatf(1) = J (otherwise 
formatf is not defined for I). 

Now the problem arises : given two formats f 
and g, is it always possible to represent an 
instance over g by an instance over f ? 

In order to answer this guestion and therefore 
present a way to compare the representative power 
of formats, we need the following notation. 

Notation : Let f be a format. Then SAT(f)= 
(fact(I) / I is in Inst(f)). 
This allows us to compare formats. 

Definition : Let f and g be two formats : Then f 
is dominated by g, denoted f L g, iff 

SAT(f) c SAT(g). 

Also f and g are equivalent, denoted f = g, iff 
f 6 g and g ~5 f. (i.e., SAT(f) = SAT(g)). 

Intuitively , f is dominated by g iff each 
instance over f can be represented by an instance 
over g containing the same information. Two 
characterizations of format dominance are now 
presented. The first one (Lemma 4.1) is based on 
properties of the corresponding format skeletons. 
The second one (Theorem 4.1) is based on some 
elementary format transformations. We now present 
the first characterization of format dominance. 

Lemma 4.1. : Let f and g be two formats. Then 

f 6 g iff Skel(f) c Skel(g). 

Thus f = g iff Skel(f) = Skel(g). q 

In order to present the second 
characterization of format dominance, we exhibit 
three format transformations. These 
transformations are presented in their elementary 
versions and then generalized. 

Definition : 

a) Let f s X(f,)*...(fn)* and g f Y(g,)*...(g,)* 

then : g is obtained from f by elementary root 

permutation iff 

(1) fi E gi for each i in [l,n] , and 

(ii) set(X) = set(Y). 

g is obtained from f by elementary branch 
permutation iff 

(i) ‘for each i 

[l,nl such 

(ii) XEY 

b) Let f s 

in Cl ,nl , there exists j in 

that gjzfi , and 

XX,(f,)*...(fn)* and 

,)*)* then g is obtained from f g E x(x,(f,)*...(f]~ 

by elementary compaction. 

Now a root permutation on a format f is 
obtained by ap 1 ing elementary root permutations 
to subformatsP3r in f. Branch permutation and 

(3) A subformat of a format f is a format 
corresponding to ‘a subtree of the 
representation tree of f. 
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compaction are obtained from elementary branch 
permutation and elementary compaction in a similar 
manner. Figure 4.2 exhibits a sequence of these 
three transformations together with the extension 
defined in Section 3. 

Now we have : 

Theorem 4.2. Let f and g be two formats. Then 
f = g iff g can be obtained from f by a sequence of 
root and branch permutations. Also f 4 g iff g can 
be obtained from f by a sequence of root and branch 
permutations, compactions and extensions. q 

The proof follows easily from Lemma 4.1. Even 
if f is not dominated by g, some particular 
instances over f are representable by instances 
over g, That is because those particular 
instance satisfy some contraints on top of the 
contraints that are implied by the format f. We now 
define two kinds of dependencies which are going to 
capture these contraints. 

Definition : Let S be a relational database 
schema and H be a set of facts. Then *S denotes the 
schema join dependancy (SJD) associated with S, 
and H satisfies *S, denoted H 1 *S, iff(4) 

HI Ux :n S 
= (*Hls)l u, ;n s’ 

Also, 3 S denotes the existence schema dependency 
(ESD) associated with S and H satisfies 7 S, 
denoted H k IS, iff H = n(H 

IS 
). 

The next result uses the previous dependencies to 
characterize the sets of facts which are 
representable by a given format f. 

Theorem 4.3 : Let f be a format and H be a set of 
facts. Then H can be represented by an instance 
over f iff 

(1) H k *R for each R sSkel(f) 

(ii) HI 3 S where S=[XlX= U Y 
Y in R’ 

R s Skel(f)) 

Note that the SJDs are very similar to Delobel’s 
Generalized Hierarchical Dependencies. To conclude 
this section, we present a simple result on SED 
implication. 

Proposition 4.1. Let R and S be two relational 
database schemas and H be a set of facts. Then the 
following two assertions are equivalent : 

(i) H k il Fi and H b IS, 

(ii) H k 7 R I? S. 

(4) For each set of facts H, and for each set X of 
attributes H IX = (x/x in H n Tup(X)). For each 

schema S, H 
Is= U 

X in S HIX. 

5. Expressive power of Verso operations 

We already mentionned that Verso operations 
are 9elationally complete”. What we mean by that 
is : given a Verso format f and its corresponding 
database schema R = Skel(f), for every relational 
query q on R there exists a Verso query q’ which 
yield the same result(5). 

If Verso operations are complete, they also 
take advantage of the joins implicitely defined in 
the schema. To illustrate this remark, we now 
present a query which would typically require a 
join in the relational model but can be simply 
expressed by a selection in the Verso model. 

Example 5.1. 

Consider the format f=COURSE(STUDENT)*(EXAM-DAY)* 
Now consider the query : “What are the courses 
taken by toto which have an exam on November 
first ?‘I. In the relational model, there would 
typically be two relations COURSE STUDENT and 
COURSE EXAM-DAY and the query would require a join 
operation. This query can be answered by the Verso 
selection : 

- 
s = Select <s, ,s2js, tioAs2ho where 

‘1 q SelectSTUDENT=toto’ and 

‘2 z SelectEXAM-DAY=november 1st ' 

Indeed, some very natural queries like “Give the 
list of courses with no known exam day” can be 
answered by a Verso selection whereas they would 
require the use of difference in a pure relational 
model. 

To conclude this section, we propose a simple 
extension of the Verso selection which 
dramatically increases its power. Let us consider 
the following query on COURSE(STUDENT(GRADE)*)* : 
“Give the list of courses, students and grades 
such that toto got an A in the course and a 
student (not necessarily toto) got an F in the 
course”. It should be noted that this query is 
complicated by the fact that they are several 
roles for the same attribute, namely STUDENT. 
Typically, such a query would require several 
joins in the classical relational model. 

What we mean by such a query is in fact two 

selections on GRADE, say S, E selectGRADEIA and 

s2 S selectGRADEzF. 

Now we need two selections on STUDENT(GRADE)* : 

(5) To be precise, q’ yield “almost” the same 
result since the result of a is a relation and 
the result of q’ will be an instance over a 
flat format, i.e., a set of ordered tuples. 
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“l Z se1ect <%TUDENT-toto AS 1 #0 
S; Z select <S2>s2d0 

The first one filters toto if he got an A, and the 
second one any student who get an F. Now we can 
have 

S Z select <S, >sidO A s;dO where 

S, is the identy on STUDENT(GRADE)*. 

It should be noted that this is not a selection 
as defined in Section 2 since two selections are 
realized on the subf ormat STUDENT(GRADE)*. 
Intuitively, these two selections S1l and S’2 should 
be performed “in parallel,,. They are used 
exclusively as conditions. 

In the complete paper, this llsuper,, selection 
is formally defined. The following result is proved 
there : 

Theor- 5.1 : Let f be a format, R-Skel(f) the 
corrresponding database schema. Let q be a 
selection-projection-join query on R such that 
every projection in q is a projection on some union 
of attribute sets in R. Then these exists a Verso 
wry q’ consisting of a (Versa) super selection 
followed by a (Versa) projection, and such that q, 
is equivalent to q. 

Conclusion 

The Verso model is a database model based on 
some particular (not first normal form) relations 
allowing incomplete information representation and 
implicit specification of meaningful joins. 
Furthermore, a simple algebraic query language can 
be defined for the Verso model. The Verso model is 
a formalization of some of the concepts used in the 
Verso database machine [Ball. The data structure 
in the Verso machine is a Verso instance fully 
sorted according to the format and stored 
sequentially. This storage organization allows 
fast access and processing [BRSI. Indeed, all the 
operations presented in the paper (including the 
“super” selection) but the format modification can 
be realized by the specialized filter of the Verso 
machine. Typically, some queries which would 
require joins in the relational model can be 
realized by the filter if the joins are implicit in 
the Verso format. However, joins which are not 
implicitely in the format remain quite costly since 
they involve format modifications. 
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