
A Point-based Temporal Extension of SQLDavid Toman?Department of Computer Science, University of TorontoToronto, Ontario M5S 1A4, Canadadavid@cs.toronto.eduAbstract. We propose a new approach to temporal extensions of SQL.Unlike the current proposals, e.g., SQL/Temporal, we use point-basedreferences to time as the basis of our approach. The proposed language|SQL/TP|extends the syntax and semantics of SQL/92 in a very naturalway: by adding a single data type to represent a linearly ordered universeof individual time instants. Such an extension allows the users to writetemporal queries in customary fashion and vastly simpli�es the semanticsof the proposed language: we merely use the familiar SQL semantics. Inthis way SQL/TP also �xes many problems present in the semantics ofthe temporal query languages based on explicit interval-valued temporalattributes. In addition, we propose an e�cient query evaluation proce-dure over a compact interval-based encoding of temporal relations. Thealgorithm is based on a sophisticated compilation technique that trans-lates SQL/TP queries to SQL/92. In this way existing database systemscan be used for managing temporal data. We substantiate this claim byproposing an experimental version of a SQL/TP compiler to serve as afront-end for DB21 [13].1 IntroductionA large amount of database research is directed towards the limitations of theclassical relational model and on ways to overcome these limitations. The fruitsof this research are slowly �nding their place in the mainstream commercial sys-tems, e.g., through new SQL standards. The major developments in this area are,e.g., the introduction of deductive features or the object-relational extensions ofthe relational model. While the �rst extension is aimed on overcoming limita-tions in expressive power of relational queries, the second approach is directedtowards handling interpreted data (rather than mere uninterpreted constants).In this paper we propose a di�erent approach to introducing interpreted datainto the relational model. We also propose a sophisticated compilation techniquethat allows us to handle such an extension in a standard relational system. Whilewe are mostly concerned with adding temporal capabilities , the proposed tech-nique can be extended to other interpreted domains of data, e.g., spatial data.We address the following issues:{ We show both theoretical and practical reasons, why the current proposalsof temporal extensions of SQL are inadequate.{ We show that there is a simpler and more natural temporal extension ofSQL based on a point-based view of time.? This research was supported by a NATO/NSERC PDF fellowship, 1996-98.1 DB2 is a trademark of IBM Corp.

{ We propose a query execution model for our language that allows e�-cient query evaluation over temporal databases encoded using interval-basedtimestamps.The three main technical contributions of this paper are: (1) the de�nition ofa representation-independent temporal extension of SQL: we decouple the syn-tax of the language from the underlying data representation while preservingSQL's semantics: we support both set- and duplicate-based semantics includingaggregation, (2) a query compilation technique for such an extension that al-lows SQL/TP queries to be e�ciently evaluated using a standard RDBMS, and(3) the de�nition of nouveau normalization technique that facilitates evaluationof temporal queries over an interval-based encoding of timestamps. We wouldalso like to note at this point that a naive direct compilation technique fails toachieve e�cient query evaluation.The rest of the paper is organized as follows: Section 2 explains the shortcom-ings of the current proposals of temporal extensions of SQL and sketches out thesolution. Section 3 introduces the temporal data model: the abstract and con-crete (interval-based) temporal databases (following the terminology introducedin [9]). Section 4 de�nes the syntax and semantics of SQL/TP and gives exam-ples of temporal queries. Section 5 gives a sketch of the proposed compilationtechnique. The paper is concluded with several open questions and directions offuture research.2 Why another temporal extension of SQL?The last decade of research in temporal databases has led to the developmentof several temporal query languages based on extensions of existing relationallanguages, e.g., TQUEL [16] or various temporal extensions of SQL, most promi-nent of which are TSQL2 [17] and its variants: ATSQL2 [5] and the currentproposal of temporal extension of SQL3 to the ISO and ANSI standardizationcommittees|SQL/Temporal [18].2.1 Current ProposalsAll the current proposals recognize that timestamping ordinary tuples with sin-gle time instants leads to enormous space requirements: a tuple would have tobe repeated for every time instant at which the fact represented by the tupleholds. Instead, compact encodings of sets of time instants (often called periodsof validity) associated with a tuple are encoded using intervals [16, 18], bitem-poral elements [4, 14], or other �xed-dimensional products of intervals (hyper-rectangles). The chosen encoding then provides a domain of values for temporalattributes.However, in all the above approaches, the explicit access to the interval-based encoding of timestamps in temporal relations leads to a tension betweenthe syntax and the intended semantics of the languages, speci�cally:{ References to time are realized using temporal attributes explicitly referringto intervals (or some other particular encoding of timestamps).{ The data model and the semantics are point-based [4, 9]: the intervals areused merely as compact descriptions of large sets of time instants (even incases when one of the various duplicate semantics is used).

This conict leads to many unpleasant surprises , especially when multiple tem-poral dimensions are needed to evaluate a given query (e.g., when the querysimultaneously references two distinct points in time in an essential way). Mostimportantly, it is easy to show examples of queries whose answers depend onthe choice of the particular encoding rather than on the underlying meaning , cf.Example 2.1 below. In addition, it is extremely hard to avoid such a behaviorin an elegant way, and the actual semantics of these languages tend to be verycumbersome (if they exist at all). In many cases uniqueness of answers can onlybe guaranteed by operational means, e.g., by prescribing a particular evalua-tion order. Moreover, duplicate semantics and results of aggregation operationsin such languages also inherently depend on the chosen encoding. Consider thefollowing situation:Example 2.1 Let D be a temporal relation (or an answer to a temporal query)that represents the region in the �gures below.(1) (2) (3)It is important to understand that all the �gures represents the same relation.However, it is also clear that we can distinguish (2) and (3) using a �rst-orderquery in, e.g., SQL/Temporal. We call such queries representation dependent .Moreover, even very simple queries, e.g., counting the number of regions alongthe axes, give di�erent results depending on the particular representation.In the rest of this section we argue that the situation in Example 2.1 naturallyarises during evaluation of �rst-order temporal queries.First, we argue that a single temporal dimension is not su�cient to formu-late general temporal queries. Consider the query \are there two distinct timeinstants when a given relation contains exactly the same tuples?" [1] and [20]have independently shown that this query cannot be formulated in �rst-ordertemporal logic. A direct corollary of this result is that this query cannot be ex-pressed in any single-dimensional temporal relational algebra2. Moreover, [20]shows that to express all �rst-order queries the number of temporal dimensionscannot be bounded by any constant. Therefore, multiple temporal dimensionscannot be avoided during the bottom-up evaluation of temporal queries even ifthe �nal result is a single-dimensional temporal relation or boolean [20]. Thisfact, combined with the use of explicit interval-valued temporal attributes, leadsdirectly to situations similar to Example 2.1.Now it is easy to see why the coalescing-based approaches fail to guaranteerepresentation independence: To guarantee �xed size of tuples in a temporalrelation the region (1) in Example 2.1 has to be represented by a �nite unionof rectangles, e.g., using the representation (2) or (3) above. While both (2)and (3) are coalesced , they can still be distinguished by a �rst-order query withinterval-valued temporal attributes. Moreover, this problem cannot be avoidedusing a di�erent normal form as there is no unique coalescing-based normal formfor dimension higher than one (for detailed discussion of coalescing see [6]).In addition, in many cases the user has no control over the representation ofthe intermediate results since the coalescing is performed by the system implic-2 A relational algebra over the universe of single-dimensional temporal relations.

itly. While coalescing in a single-dimensional system facilitates representationindependent formulation of queries, with two or more temporal dimensions itleads to serious problems: the user has no knowledge if the region (1) in Ex-ample 2.1 is going to be represented as (2) or (3) during the query evaluation.However, results of queries depend on this information.2.2 Our ProposalThe above problems are inherent to most of the temporal query languages withtemporal attributes ranging over intervals. Therefore we follow a di�erent pathto avoid all of the above problems: we let the temporal attributes in our languagerange over single time instants . In this way our approach separates an abstractquery language|SQL/TP|de�ned over a clean model of point-based linearlyordered time from the concrete interval-based encoding of timestamps which ishidden from the user. The approach is based on several recent results in thearea of temporal and constraint query languages [1, 15, 19, 20]. In addition, awe de�ne a meaningful approach to duplicate semantics and aggregation that isindependent of the particular encoding (using the results in [10, 11]).While we mostly concentrate on evaluation of temporal queries over theinterval-based encoding of time, conforming to the above principles allows us touse di�erent encoding for sets of time instants, e.g., the linear repeating points[22] for periodic events, without the need for new syntax and semantics. In ad-dition our proposal meets the following requirements:{ SQL/TP can be e�ciently implemented on top of an interval-based represen-tation of temporal databases: the performance of a SQL/TP system shouldbe comparable to performance of SQL/Temporal based DBMS on a vastmajority of representation independent queries.{ SQL/TP statements can be compiled to standard SQL/923 [12]; the trans-lated queries can be evaluated using an o�-shelf database system. This waywe can build a SQL/TP front-end to an existing RDBMS and provide tem-poral capabilities without modifying the underlying database system itself.{ SQL/TP can express all representation independent SQL/Temporal queries.Moreover, SQL/TP is complete in the sense of [8]. The results in [1, 20] showthat this is not the case for any of the temporal query languages based on a�xed-dimensional temporal relational algebra, e.g., [7]; this issue is not clearfor TSQL2-derived languages [5, 17, 18].{ Our language can be easily extended to support the migration requirements[18] that require several levels of temporal upward compatibility with SQL.While SQL/TP itself does not literally follow all the requirements, the com-patibility can be easily achieved using a very simple syntactic manipulationof the source queries and adding tags to distinguish the particular compati-bility modes.Before we start the technical part of the paper, we would like to reiterate (toavoid any misunderstanding) that we are interested in intervals as a physicalencoding of sets on time instants . This is very di�erent from the approaches3 Other relational languages can be used as well, provided they have su�cient expres-sive power.

taken in the various interval logics [2], where intervals represent points in atwo-dimensional (half-)space. However, due to the natural multidimensionalityof SQL/TP, we can represent the true intervals using pairs temporal attributes.3 The Data Model for Temporal DatabasesWe start with the de�nition of the underlying data model: the domain of timeis viewed as a discrete4 countably in�nite linearly ordered set without endpoints(e.g., the integers). The individual elements of the set represent the actual timeinstants while the linear order represents the progression of time. The actualgranularity of time is implementation-dependent5. Besides the data type for thetime instants we also use all the other data types de�ned in standard SQL:strings, integers, oats, etc. As usual, these data types do not have an a-prioriassigned interpretation. We summarily refer to those data types as the uninter-preted constants .The relationships between the time instants and the uninterpreted constantsare captured in a �nite set of temporal relations stored in the database. Followingthe terminology of [9] we distinguish the abstract temporal databases from theconcrete temporal databases:De�nition 3.1 (Abstract Temporal Database) A signature of a predicatesymbol R is a tuple (a1 : t1; : : : ; ak : tk) where ai are distinct attribute names,ti the corresponding attribute types, and k the arity of R. Attributes of typetime are temporal attributes , the remaining attributes are data attributes . Adatabase schema is a �nite set of relational symbols R1; : : : ; Rk paired with theirsignatures. An abstract temporal database is a set of tables de�ned by a databaseschema.In general we do not restrict the cardinality of the abstract temporal tables: weallow in�nite tables as well. However, in order to de�ne meaningful operationson the tables we require that the number of occurrences (duplicates) is �nite forevery distinct tuple.Example 3.2 In the rest of the paper we use an abstract temporal databasewith the schema findep(Name;Year)g as a running example. The particularinstance of the indep relation we use in our examples captures independence ofcountries in Central Europe:indepName YearPoland 1025� � � � � �Poland 1794Poland 1918� � � � � �Poland 1938Poland 1945� � � � � �
� � �Czech Kingdom 1198� � � � � �Czech Kingdom 1620Czechoslovakia 1918� � � � � �Czechoslovakia 1938Czechoslovakia 1945� � � � � �Czechoslovakia 1992

� � �Czech Republic 1995� � � � � �� � � � � �Slovakia 1940� � � � � �Slovakia 1944Slovakia 1993� � � � � �� � � � � �We do not impose any restrictions on the number of temporal attributes inrelations (unlike, e.g., TSQL2 [17]). Indeed, in general we may want to record4 A dense linearly ordered time can be used with only a minor adjustment.5 For our purposes any �xed granularity will do.

relationships between di�erent time instants as well as relationships betweentuples of uninterpreted constants and a single time instant.The abstract temporal databases provide a natural data model for modellingand querying temporal data. However, it would be impractical (and often impos-sible) to store the temporal databases as plain bags of their tuples: a particulartuple is often related to a large and possibly in�nite set of time instants. Ratherthan storing all these tuples one by one, we use a compact encoding of sets oftime instants. The choice of a particular encoding|in our case the interval-basedencoding|de�nes the class of concrete temporal databases :De�nition 3.3 (Concrete Temporal Database) Let R be a relational sym-bol with signature E. A concrete signature corresponding to E is de�ned as atuple of the attributes that contains (1) a for every data attribute a 2 E and (2)tmin and tmax for every temporal attribute t 2 E. The attributes tmin and tmaxdenote endpoints of intervals. We denote the concrete signature of R by E. Aconcrete temporal database schema corresponding to a given abstract databaseschema is a set of relation symbols and their concrete signatures derived fromthe signatures in the abstract database schema6. A concrete temporal databaseis a set of �nite relations de�ned by a concrete database schema.To capture the relationship between an abstract and a concrete temporal da-tabase we de�ne a semantic mapping that maps a concrete temporal databaseto its meaning|an abstract temporal database. The meaning of a single con-crete tuple x = (tmin; tmax; a1; : : : ; ak) is a bag of tuples kxk = f(t; a1; : : : ; ak) :tmin � t � tmaxg; analogously for tuples with multiple temporal attributes. Themeaning kRk of a concrete relationR is the duplicate preserving union of kxk forall concrete x 2 R. We say that R encodes kRk. We extend the k:k to concretetemporal databases in a natural way.The encodes function also de�nes a subset of the abstract temporal databa-ses that can be encoded using concrete temporal databases. We call this subsetthe �nitary temporal databases . Note that the encoding is not unique and thustwo distinct concrete temporal databases often encode the same abstract tem-poral database (cf. Example 2.1). We call such concrete temporal databases(k:k-)equivalent.Example 3.4 The database instance from Example 3.2 is in�nite. However, itis �nitary: it can be encoded by the following concrete temporal database:indepName Yearmin. . . YearmaxCzech Kingdom 1198 . . . 1620Czechoslovakia 1918 . . . 1938Czechoslovakia 1945 . . . 1992Czech Republic 1993 . . . 1 � � �Slovakia 1940. . . 1944Slovakia 1993. . . 1Poland 1025. . . 1794Poland 1918. . . 1938Poland 1945. . . 1All queries in the rest of the paper are evaluated over this database while pre-serving answers with respect to the original relation in Example 3.2.4 The Language SQL/TPIn this section we de�ne the syntax and semantics of SQL/TP. This includes thedata de�nition, data query, and data manipulation parts of the language. In all6 We use the same names for both the abstract and concrete relations. The actualmeaning of the symbol is always clear from the context.

three cases we show that SQL/TP is a natural syntactic extension of SQL overthe abstract temporal databases. Moreover, the proposed semantics of SQL/TPis essentially identical to the semantics of SQL (safely) extended to potentiallyin�nite tables.4.1 Data De�nition LanguageWe start with the Data De�nition Language: it is essentially identical to standardSQL/92:create table <rid> (<signat>)create view <rid> (<query>)where <rid> is a table identi�er and <signat> is a signature of the new table.For views the signature is derived from the signature of the <query> expression(cf. Section 4.2). The only di�erence is that the temporal attributes are declaredusing a new data type time that supports modi�ers to determine how the timeinstants are stored in a concrete temporal table:using points: The time instants are stored as atomic values similarly to allother data types. This choice is suitable for representing single atomic eventsthat happen at a speci�c time instant, e.g., when a particular tuple wasinserted into the database.using [bounded | unbounded] intervals: Continuous sets of time instantsassociated with a particular data tuple are encoded using intervals. This en-coding is suitable for representing durations of events, e.g., the valid time of afact (which in reality is often an interval). The bounded and unbounded key-words specify if the �1 and 1 may be used as endpoints of intervals. Thischoice a�ects, e.g., what aggregate operations are allowed for that particularattribute; cf. Section 4.2.It is important to understand that these modi�ers a�ect only the way the tableis stored, not the semantics of the queries (similarly to specifying, e.g., a sortorder or a key for the table).In the future this list may grow to accommodate di�erent encodings. Themodi�ers are the only place in SQL/TP where the syntax reects the chosenencoding. The default modi�er unbounded time is assumed for all temporalattributes unless explicitly stated otherwise.Example 4.1 The table indep in Example 3.2 can be created as follows:create table indep (name char(20),year time using unbounded intervals)In the rest of the paper we discuss only the interval-based encodings; encodingtime instants by points does not introduce any problems over the traditional datatypes. In addition we assume the time instants can be represented by integers(using a �xed granularity) and we allow integer-like operations on the new datatype so we do not get lost in superuous syntax.4.2 The Query LanguageFor sake of simplicity we discuss only a syntactic subset of full SQL/TP. This factdoes not a�ect the generality of our proposal: it is an easy exercise to show that

the proposed fragment forms a (�rst-order) complete query language [8]. More-over, all representation independent SQL/Temporal queries, including querieswith aggregation and universal subqueries, can be equivalently formulated inthis fragment.Syntax. The chosen syntactic subset of SQL/TP uses two basic syntactic con-structs:Select block. Similarly to the standard SQL the select block is the main buildingblock of our query language. It has the usual formselect <slist> [from <flist>] [where <cond>] [group by <glist>]where<slist> is a list of attribute identi�ers, constants, and (aggregate) expressionswith the possibility of renaming the output column using <sexp> as <id>7,<flist> is a sequence of relation identi�ers or subqueries, again with the usualpossibility of assigning correlation names,<cond> is a selection condition built from atomic conditions using booleanconnectives. The atomic conditions depend on the data types of the involvedattributes: in the case of temporal attributes we allow conditions of the form<id> op <id>+ C where op 2 f<;�;=;�; >g, and C a constant denotinga length of a time period, and<glist> is a list of attribute identi�ers that speci�es how the result of the selectblock is grouped. The usual SQL rules that govern the grouping operationsapply here as well.We extend the de�nition of signature to SQL/TP expressions: The signature ofan expression is tuple of names of attributes in the resulting table paired withtheir data types (including the modi�ers).Set Operations. Besides nesting queries in the from clause of the select block wecan combine the individual select blocks using set operations as follows:(<exp>) <setop> (<exp>)where <setop> is one of the union (set union with duplicate elimination),union all (additive union), except (set di�erence with duplicate elimination),except all (monus), intersect (set intersection with duplicate elimination),and intersect all (duplicate preserving intersection). We require the signa-tures of both the expressions to match8. The resulting signature is the commonsignature of the expressions involved in the operation.The proposed syntax omits two common SQL constructs: subqueries nested inthe where clause and the having clause. Both these constructs can be expressedin the presented fragment using nesting in the from clause of the select blockand can be considered to be a syntactic sugar.7 The columns de�ned using expressions or aggregation have to be given a name thisway.8 SQL only requires the types to match. However, we require both the names of theattributes and their types to match. This is not a restriction as the renaming can beconveniently done within the select clauses.

To achieve signature compatibility for temporal attributes we allow the useof a special constant pseudo-relation true(t: time) true for all elements of thetemporal domain. This relation allows us to pad the attribute lists involved inthe set operations (cf. Section 4.3) and to express, e.g., the complementationover the temporal domain.Semantics. SQL/TP is essentially SQL/92 extended with an additional datatype time. The main feature of such an extension is that we can use the familiarSQL-like semantics over the class of the abstract temporal databases . This way wecompletely avoid all the problems connected with representation dependencies.Also, changes in the chosen encoding do not a�ect the syntax and semantics ofqueries.However, we have to be careful when extending relational operations to in-�nite tables: we have to ensure that we never produce tables with in�nite du-plicates of a single tuple. It is easy to see that all the relational operations,with the exception of duplicate preserving projection, meet this requirement.However, the duplicate-preserving projection can produce such tables, e.g.:f(\Poland"; [1945;1])g k:k�! f(\Poland"; n) : n � 1945g�1�! f(\Poland"); : : : ; (\Poland"); : : :gThe result of the projection contains in�nite duplication of the tuple (\Poland").This cannot be allowed as other relational operators, e.g., the bag di�erence, arenot well de�ned over such tables.Closure over Interval-based Concrete Databases. While the above re-striction guarantees a well de�ned semantics, it is too weak to guarantee closureof SQL/TP queries over the chosen class of concrete temporal databases. Themain source of problems are the order dependencies among temporal attributes.Consider the following example:Example 4.2 It is easy to �nd SQL/TP expressions that do not preserve clo-sure over the class of �nitary abstract temporal databases. Consider the expres-sion:Q: select r1.name as name, r1.year as t1, r2.year as t2from indep r1, indep r2where r1.name = r2.name and r1.year < r2.yearThe attributes t1 and t2 are correlated by an inequality t1 < t2 in the resultof the query :f(\Poland"; 1945; 1946); (\Poland"; 1945; 1947);: : : ;(\Poland"; 1945; 1950); : : :(\Poland"; 1946; 1947);: : : ;(\Poland"; 1946; 1950); : : :.(\Poland"; 1949; 1950); : : :gObviously the triangle-like result can not be described by a product of intervals.To avoid this problem we use the notion of attribute independence. Rather thana semantic de�nition of attribute independence [11] we use a syntactic inferencesystem to detect attribute independence in a SQL/TP expression:

De�nition 4.3 (Attribute Independence) Let t1 and t2 be two temporalattributes in the signature of a SQL/TP expression exp. We say that t1 and t2are independent in exp if1. exp is a base relation,2. exp is a select block, t1 and t2 are names of t01 and t02 assigned in the selectclause, t01 and t02 are independent in all expressions in the from list, and anorder relationship between t01 and t02 is not implied by the where clause.3. exp is (e1) setop (e2) and t1 and t2 are independent in both e1 and e2.In addition all data attributes (and point temporal attributes) are mutuallyindependent.For similar reasons we restrict the use of aggregate operations: we require theaggregated attribute to be independent of the group by attributes [10].In addition we also restrict the use of duplicate-preserving projection on alltemporal attributes encoded by intervals. We have already seen that duplicate-preserving projection is not possible for unbounded data types. On the otherhand, for bounded data types we could implement the duplicate preserving pro-jection by creating the appropriate number of copies of the remainder of a tuple.However, such an operation would make the query evaluation very ine�cientand almost certainly unusable in practice. Consider the following example:Example 4.4 Let R(x; t) = f(a; [0; 2n � 1])g be a concrete temporal relationwhere n is a large integer. Clearly the size of R (in bits) is jaj+ n. However, thesize of �x(R) is 2n � jaj as the result of duplicate preserving projection has tocontain 2n tuples (a).Allowing such projections would cause an exponential blowup in the (space)complexity of query evaluation. Note that the duplicate preserving projection isused in SQL for two main reasons: (1) to avoid duplicate elimination or (2) tofacilitate correct aggregates. The �rst use does not apply to SQL/TP|we dealwith redundant duplicate elimination in the optimization phase of our compi-lation procedure. The aggregates are handled using a rewriting technique thatallows us to avoid the duplicate-preserving projections9. This way we can evalu-ate a vast majority of representation-independent aggregate queries even underthe above restriction: note that all other relational operations preserve duplicates(cf. Section 4.3). Therefore we exclude the duplicate-preserving projections of alltemporal attributes encoded by intervals in order to maintain the polynomialcomplexity bound.We de�ne the SQL/TP queries to be the subset of SQL/TP expressionsobeying the above rules. It is easy to verify that all SQL/TP queries preserveclosure over the class of �nitary temporal databases:Theorem 4.5 Let D be a �nitary database and Q a SQL/TP query. Then Q(D)is �nitary.The requirement of attribute independence seems like a rather severe restriction.However, the independence is required only for the temporal attributes present inthe signature of the top-level query, not for all temporal attributes that appearin the query. All the representation-independent TSQL2 queries, and all �rstorder queries with a single temporal attribute in their signature in general, canbe expressed as SQL/TP queries.9 This technique is out of the scope of this paper and is not needed for any of ourexamples.

Theorem 4.6 The �rst-order fragment of SQL/TP is expressively equivalent torange restricted two-sorted �rst order logic (temporal relational calculus).We can also express queries shown not to be expressible in TRA [7], e.g., thequery \is there a pair of distinct time instants, when exactly the same countrieswere independent?" [1, 20].4.3 Examples of QueriesIn this section we provide illustrative examples of SQL/TP queries. The exam-ples are chosen to highlight the ease and naturality of formulating queries inSQL/TP. In addition some of the examples, e.g., example 3, can not be easily(and correctly) be formulated in TSQL2 or its derivatives.1. The �rst example is a simple PSJ query \List all countries that were inde-pendent while Czech Kingdom was independent".select r1.namefrom indep r1, indep r2where r2.name = 'Czech Kingdom' and r1.year = r2.yearThis query is a simple PSJ query (a single select block). Note also that the resultis a standard non-temporal relation. The result of this query when evaluated overthe database from Example 3.2 is:name--------------------Czech KingdomPoland2. Formulating more complicated queries in SQL/TP, e.g., the query \List allyears when no country was independent", is easy and natural as well:(select t as year from true) except (select year from indep)The query is answered by complementation of the projection from the indeprelation. Note the use of the true pseudo-relation to achieve signature compat-ibility. The result of the query isyearmin yearmax-----------------------infinity 10241795 19171939 1939While the output|a concrete table containing all the periods when no countrywas independent|has two columns, it is essential to understand that it is only aconvenient and compact representation of an abstract table with a single columnYear.3. In addition to �rst-order queries, the aggregate operations in SQL/TP alsonaturally interact with the rest of the language, e.g., in the query \List allcountries that became independent before Slovakia":select namefrom indep, (select min(year) as y0from indep where name = 'Slovakia')where year < y0

The result is:name--------------------Czech KingdomCzechoslovakiaPoland4. SQL/TP also supports a natural way of aggregating over the temporal at-tributes: \For every country (that has been independent during the 20th century)list the number of years of independence within the 20th century"select name, count(year) as yearsfrom indepwhere 1900 <= year < 2000group by nameThe aggregation is made possible by the where clause: it restricts the otherwiseunbounded attribute year. The result is:name years------------------------------Czechoslovakia 67Czech Republic 7Poland 75Slovakia 11Note that in query languages with interval-valued temporal attributes we wouldhave to use a special syntactic construction to measure the size of the intervalsexplicitly.5. Moreover, SQL/TP supports grouping by temporal attributes: \For everyyear list the number of independent countries (if any)":select year, count(name) as numofc from indep group by yearThe result is:yearmin yearmax numofc---------------------------------1025 1197 11198 1620 21621 1794 11918 1938 21940 1944 11945 1992 21993 infinity 3This query is quite hard to ask in temporal query languages that use coalescingimplicitly: the input table is coalesced, and re-coalescing after the name columnis eliminated leads to loosing the duplication we want to compute.4.4 Database UpdatesBesides considering the query language, in a truly practical approach we alsoneed to address updates of temporal relations. We propose two constructs:insert [all] into R (<query>)delete [all] from R (<query>)

The updates have to preserve semantics with respect to the abstract temporaldatabases while manipulating only the concrete representation in a similar wayqueries do. The delete construction is more powerful than the SQL/92 version(as it handles duplication properly).5 Evaluation of SQL/TP StatementsStarting with this section we focus on the second and third results of the pa-per: the compilation technique for point-based temporal queries to equivalentrelational queries over interval-based concrete temporal databases. The subtlepoint here is that the resulting queries are e�cient : they may refer only to theactive domain of the given concrete database. This is not completely trivial asthe semantics of the original queries is de�ned with respect to abstract tempo-ral databases and a naive query evaluation procedure would indeed refer to allpoints in the active domain of the corresponding abstract temporal database|animmediate exponential blowup in the data complexity of the query evaluation.While most approaches to query evaluation in temporal databases take thepath of adding specialized temporal operations to a standard relational system,we take an alternative approach: we de�ne a translation procedure that allowsus to compile SQL/TP statements to standard SQL/92 statements. The trans-lation utilizes the quanti�er elimination procedure for linear order [21] to replacereferences to individual time instants in the queries with references to inter-val endpoints. In the rest of this section we give a sketch of the SQL/TP toSQL/92 translation. The translation is based on an extension of results in [19]to duplicate semantics and uses a nouveau normalization technique.5.1 Data De�nition LanguageThe translation of the data de�nition language statements is fairly simple: wemerely convert the abstract signature to its concrete counterpart. The SQL/TPstatement in Example 3.2 is translated to:create table indep (name char(20), yearmin Time, yearmax Time)where Time is a user de�ned type (UDT) for an integer like time. The data typeTime is equivalent to INTEGER10 extended with two special elements, �1 and1. We de�ne the successor and order for this new type by lifting the operationsfrom the INTEGER type.5.2 The SQL/TP QueriesThe crux of our approach lies in the translation of SQL/TP queries. The naturalcorrectness criterion is the preservation of query semantics. This requirement iscaptured by the following diagram:Abstract TDB k:k ����� Concrete TDB ����� Physical DB??yQSQL/TP ??yQ0SQL/92 = compile(Q) ??yeval(Q0)Abstract Relation k:k ����� Concrete Relation ����� Physical Relation10 Often we can take advantage of a built-in data type provided by the RDBMS (e.g.,DATE in DB/2).

We show that the proposed translation algorithm guarantees commutativity forthe left part of the diagram. The commutativity of the right part is backed upby the reliability of the used relational system. The rest of this section gives aproof to the following theorem:Theorem 5.1 Let D be a concrete temporal database and Q a SQL/TP query.Then Q(kDk) = k compile(Q)(D)k.Note that compile(Q) is executed at query compilation time|before the actualexecution over the temporal database begins. Thus it does not a�ect the datacomplexity of the query evaluation algorithm. Before we present the steps of thetranslation itself, we introduce three auxiliary de�nitions.The de�nition of SQL/TP queries requires the temporal attributes in thesignature of a query to be independent. However, it does not prevent us fromwriting queries whose subqueries do not share this property. To deal with suchattribute dependencies during the translation we introduce the notion of a con-ditional query :De�nition 5.2 (Conditional Query) Let Q be a SQL/92 query and ' aquanti�er-free formula in the language of linear order such that t is a free vari-able of ' if and only if tmin and tmax are temporal attributes in the signatureof Q. We call Qf'g a conditional query .While the translation algorithm uses the conditional queries to translate sub-queries of a SQL/TP query, the attribute independence of the top-level attributesguarantees that no such dependencies remain in the result of the translation.The second challenge lies in the de�nition of relational operators that preservesemantics over the interval-based encoding. For this purpose we introduce anouveau normalization technique. The idea behind the technique is quite simple:De�nition 5.3 Let fQ1; : : : ; Qkg be a set of SQL/92 queries with compatiblesignatures such that X a subset of their data attributes and t a temporal at-tribute. Q1; : : : ; Qk are t-compatible on X if for all concrete temporal databasesD and all 0 < i � j � k whenever two concrete tuples a 2 Qi(D) and b 2 Qj(D)such that �X (a) = �X (b) then the sets �ftg(kak) and �ftg(kbk) are identical ordisjoint. Q1; : : : ; Qk are time-compatible on X if Q1; : : : ; Qk are t-compatible onX for all temporal attributes t in the common signature.The de�nition of a time-compatible set of queries essentially says that if thedata portion of a tuple is related to an interval in Qi(D) and to another intervalin Qj(D), then it is always the case that these two intervals coincide or aredisjoint. This way we can guarantee the intervals behave like points with respectto set/bag operations (cf. Figures 2 and 3). This de�nition is non-trivial evenfor singleton sets of queries as the answers to queries are bags of tuples.It is also easy to see that we can de�ne a normalization operation that trans-forms a set arbitrary queries to a t-compatible set of (k:k-)equivalent queries.Moreover, this operation can be de�ned using a �rst-order query11:Lemma 5.4 Let fQ1; : : : ; Qkg be a set of SQL/92 queries with compatible sig-natures such that X a subset of their data attributes and t a temporal attribute.Then there are �rst-order queries NtX [Qi;Q1; : : : ; Qk] such that1. kQi(D)k = kNtX [Qi;Q1; : : : ; Qk](D)k for all concrete databases D.2. fNtX [Qi;Q1; : : : ; Qk] : 0 < i � kg are t-compatible on X .11 Similarly to coalescing; a native implementation of the normalization can often bemade more e�cient.

Attribute max(a) min(a) count(a) sum(a)data max(a) min(a) sum(c) sum(a � c)temporal max(amax) min(amin) sum(c) N/AFor every concrete tuple x in the table that the aggregation is applied to we letc = cnt'G(x). Note that the value of c is di�erent for every tuple in the originaltable. Fig. 1. Translation of Aggregate operations.To de�ne a time-compatible set of queries we use this lemma for all temporalattributes in the common signature. It is also easy to see that the normalizationoperation can be performed in O(n logn) where n is the combined size of theresults of Qi(D).The last obstacle is the translation of aggregate operations. To translate theaggregation operators correctly we need to know how many tuples are encodedby every single concrete tuple in the relation we aggregate over: we de�ne afunction cnt'G for this purpose: it tells us how many duplicates would be in thek:k-image of the result of projecting a concrete tuple on G after applying theselection condition �'. More formally:De�nition 5.5 Let E be an abstract signature, G � E, ' a quanti�er freeformula in the language of linear order over temporal variables in E �G, and xa concrete tuple in the signature E. Then cnt'G(x) = card(�'k�E�G(x)k).Note that cnt'G maps concrete tuples to natural numbers. However, if we useda dense model of time then cnt would be a measure on the sets of time instantsand could return non-integral counts, e.g., 1.5 years. For details on aggregationand measures see [10].Lemma 5.6 Given �xed E, G � E, and ', the function cnt'G can be de�nedusing an integer expression over the value of x.The cnt function operates on single tuples and thus contributes only a constantto the overall data complexity of queries.Now we are ready to proceed with the translation itself: every SQL/TP ex-pressionQ is translated to a set of conditional queries Q1f'1g; : : : ; Qnf'ng whilemaintaining the invariantQ(kDk) = �'1kQ1(D)k[: : :[�'nkQn(D)k: The trans-lation itself is de�ned inductively on the structure of the SQL/TP query.Translation of the Select Block. Consider the SQL/TP statement:select [all] X from E1; : : : ; En where ' group by Gwhere X is the set of attributes in the answer, Ei subqueries or base tablereferences, ' the selection condition, and G the set of grouping attributes. Inaddition, let A be the set of all aggregate expressions in X and E be the setof all attributes in E1; : : : ; En. We assume that we have already translated thesubqueries12 to Q1f'1g 2 compile(E1); : : : ; Qnf'ng 2 compile(En). We com-pose these partial results to get a set of conditional queries equivalent to theoriginal select block as follows (we proceed by translating every clause of theoriginal select block one by one):12 for the base tables we merely add a trivial condition true.

S: \a":\b": Ntfg[S;S]���������! \a":\b": ??y�SQL/92tmin;tmax�t(S): :S has data attribute x and a temporal attribute t. The boxes in the �gure rep-resent the t-x graphs of the involved tables. Similar technique is used for aggre-gation: it is easy to see that we could easily count duplicates on the normalizedrelation. Fig. 2. Projection with Duplicate Eliminationfrom E1; : : : ; En: For every Q1f'1g; : : : ; Qnf'ng the from clause gives us aSQL/92 query select E from Q1; : : : ; Qnf gwhere = '1 ^ : : : ^ 'n.where ': To apply the selection condition ' we need to determine the rela-tionships between the endpoints of intervals, the corresponding point-valuedattributes, and the selection formula. We use the quanti�er elimination pro-cedure for linear order to achieve this goal. Let Q(E)f g be the result of theprevious step. We de�ne 1 := QE(9T (^ ' ^ Vt2T(tmin � t � tmax))) 2 := QE(9T (^ ' ^ Vt2T(tmin � t � tmax)))where T is the set of all temporal attributes in E (encoded by intervals), Tis the set of all attributes except those in T and constants, and QE is thequanti�er elimination procedure for linear order. Now we de�neselect E from Q where 1f 2gto be the result of applying the original where clause on Qf g.group by G: To apply grouping we �rst normalize the result of the previousstep with respect to the attributes in G. Then we use the standard SQL/92grouping construction (cf. Figure 2). Let Q(E)f g be the result from theprevious step. As the attributes in G and E � G are independent we cansplit to 1 involving only attributes in G and 2 involving only attributesin E �G. We generateselect G;A from NG[Q;Q] group by Gf 1gNote that the aggregates in A have to be transformed using Lemma 5.6applied on E, G, and 2.selectX: The translation of the �nal projection depends on the use of du-plicate preserving vs. duplicate-eliminating projection. Let Q(E)f g be theresult from the previous step.

S1: \a":\b": Ntfxg[S1;S1;S2]���������! \a":\b":S2: \a":\b": Ntfxg[S2;S1;S2]���������! \a":\b": ??y exceptSQL/92S1except S2: \a":\b":Fig. 3. Set Di�erence using Normalization.{ for select queries we get select distinct X from NX [Q;Q]f g and{ for select all queries we get select X from Qf gNote that only queries that use aggregation or duplicate elimination use theN operation.For each of these steps we can easily verify that the transformation invariant ispreserved. Moreover, in the actual implementation the subqueries generated bythe above four steps are merged into as few nested blocks as possible, e.g., the�rst two steps can be always merged into a single select block, etc.Translation of the Set Operations. The translation of the set operations followssimilar pattern to the translation of the duplicate elimination: we need to �ndconditions under which the set operations on the encoding are equivalent toset operations on the abstract relations. Clearly a direct use of SQL/92 setoperations does not preserve the semantics of SQL/TP queries.Lemma 5.7 Let Q1; Q2 be two SQL/92 queries with a common signature andtime-compatible on the set of all their data attributes. Then kQ1k op kQ2k =kQ1 opQ2k where op is one of the union [all], except [all], or intersect[all].The above lemma is extended to conditional queries as follows: Let Qif'ig 2compile(Q) for i 2 I , Rjf jg 2 compile(R) for j 2 J , and X the set of dataattributes in the common signature. ThenQ unionR 7! fQif'i ^ :Wj2J jg; Rjf j ^ :Wi2I 'ig; Q0i union R0jf'i ^ jggQ exceptR 7! fQif'i ^ :Wj2J jg; Q0i except R0jf'i ^ jggQ intersectR 7! fQ0i intersect R0jf'i ^ jggwhere Q0i = NX [Qi;Qi; Rj] and R0i = NX [Rj ;Qi; Rj]. We can omit the normal-ization for the union operation. The duplicate-preserving operations are trans-formed analogously.The result of the translation can unfortunately be exponential in the depth ofnesting of the original query. Note that this does not a�ect the data complexity ofthe query evaluation as the translation is performed at compile time. Moreover,for large class of queries we can show:Theorem 5.8 Let Q be a query composed of attribute independent subquerieswith size at most k for a �xed constant k 2 N . Then j compile(Q)j 2 O(jQj).

Thus allowing small subqueries to violate the attribute independence require-ment does not matter. Using this result we can show that, e.g., the �rst-ordertemporal logic queries can be e�ciently translated to SQL/TP: all the tempo-ral operators can be translated into small �xed-size subqueries and views withexactly one temporal attribute [3]. Similar result holds for all TRA [7] basedlanguages.6 ConclusionWe have shown that a high-level point-based approach to temporal extensions ofSQL has many advantages over the common approaches that use interval-basedattributes: simple syntax and semantics, meaningful aggregation, and possibil-ities of advanced query optimization. All this is achieved while maintaining ef-�cient query evaluation over temporal databases based on interval encoding oftimestamps. We have also shown that all representation independent TSQL2queries are expressible in SQL/TP (follows from [19]).Future Work. Our proposal is only a �rst step towards an implementation ofSQL/TP on top of an ordinary RDBMS systems. There are still many openquestions:{ Can we use more complex temporal domains? In our proposal we used adiscrete linear order with a limited way of counting. Is it possible to usericher temporal domains while maintaining the properties of the proposedlanguage? What are the tradeo�s?{ We have chosen an interval-based encoding of sets of time instants in theconcrete data model. While this encoding can compactly describe periods oftime, it fails, e.g., for periodic events. Is it possible to extend the encodingscheme and this way to enlarge the class of �nitary temporal databases?{ What optimization techniques can be used in conjunction with our querytranslation procedure?{ How do we perform updates e�ciently? The area of updates presents a com-pletely new set of problems, the main problem being the in-place updates ofthe encoded temporal relations. This problem goes hand in hand with de�n-ing various normal forms [6, 19] of temporal relations and enforcing themover updates13.{ Can the standard indices built-in relational systems aid the query evalua-tion based on the proposed compilation technique? What are the tradeo�scomparing to specialized indices?Note that there are few answers to these questions even for the established tem-poral query languages like TSQL2 or SQL/Temporal. Note also that our tech-nique allows us to reuse most of the e�orts aimed towards boosting performanceof temporal DBMS, e.g., the development of e�cient temporal and spatial joins,and sophisticated access methods.13 In this paper we did not assume any particular normal form for the temporal rela-tions.

References1. Abiteboul, S., Herr, L., Van den Bussche, J. Temporal versus First-Order Logic toQuery Temporal Databases. Proc. ACM PODS 1996, 49{57, 1996.2. Allen, J. F. Maintaining knowledge about temporal intervals. Communications ofthe ACM, 26(11):832{843, 1983.3. Bohlen, M. H., Chomicki, J., Snodgrass, R. T., Toman, D. Querying TSQL2 Da-tabases with Temporal Logic. In Proc. EDBT'96, LNCS 1057, 325{341, 1996.4. B�ohlen, M. H., Jensen, C. S. Seamless Integration of Time into SQL. University ofAalborg, http://www.cs.auc.dk/ boehlen/Software/Tiger/atsql.ps.gz, 1996.5. B�ohlen, M. H., Jensen, C. S., Snodgrass, R. T. Evaluating and Enhancing the Com-pleteness of TSQL2. Technical Report TR 95-5, Computer Science Department,University of Arizona, June 1995.6. B�ohlen, M. H., Snodgrass, R. T., Soo, M. D. Coalescing in Temporal Databases.Proc. 22nd Int. Conf. on Very Large Databases, 180{191, 1996.7. Cli�ord J., Croker A., Tuzhilin A. On Completeness of Historical Relational QueryLanguages. ACM Transactions on Database Systems, Vol. 19, No. 1, 64{116, 1994.8. Codd, E. F. Relational completeness of database sublanguages. In Rustin, R.(ed.)Courant Computer Science Symposium 6: Data Base Systems, 65{98, Prentice-Hall, 1972.9. Chomicki J. Temporal Query Languages: a Survey. Proc. International Conferenceon Temporal Logic, July 1994, Bonn, Germany, Springer-Verlag (LNAI 827), 506{534.10. Chomicki, J., Kuper, G. M. Measuring In�nite Relations. Proc. ACM PODS 1995,78{85, 1995.11. Chomicki, J., Goldin, D. Q., Kuper, G. M. Variable Independence and AggregationClosure. Proc. ACM PODS 1996, 40{48, 1996.12. Date, C. J., Drawen, H. A Guide to the SQL Standard (3rd ed.), Addison{Welsley,1993.13. IBM Database 2, SQL Reference for common servers. IBM Corp., 1995.14. Jensen, C. S., Snodgrass, R. T., Soo, M. J. Uni�cation of Temporal Data Models.Proc. 9th Int. Conf. on Data Engineering , 262{271, 1993.15. Kanellakis, P. C., Kuper, G. M., Revesz, P.Z . Constraint Query Languages. Jour-nal of Computer and System Sciences 51(1):26-52, 1995.16. Snodgrass R. T. The Temporal Query Language TQuel. ACM Transactions onDatabase Systems, 12(2):247{298, June 1987.17. Snodgrass R.T. (editor). The TSQL2 Temporal Query Language. Kluwer AcademicPublishers, 674+xxiv pages, 1995.18. Snodgrass, R. T., B�ohlen, M. H., Jensen C. S., Steiner, A. Adding Valid Time toSQL/Temporal, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2 21/11/96, (changeproposal).19. Toman, D. Point-based vs. Interval-based Temporal Query Languages Proc. ACMPODS 1996, 58{67, 1996.20. Toman, D., Niwinski, D. First-Order Temporal Queries Inexpressible in TemporalLogic Proc. EDBT'96, Arpes, Bouzeghoub (eds.), LNCS 1057, 307{324, 1996.21. Williams, H. P. Fourier{Motzkin Elimination Extension to Integer ProgrammingProblems. In Journal of Combinatorial Theory (A) 21, 118-123, 1976.22. Kabanza, F., Stevenne, J.-M., Wolper, P. Handling In�nite Temporal Data. JCSS51(1): 3-17, 1995.This article was processed using the LATEX macro package with LLNCS style

