A Point-based Temporal Extension of SQL

David Toman*

Department of Computer Science, University of Toronto
Toronto, Ontario M5S 1A4, Canada
david@cs.toronto.edu

Abstract. We propose a new approach to temporal extensions of SQL.
Unlike the current proposals, e.g., SQL/Temporal, we use point-based
references to time as the basis of our approach. The proposed language—
SQL/TP—extends the syntax and semantics of SQL/92 in a very natural
way: by adding a single data type to represent a linearly ordered universe
of individual time instants. Such an extension allows the users to write
temporal queries in customary fashion and vastly simplifies the semantics
of the proposed language: we merely use the familiar SQL semantics. In
this way SQL/TP also fixes many problems present in the semantics of
the temporal query languages based on explicit interval-valued temporal
attributes. In addition, we propose an efficient query evaluation proce-
dure over a compact interval-based encoding of temporal relations. The
algorithm is based on a sophisticated compilation technique that trans-
lates SQL/TP queries to SQL/92. In this way existing database systems
can be used for managing temporal data. We substantiate this claim by
proposing an experimental version of a SQL/TP compiler to serve as a
front-end for DB2' [13].

1 Introduction

A large amount of database research is directed towards the limitations of the
classical relational model and on ways to overcome these limitations. The fruits
of this research are slowly finding their place in the mainstream commercial sys-
tems, e.g., through new SQL standards. The major developments in this area are,
e.g., the introduction of deductive features or the object-relational extensions of
the relational model. While the first extension is aimed on overcoming limita-
tions in expressive power of relational queries, the second approach is directed
towards handling interpreted data (rather than mere uninterpreted constants).
In this paper we propose a different approach to introducing interpreted data
into the relational model. We also propose a sophisticated compilation technique
that allows us to handle such an extension in a standard relational system. While
we are mostly concerned with adding temporal capabilities, the proposed tech-
nique can be extended to other interpreted domains of data, e.g., spatial data.
We address the following issues:

— We show both theoretical and practical reasons, why the current proposals
of temporal extensions of SQL are inadequate.

— We show that there is a simpler and more natural temporal extension of
SQL based on a point-based view of time.

* This research was supported by a NATO/NSERC PDF fellowship, 1996-98.
! DB2 is a trademark of IBM Corp.

— We propose a query execution model for our language that allows effi-
cient query evaluation over temporal databases encoded using interval-based
timestamps.

The three main technical contributions of this paper are: (1) the definition of
a representation-independent temporal extension of SQL: we decouple the syn-
tax of the language from the underlying data representation while preserving
SQL’s semantics: we support both set- and duplicate-based semantics including
aggregation, (2) a query compilation technique for such an extension that al-
lows SQL/TP queries to be efficiently evaluated using a standard RDBMS, and
(3) the definition of nouveau normalization technique that facilitates evaluation
of temporal queries over an interval-based encoding of timestamps. We would
also like to note at this point that a naive direct compilation technique fails to
achieve efficient query evaluation.

The rest of the paper is organized as follows: Section 2 explains the shortcom-
ings of the current proposals of temporal extensions of SQL and sketches out the
solution. Section 3 introduces the temporal data model: the abstract and con-
crete (interval-based) temporal databases (following the terminology introduced
in [9]). Section 4 defines the syntax and semantics of SQL/TP and gives exam-
ples of temporal queries. Section 5 gives a sketch of the proposed compilation
technique. The paper is concluded with several open questions and directions of
future research.

2 Why another temporal extension of SQL?

The last decade of research in temporal databases has led to the development
of several temporal query languages based on extensions of existing relational
languages, e.g., TQUEL [16] or various temporal extensions of SQL, most promi-
nent of which are TSQL2 [17] and its variants: ATSQL2 [5] and the current
proposal of temporal extension of SQL3 to the ISO and ANSI standardization
committees—SQL/Temporal [18].

2.1 Current Proposals

All the current proposals recognize that timestamping ordinary tuples with sin-
gle time instants leads to enormous space requirements: a tuple would have to
be repeated for every time instant at which the fact represented by the tuple
holds. Instead, compact encodings of sets of time instants (often called periods
of validity) associated with a tuple are encoded using intervals [16, 18], bitem-
poral elements [4, 14], or other fixed-dimensional products of intervals (hyper-
rectangles). The chosen encoding then provides a domain of values for temporal
attributes.

However, in all the above approaches, the explicit access to the interval-
based encoding of timestamps in temporal relations leads to a tension between
the syntax and the intended semantics of the languages, specifically:

— References to time are realized using temporal attributes ezplicitly referring
to intervals (or some other particular encoding of timestamps).

— The data model and the semantics are point-based [4, 9]: the intervals are
used merely as compact descriptions of large sets of time instants (even in
cases when one of the various duplicate semantics is used).

This conflict leads to many unpleasant surprises, especially when multiple tem-
poral dimensions are needed to evaluate a given query (e.g., when the query
simultaneously references two distinct points in time in an essential way). Most
importantly, it is easy to show examples of queries whose answers depend on
the choice of the particular encoding rather than on the underlying meaning, cf.
Example 2.1 below. In addition, it is extremely hard to avoid such a behavior
in an elegant way, and the actual semantics of these languages tend to be very
cumbersome (if they exist at all). In many cases uniqueness of answers can only
be guaranteed by operational means, e.g., by prescribing a particular evalua-
tion order. Moreover, duplicate semantics and results of aggregation operations
in such languages also inherently depend on the chosen encoding. Consider the
following situation:

Example 2.1 Let D be a temporal relation (or an answer to a temporal query)
that represents the region in the figures below.

(1) (2) (3)

It is important to understand that all the figures represents the same relation.
However, it is also clear that we can distinguish (2) and (3) using a first-order
query in, e.g., SQL/Temporal. We call such queries representation dependent.
Moreover, even very simple queries, e.g., counting the number of regions along
the axes, give different results depending on the particular representation.

In the rest of this section we argue that the situation in Example 2.1 naturally
arises during evaluation of first-order temporal queries.

First, we argue that a single temporal dimension is not sufficient to formu-
late general temporal queries. Consider the query “are there two distinct time
instants when a given relation contains exactly the same tuples?” [1] and [20]
have independently shown that this query cannot be formulated in first-order
temporal logic. A direct corollary of this result is that this query cannot be ex-
pressed in any single-dimensional temporal relational algebra®. Moreover, [20]
shows that to express all first-order queries the number of temporal dimensions
cannot be bounded by any constant. Therefore, multiple temporal dimensions
cannot be avoided during the bottom-up evaluation of temporal queries even if
the final result is a single-dimensional temporal relation or boolean [20]. This
fact, combined with the use of explicit interval-valued temporal attributes, leads
directly to situations similar to Example 2.1.

Now it is easy to see why the coalescing-based approaches fail to guarantee
representation independence: To guarantee fixed size of tuples in a temporal
relation the region (1) in Example 2.1 has to be represented by a finite union
of rectangles, e.g., using the representation (2) or (3) above. While both (2)
and (3) are coalesced, they can still be distinguished by a first-order query with
interval-valued temporal attributes. Moreover, this problem cannot be avoided
using a different normal form as there is no unique coalescing-based normal form
for dimension higher than one (for detailed discussion of coalescing see [6]).

In addition, in many cases the user has no control over the representation of
the intermediate results since the coalescing is performed by the system implic-

2 A relational algebra over the universe of single-dimensional temporal relations.

itly. While coalescing in a single-dimensional system facilitates representation
independent formulation of queries, with two or more temporal dimensions it
leads to serious problems: the user has no knowledge if the region (1) in Ex-
ample 2.1 is going to be represented as (2) or (3) during the query evaluation.
However, results of queries depend on this information.

2.2 Our Proposal

The above problems are inherent to most of the temporal query languages with
temporal attributes ranging over intervals. Therefore we follow a different path
to avoid all of the above problems: we let the temporal attributes in our language
range over single time instants. In this way our approach separates an abstract
query language—SQL/TP—defined over a clean model of point-based linearly
ordered time from the concrete interval-based encoding of timestamps which is
hidden from the user. The approach is based on several recent results in the
area of temporal and constraint query languages [1, 15, 19, 20]. In addition, a
we define a meaningful approach to duplicate semantics and aggregation that is
independent of the particular encoding (using the results in [10, 11]).

While we mostly concentrate on evaluation of temporal queries over the
interval-based encoding of time, conforming to the above principles allows us to
use different encoding for sets of time instants, e.g., the linear repeating points
[22] for periodic events, without the need for new syntax and semantics. In ad-
dition our proposal meets the following requirements:

— SQL/TP can be efficiently implemented on top of an interval-based represen-
tation of temporal databases: the performance of a SQL/TP system should
be comparable to performance of SQL/Temporal based DBMS on a vast
majority of representation independent queries.

— SQL/TP statements can be compiled to standard SQL/92% [12]; the trans-
lated queries can be evaluated using an off-shelf database system. This way
we can build a SQL/TP front-end to an existing RDBMS and provide tem-
poral capabilities without modifying the underlying database system itself.

— SQL/TP can express all representation independent SQL/Temporal queries.
Moreover, SQL/TP is complete in the sense of [8]. The results in [1, 20] show
that this is not the case for any of the temporal query languages based on a
fixed-dimensional temporal relational algebra, e.g., [7]; this issue is not clear
for TSQL2-derived languages [5, 17, 18].

— Our language can be easily extended to support the migration requirements
[18] that require several levels of temporal upward compatibility with SQL.
While SQL/TP itself does not literally follow all the requirements, the com-
patibility can be easily achieved using a very simple syntactic manipulation
of the source queries and adding tags to distinguish the particular compati-
bility modes.

Before we start the technical part of the paper, we would like to reiterate (to
avoid any misunderstanding) that we are interested in intervals as a physical
encoding of sets on time instants. This is very different from the approaches

3 Other relational languages can be used as well, provided they have sufficient expres-
sive power.

taken in the various interval logics [2], where intervals represent points in a
two-dimensional (half-)space. However, due to the natural multidimensionality
of SQL/TP, we can represent the true intervals using pairs temporal attributes.

3 The Data Model for Temporal Databases

We start with the definition of the underlying data model: the domain of time
is viewed as a discrete* countably infinite linearly ordered set without endpoints
(e.g., the integers). The individual elements of the set represent the actual time
instants while the linear order represents the progression of time. The actual
granularity of time is implementation-dependent®. Besides the data type for the
time instants we also use all the other data types defined in standard SQL:
strings, integers, floats, etc. As usual, these data types do not have an a-priori
assigned interpretation. We summarily refer to those data types as the uninter-
preted constants.

The relationships between the time instants and the uninterpreted constants
are captured in a finite set of temporal relations stored in the database. Following
the terminology of [9] we distinguish the abstract temporal databases from the
concrete temporal databases:

Definition 3.1 (Abstract Temporal Database) A signature of a predicate
symbol R is a tuple (a; : t1,...,ax : tx) where a; are distinct attribute names,
t; the corresponding attribute types, and k the arity of R. Attributes of type
time are temporal attributes, the remaining attributes are data attributes. A
database schema is a finite set of relational symbols Ry, ..., Ry paired with their
signatures. An abstract temporal database is a set of tables defined by a database
schema.

In general we do not restrict the cardinality of the abstract temporal tables: we
allow infinite tables as well. However, in order to define meaningful operations
on the tables we require that the number of occurrences (duplicates) is finite for
every distinct tuple.

Example 3.2 In the rest of the paper we use an abstract temporal database
with the schema {indep(Name, Year)} as a running example. The particular
instance of the indep relation we use in our examples captures independence of
countries in Central Europe:

indep . e
Name Year| |Czech Kingdom [1198| |Czech Republic {1995
e e Czech Kingdom (1620 |- -- -
Poland 1794| |Czechoslovakia |1918 Slovakia 1940
e e Czechoslovakia (1938 Slovakia 1944
Poland 1938 Czechoslovakia (1945 Slovakia 1993
N .- Czechoslovakia (1992

We do not impose any restrictions on the number of temporal attributes in
relations (unlike, e.g., TSQL2 [17]). Indeed, in general we may want to record

% A dense linearly ordered time can be used with only a minor adjustment.
5 For our purposes any fixed granularity will do.

relationships between different time instants as well as relationships between
tuples of uninterpreted constants and a single time instant.

The abstract temporal databases provide a natural data model for modelling
and querying temporal data. However, it would be impractical (and often impos-
sible) to store the temporal databases as plain bags of their tuples: a particular
tuple is often related to a large and possibly infinite set of time instants. Rather
than storing all these tuples one by one, we use a compact encoding of sets of
time instants. The choice of a particular encoding—in our case the interval-based
encoding—defines the class of concrete temporal databases:

Definition 3.3 (Concrete Temporal Database) Let R be a relational sym-
bol with signature E. A concrete signature corresponding to F is defined as a
tuple of the attributes that contains (1) a for every data attribute a € E and (2)
imin and ¢max for every temporal attribute ¢ € E. The attributes {min and tmax
denote endpoints of intervals. We denote the concrete signature of R by F. A
concrete temporal database schema corresponding to a given abstract database
schema is a set of relation symbols and their concrete signatures derived from
the signatures in the abstract database schemaS. A concrete temporal database
is a set of finite relations defined by a concrete database schema.

To capture the relationship between an abstract and a concrete temporal da-
tabase we define a semantic mapping that maps a concrete temporal database
to its meaning—an abstract temporal database. The meaning of a single con-
crete tuple x = (tmin, tmax, aq,...,a) is a bag of tuples ||x|| = {(t,a1,...,ax) :
tmin < t < tmax}; analogously for tuples with multiple temporal attributes. The
meaning ||R|| of a concrete relation R is the duplicate preserving union of ||x|| for
all concrete x € R. We say that R encodes |R||. We extend the ||.|| to concrete
temporal databases in a natural way.

The encodes function also defines a subset of the abstract temporal databa-
ses that can be encoded using concrete temporal databases. We call this subset
the finitary temporal databases. Note that the encoding is not unique and thus
two distinct concrete temporal databases often encode the same abstract tem-
poral database (cf. Example 2.1). We call such concrete temporal databases
(I]-II-)equivalent.

Example 3.4 The database instance from Example 3.2 is infinite. However, it
is finitary: it can be encoded by the following concrete temporal database:

indep -

Name Yearmin. .. Yearmax Slovakia 1940...1944
Czech Kingdom| 1198 ... 1620 Slovakia 1993... o
Czechoslovakia | 1918 ... 1938 Poland 1025...1794
Czechoslovakia | 1945 ... 1992 Poland 1918...1938
Czech Republic| 1993 ... oo Poland 1945...

All queries in the rest of the paper are evaluated over this database while pre-
serving answers with respect to the original relation in Example 3.2.

4 The Language SQL/TP

In this section we define the syntax and semantics of SQL/TP. This includes the
data definition, data query, and data manipulation parts of the language. In all

6 We use the same names for both the abstract and concrete relations. The actual
meaning of the symbol is always clear from the context.

three cases we show that SQL/TP is a natural syntactic extension of SQL over
the abstract temporal databases. Moreover, the proposed semantics of SQL/TP
is essentially identical to the semantics of SQL (safely) extended to potentially
infinite tables.

4.1 Data Definition Language

We start with the Data Definition Language: it is essentially identical to standard
SQL/92:

create table <rid> (<signat>)

create view <rid> (<query>)

where <rid> is a table identifier and <signat> is a signature of the new table.
For views the signature is derived from the signature of the <query> expression
(cf. Section 4.2). The only difference is that the temporal attributes are declared
using a new data type time that supports modifiers to determine how the time
instants are stored in a concrete temporal table:

using points: The time instants are stored as atomic values similarly to all
other data types. This choice is suitable for representing single atomic events
that happen at a specific time instant, e.g., when a particular tuple was
inserted into the database.

using [bounded | unbounded] intervals: Continuous sets of time instants
associated with a particular data tuple are encoded using intervals. This en-
coding is suitable for representing durations of events, e.g., the valid time of a
fact (which in reality is often an interval). The bounded and unbounded key-
words specify if the —oco and co may be used as endpoints of intervals. This
choice affects, e.g., what aggregate operations are allowed for that particular
attribute; cf. Section 4.2.

It is important to understand that these modifiers affect only the way the table
is stored, not the semantics of the queries (similarly to specifying, e.g., a sort
order or a key for the table).

In the future this list may grow to accommodate different encodings. The
modifiers are the only place in SQL/TP where the syntax reflects the chosen
encoding. The default modifier unbounded time is assumed for all temporal
attributes unless explicitly stated otherwise.

Example 4.1 The table indep in Example 3.2 can be created as follows:

create table indep (name char(20),
year time using unbounded intervals)

In the rest of the paper we discuss only the interval-based encodings; encoding
time instants by points does not introduce any problems over the traditional data
types. In addition we assume the time instants can be represented by integers
(using a fixed granularity) and we allow integer-like operations on the new data
type so we do not get lost in superfluous syntax.

4.2 The Query Language

For sake of simplicity we discuss only a syntactic subset of full SQL/TP. This fact
does not affect the generality of our proposal: it is an easy exercise to show that

the proposed fragment forms a (first-order) complete query language [8]. More-
over, all representation independent SQL/Temporal queries, including queries
with aggregation and universal subqueries, can be equivalently formulated in
this fragment.

Syntax. The chosen syntactic subset of SQL/TP uses two basic syntactic con-
structs:

Select block. Similarly to the standard SQL the select block is the main building
block of our query language. It has the usual form

select <slist> [from <flist>] [where <cond>] [group by <glist>]
where

<slist>is a list of attribute identifiers, constants, and (aggregate) expressions
with the possibility of renaming the output column using <sexp> as <id>",

<flist> is a sequence of relation identifiers or subqueries, again with the usual
possibility of assigning correlation names,

<cond> is a selection condition built from atomic conditions using boolean
connectives. The atomic conditions depend on the data types of the involved
attributes: in the case of temporal attributes we allow conditions of the form
<id> op <id>+ C where op € {<,<,=,>,>}, and C a constant denoting
a length of a time period, and

<glist>is a list of attribute identifiers that specifies how the result of the select
block is grouped. The usual SQL rules that govern the grouping operations
apply here as well.

We extend the definition of signature to SQL/TP expressions: The signature of
an expression is tuple of names of attributes in the resulting table paired with
their data types (including the modifiers).

Set Operations. Besides nesting queries in the from clause of the select block we
can combine the individual select blocks using set operations as follows:

(<exp>) <setop> (<exp>)

where <setop> is one of the union (set union with duplicate elimination),
union all (additive union), except (set difference with duplicate elimination),
except all (monus), intersect (set intersection with duplicate elimination),
and intersect all (duplicate preserving intersection). We require the signa-
tures of both the expressions to match®. The resulting signature is the common
signature of the expressions involved in the operation.

The proposed syntax omits two common SQL constructs: subqueries nested in
the where clause and the having clause. Both these constructs can be expressed
in the presented fragment using nesting in the from clause of the select block
and can be considered to be a syntactic sugar.

" The columns defined using expressions or aggregation have to be given a name this
way.

8 SQL only requires the types to match. However, we require both the names of the
attributes and their types to match. This is not a restriction as the renaming can be
conveniently done within the select clauses.

To achieve signature compatibility for temporal attributes we allow the use
of a special constant pseudo-relation true(t: time) true for all elements of the
temporal domain. This relation allows us to pad the attribute lists involved in
the set operations (cf. Section 4.3) and to express, e.g., the complementation
over the temporal domain.

Semantics. SQL/TP is essentially SQL/92 extended with an additional data
type time. The main feature of such an extension is that we can use the familiar
SQL-like semantics over the class of the abstract temporal databases. This way we
completely avoid all the problems connected with representation dependencies.
Also, changes in the chosen encoding do not affect the syntax and semantics of
queries.

However, we have to be careful when extending relational operations to in-
finite tables: we have to ensure that we never produce tables with infinite du-
plicates of a single tuple. It is easy to see that all the relational operations,
with the exception of duplicate preserving projection, meet this requirement.
However, the duplicate-preserving projection can produce such tables, e.g.:

{(“Poland”, [1945, oo])} 14 {(“Poland”, n) : n > 1945}
24 {(“Poland”), ..., (“Poland”),...}

The result of the projection contains infinite duplication of the tuple (“Poland”).
This cannot be allowed as other relational operators, e.g., the bag difference, are
not well defined over such tables.

Closure over Interval-based Concrete Databases. While the above re-
striction guarantees a well defined semantics, it is too weak to guarantee closure
of SQL/TP queries over the chosen class of concrete temporal databases. The
main source of problems are the order dependencies among temporal attributes.
Consider the following example:
Example 4.2 Tt is easy to find SQL/TP expressions that do not preserve clo-
sure over the class of finitary abstract temporal databases. Consider the expres-
sion:
Q: select rl.name as name, rl.year as tl, r2.year as t2
from indep r1, indep r2
where ril.name = r2.name and ril.year < r2.year

The attributes t1 and t2 are correlated by an inequality t1 < t2 in the result
of the query:

{(“Poland”, 1945, 1946), (“Poland”, 1945, 1947),. . . ,(“Poland”, 1945, 1950), . ..
(“Poland”, 1946, 1947),. .. ,(“Poland”, 1946, 1950), . ..

(“Poland”, 1949, 1950), ...}

Obviously the triangle-like result can not be described by a product of intervals.
To avoid this problem we use the notion of attribute independence. Rather than
a semantic definition of attribute independence [11] we use a syntactic inference
system to detect attribute independence in a SQL/TP expression:

Definition 4.3 (Attribute Independence) Let ¢; and ¢2 be two temporal
attributes in the signature of a SQL/TP expression exp. We say that ¢; and ¢,
are independent in exp if

1. exp is a base relation,

2. exp is a select block, t; and ¢» are names of] and ¢}, assigned in the select
clause, t] and t} are independent in all expressions in the from list, and an
order relationship between #] and #, is not implied by the where clause.

3. exp is (el) setop (e2) and t; and ¢, are independent in both el and e2.

In addition all data attributes (and point temporal attributes) are mutually
independent.

For similar reasons we restrict the use of aggregate operations: we require the
aggregated attribute to be independent of the group by attributes [10].

In addition we also restrict the use of duplicate-preserving projection on all

temporal attributes encoded by intervals. We have already seen that duplicate-
preserving projection is not possible for unbounded data types. On the other
hand, for bounded data types we could implement the duplicate preserving pro-
jection by creating the appropriate number of copies of the remainder of a tuple.
However, such an operation would make the query evaluation very inefficient
and almost certainly unusable in practice. Consider the following example:
Example 4.4 Let R(z,t) = {(a,[0,2™ — 1])} be a concrete temporal relation
where n is a large integer. Clearly the size of R (in bits) is |a| + n. However, the
size of m,(R) is 2™ - |a| as the result of duplicate preserving projection has to
contain 2" tuples (a).
Allowing such projections would cause an exponential blowup in the (space)
complexity of query evaluation. Note that the duplicate preserving projection is
used in SQL for two main reasons: (1) to avoid duplicate elimination or (2) to
facilitate correct aggregates. The first use does not apply to SQL/TP—we deal
with redundant duplicate elimination in the optimization phase of our compi-
lation procedure. The aggregates are handled using a rewriting technique that
allows us to avoid the duplicate-preserving projections®. This way we can evalu-
ate a vast majority of representation-independent aggregate queries even under
the above restriction: note that all other relational operations preserve duplicates
(cf. Section 4.3). Therefore we exclude the duplicate-preserving projections of all
temporal attributes encoded by intervals in order to maintain the polynomial
complexity bound.

We define the SQL/TP queries to be the subset of SQL/TP expressions
obeying the above rules. It is easy to verify that all SQL/TP queries preserve
closure over the class of finitary temporal databases:

Theorem 4.5 Let D be a finitary database and QQ a SQL/TP query. Then Q(D)
is finitary.

The requirement of attribute independence seems like a rather severe restriction.
However, the independence is required only for the temporal attributes present in
the signature of the top-level query, not for all temporal attributes that appear
in the query. All the representation-independent TSQL2 queries, and all first
order queries with a single temporal attribute in their signature in general, can
be expressed as SQL/TP queries.

9 This technique is out of the scope of this paper and is not needed for any of our
examples.

Theorem 4.6 The first-order fragment of SQL/TP is expressively equivalent to
range restricted two-sorted first order logic (temporal relational calculus).

We can also express queries shown not to be expressible in TRA [7], e.g., the
query “is there a pair of distinct time instants, when exactly the same countries
were independent?” [1, 20].

4.3 Examples of Queries

In this section we provide illustrative examples of SQL/TP queries. The exam-
ples are chosen to highlight the ease and naturality of formulating queries in
SQL/TP. In addition some of the examples, e.g., example 3, can not be easily
(and correctly) be formulated in TSQL2 or its derivatives.

1. The first example is a simple PSJ query “List all countries that were inde-
pendent while Czech Kingdom was independent”.

select rl.name

from indep rl, indep r2

where r2.name = ’Czech Kingdom’ and rl.year = r2.year

This query is a simple PSJ query (a single select block). Note also that the result
is a standard non-temporal relation. The result of this query when evaluated over
the database from Example 3.2 is:

name

Czech Kingdom

Poland

2. Formulating more complicated queries in SQL/TP, e.g., the query “List all
years when no country was independent”, is easy and natural as well:

(select t as year from true) except (select year from indep)

The query is answered by complementation of the projection from the indep
relation. Note the use of the true pseudo-relation to achieve signature compat-
ibility. The result of the query is

yearmin yearmax
-infinity 1024
1795 1917

1939 1939

While the output—a concrete table containing all the periods when no country
was independent—has two columns, it is essential to understand that it is only a
convenient and compact representation of an abstract table with a single column
Year.

3. In addition to first-order queries, the aggregate operations in SQL/TP also
naturally interact with the rest of the language, e.g., in the query “List all
countries that became independent before Slovakia”:
select name
from indep, (select min(year) as yO
from indep where name = ’Slovakia’)
where year < yO

The result is:
name
Czech Kingdom
Czechoslovakia
Poland

4. SQL/TP also supports a natural way of aggregating over the temporal at-
tributes: “For every country (that has been independent during the 20th century)
list the number of years of independence within the 20th century”

select name, count(year) as years

from indep

where 1900 <= year < 2000

group by name
The aggregation is made possible by the where clause: it restricts the otherwise
unbounded attribute year. The result is:

name years
Czechoslovakia 67
Czech Republic 7
Poland 75
Slovakia 11

Note that in query languages with interval-valued temporal attributes we would
have to use a special syntactic construction to measure the size of the intervals
explicitly.

5. Moreover, SQL/TP supports grouping by temporal attributes: “For every
year list the number of independent countries (if any)”:

select year, count(name) as numofc from indep group by year
The result is:

yearmin yearmax numofc
1025 1197 1
1198 1620 2
1621 1794 1
1918 1938 2
1940 1944 1
1945 1992 2
1993 infinity 3

This query is quite hard to ask in temporal query languages that use coalescing
implicitly: the input table is coalesced, and re-coalescing after the name column
is eliminated leads to loosing the duplication we want to compute.

4.4 Database Updates
Besides considering the query language, in a truly practical approach we also
need to address updates of temporal relations. We propose two constructs:

insert [all] into R (<query>)
delete [all] from R (<query>)

The updates have to preserve semantics with respect to the abstract temporal
databases while manipulating only the concrete representation in a similar way
queries do. The delete construction is more powerful than the SQL/92 version
(as it handles duplication properly).

5 Evaluation of SQL/TP Statements

Starting with this section we focus on the second and third results of the pa-
per: the compilation technique for point-based temporal queries to equivalent
relational queries over interval-based concrete temporal databases. The subtle
point here is that the resulting queries are efficient: they may refer only to the
active domain of the given concrete database. This is not completely trivial as
the semantics of the original queries is defined with respect to abstract tempo-
ral databases and a naive query evaluation procedure would indeed refer to all
points in the active domain of the corresponding abstract temporal database—an
immediate exponential blowup in the data complexity of the query evaluation.

While most approaches to query evaluation in temporal databases take the
path of adding specialized temporal operations to a standard relational system,
we take an alternative approach: we define a translation procedure that allows
us to compile SQL/TP statements to standard SQL/92 statements. The trans-
lation utilizes the quantifier elimination procedure for linear order [21] to replace
references to individual time instants in the queries with references to inter-
val endpoints. In the rest of this section we give a sketch of the SQL/TP to
SQL/92 translation. The translation is based on an extension of results in [19]
to duplicate semantics and uses a nouveau normalization technique.

5.1 Data Definition Language

The translation of the data definition language statements is fairly simple: we
merely convert the abstract signature to its concrete counterpart. The SQL/TP
statement in Example 3.2 is translated to:
create table indep (name char(20), yearmin Time, yearmax Time)

where Time is a user defined type (UDT) for an integer like time. The data type
Time is equivalent to INTEGER'? extended with two special elements, —oo and
00. We define the successor and order for this new type by lifting the operations
from the INTEGER type.

5.2 The SQL/TP Queries

The crux of our approach lies in the translation of SQL/TP queries. The natural
correctness criterion is the preservation of query semantics. This requirement is
captured by the following diagram:

Abstract TDB| +—'— [Concrete TDB| «—— Physical DB

| @sqr/re | @4qryen = compile(@) |eval(@)

| Abstract Relation | A | Concrete Relation | — ‘ Physical Relation‘

19 Often we can take advantage of a built-in data type provided by the RDBMS (e.g.,
DATE in DB/2).

We show that the proposed translation algorithm guarantees commutativity for
the left part of the diagram. The commutativity of the right part is backed up
by the reliability of the used relational system. The rest of this section gives a
proof to the following theorem:

Theorem 5.1 Let D be a concrete temporal database and QQ a SQL/TP query.
Then Q(||D]]) = || compile(Q)(D)]|-

Note that compile(Q) is executed at query compilation time—before the actual
execution over the temporal database begins. Thus it does not affect the data
complexity of the query evaluation algorithm. Before we present the steps of the
translation itself, we introduce three auxiliary definitions.

The definition of SQL/TP queries requires the temporal attributes in the

signature of a query to be independent. However, it does not prevent us from
writing queries whose subqueries do not share this property. To deal with such
attribute dependencies during the translation we introduce the notion of a con-
ditional query:
Definition 5.2 (Conditional Query) Let @ be a SQL/92 query and ¢ a
quantifier-free formula in the language of linear order such that ¢ is a free vari-
able of ¢ if and only if ¢min and tmax are temporal attributes in the signature
of Q. We call Q{p} a conditional query.

While the translation algorithm uses the conditional queries to translate sub-
queries of a SQL/TP query, the attribute independence of the top-level attributes
guarantees that no such dependencies remain in the result of the translation.

The second challenge lies in the definition of relational operators that preserve

semantics over the interval-based encoding. For this purpose we introduce a
nouveau normalization technique. The idea behind the technique is quite simple:
Definition 5.3 Let {Q1,...,Qr} be a set of SQL/92 queries with compatible
signatures such that X a subset of their data attributes and ¢ a temporal at-
tribute. Q1,...,Qx are t-compatible on X if for all concrete temporal databases
D and all 0 < i < j < k whenever two concrete tuples a € Q;(D) and b € Q;(D)
such that mx (a) = mx (b) then the sets 7 (||al|) and mg (|[b]]) are identical or
disjoint. @1, ..., Qy are time-compatible on X if @4, ..., ék are t-compatible on
X for all temporal attributes ¢ in the common signature.
The definition of a time-compatible set of queries essentially says that if the
data portion of a tuple is related to an interval in @;(D) and to another interval
in @;(D), then it is always the case that these two intervals coincide or are
disjoint. This way we can guarantee the intervals behave like points with respect
to set/bag operations (cf. Figures 2 and 3). This definition is non-trivial even
for singleton sets of queries as the answers to queries are bags of tuples.

It is also easy to see that we can define a normalization operation that trans-
forms a set arbitrary queries to a t-compatible set of (||.||-)equivalent queries.
Moreover, this operation can be defined using a first-order query!®:

Lemma 5.4 Let {Q1,...,Qr} be a set of SQL/92 queries with compatible sig-
natures such that X a subset of their data attributes and ¢ a temporal attribute.
Then there are first-order queries N% [Q:; @1, . - ., Q] such that

L. |Qi(D)|| = IN%[Qi; Q1,-..,Qx](D)]|| for all concrete databases D.
2. {N%[Qi;Q1,...,Qk] : 0 < i <k} are t-compatible on X.

1 Similarly to coalescing; a native implementation of the normalization can often be
made more efficient.

Attribute| max(a) min(a) count(a) sum(a)
data max(a) min(a) sum(c) sum(a-c)
temporal|max(amax) min(amin) sum(c) N/A

For every concrete tuple x in the table that the aggregation is applied to we let
¢ = ONTZ(x). Note that the value of ¢ is different for every tuple in the original
table.

Fig. 1. Translation of Aggregate operations.

To define a time-compatible set of queries we use this lemma for all temporal
attributes in the common signature. It is also easy to see that the normalization
operation can be performed in O(nlogn) where n is the combined size of the
results of Q;(D).

The last obstacle is the translation of aggregate operations. To translate the
aggregation operators correctly we need to know how many tuples are encoded
by every single concrete tuple in the relation we aggregate over: we define a
function oNTY, for this purpose: it tells us how many duplicates would be in the
||.|[-image of the result of projecting a concrete tuple on G after applying the
selection condition o,. More formally:

Definition 5.5 Let E be an abstract signature, G C E, ¢ a quantifier free
formula in the language of linear order over temporal variables in £ — G, and x
a concrete tuple in the signature E. Then ONT{ (x) = card(o,||[mp—q(x)]]).
Note that ¢NTZ maps concrete tuples to natural numbers. However, if we used
a dense model of time then CNT would be a measure on the sets of time instants
and could return non-integral counts, e.g., 1.5 years. For details on aggregation
and measures see [10].

Lemma 5.6 Given fixed E, G C E, and ¢, the function ONT{, can be defined
using an integer expression over the value of x.

The ¢NT function operates on single tuples and thus contributes only a constant
to the overall data complexity of queries.

Now we are ready to proceed with the translation itself: every SQL/TP ex-
pression @ is translated to a set of conditional queries Q1{¢1}, ..., @n{vn} while
maintaining the invariant Q(||D||) = o, ||@Q1(D)||U. . .Uo,, ||@~(D)||. The trans-
lation itself is defined inductively on the structure of the SQL/TP query.

Translation of the Select Block. Consider the SQL/TP statement:
select [all] X from Ey,..., E, where ¢ group by G

where X is the set of attributes in the answer, E; subqueries or base table
references, ¢ the selection condition, and G the set of grouping attributes. In
addition, let A be the set of all aggregate expressions in X and E be the set
of all attributes in Fy, ..., E,. We assume that we have already translated the
subqueries'? to Q1{p1} € compile(E;),...,Qn{pn} € compile(E,). We com-
pose these partial results to get a set of conditional queries equivalent to the
original select block as follows (we proceed by translating every clause of the
original select block one by one):

2 for the base tables we merely add a trivial condition true.

) “g. Nf{}[S;S] “al. L
S: W, W .
SQL/92
tmin,tmax
Wt(S): M It 1 1]

S has data attribute z and a temporal attribute ¢. The boxes in the figure rep-
resent the -z graphs of the involved tables. Similar technique is used for aggre-
gation: it is easy to see that we could easily count duplicates on the normalized
relation.

Fig. 2. Projection with Duplicate Elimination

from Ey,...,E,: For every Qi{p1},...,Qn{pn} the from clause gives us a
SQL/92 query _
select F from Qq,...,Q.{¢¥}

where ¥ = @1 A ... A pp.

where ¢: To apply the selection condition ¢ we need to determine the rela-
tionships between the endpoints of intervals, the corresponding point-valued
attributes, and the selection formula. We use the quantifier elimination pro-
cedure for linear order to achieve this goal. Let Q(E){t'} be the result of the
previous step. We define

1= QEET (Y A A /\T(tmin <t < tmax)))
te

Yy = QEAT (Y Ao A /\T(tmin <t < tmax)))
te

where T is the set of all temporal attributes in F (encoded by intervals), T
is the set of all attributes except those in 7" and constants, and QE is the
quantifier elimination procedure for linear order. Now we define

select E from () where 1 {1/»}

to be the result of applying the original where clause on Q{v}.

group by G: To apply grouping we first normalize the result of the previous
step with respect to the attributes in G. Then we use the standard SQL/92
grouping construction (cf. Figure 2). Let Q(E){¢} be the result from the
previous step. As the attributes in G and E — G are independent we can
split ¢ to ¢1 involving only attributes in G and 1), involving only attributes
in £ — G. We generate

select G, A from Ng[Q; Q] group by G{v1}
Note that the aggregates in A have to be transformed using Lemma 5.6

applied on E, G, and 5.

select X: The translation of the final projection depends on the use of du-
plicate preserving vs. duplicate-eliminating projection. Let Q(E){¢} be the
result from the previous step.

S “g. Nf{z}[SﬁSl,Sg] “are
1 czbn, > ccbaa_
N S L I | LI
“gn. Nf{z}[SZ;Sl,SZ] :can: L
S2. czbn, > ccbaa_
: N | : Lo

l exceptSQL/92

[N
a

Slexcept Sy “pyr.

PO - -

Fig. 3. Set Difference using Normalization.

— for select queries we get select distinct X from Nx[Q;Q]{+'} and
— for select all queries we get select X from Q{¢}

Note that only queries that use aggregation or duplicate elimination use the
N operation.

For each of these steps we can easily verify that the transformation invariant is
preserved. Moreover, in the actual implementation the subqueries generated by
the above four steps are merged into as few nested blocks as possible, e.g., the
first two steps can be always merged into a single select block, etc.

Translation of the Set Operations. The translation of the set operations follows
similar pattern to the translation of the duplicate elimination: we need to find
conditions under which the set operations on the encoding are equivalent to
set operations on the abstract relations. Clearly a direct use of SQL/92 set
operations does not preserve the semantics of SQL/TP queries.

Lemma 5.7 Let 1, Q2 be two SQL/92 queries with a common signature and
time-compatible on the set of all their data attributes. Then ||Q1] op||Q2]| =
[|Q1 0p Q2|| where op is one of the union [all], except [all], or intersect
[all].

The above lemma is extended to conditional queries as follows: Let Q;{y;} €
compile(Q) for i € I, R;j{y;} € compile(R) for j € J, and X the set of data
attributes in the common signature. Then

Qunion R = {Qi{pi A=V, o, ¥it, Ri{ti A=V ¢, i}, Qi union Ri{pi Ay;}}
Qexcept R > {Qui{gi A=V oy}, @) except B o1 A 1}
Q intersect R — {Q intersect R {p; A¢;}}

where Q) = Nx[Q:; Qi, R;] and R, = Nx[R;; Q:, R;]. We can omit the normal-
ization for the union operation. The duplicate-preserving operations are trans-
formed analogously.

The result of the translation can unfortunately be exponential in the depth of
nesting of the original query. Note that this does not affect the data complexity of
the query evaluation as the translation is performed at compile time. Moreover,
for large class of queries we can show:

Theorem 5.8 Let Q be a query composed of attribute independent subqueries
with size at most k for a fived constant k € N. Then | compile(Q)] € O(|Q])-

Thus allowing small subqueries to violate the attribute independence require-
ment does not matter. Using this result we can show that, e.g., the first-order
temporal logic queries can be efficiently translated to SQL/TP: all the tempo-
ral operators can be translated into small fixed-size subqueries and views with
exactly one temporal attribute [3]. Similar result holds for all TRA [7] based
languages.

6 Conclusion

We have shown that a high-level point-based approach to temporal extensions of
SQL has many advantages over the common approaches that use interval-based
attributes: simple syntax and semantics, meaningful aggregation, and possibil-
ities of advanced query optimization. All this is achieved while maintaining ef-
ficient query evaluation over temporal databases based on interval encoding of
timestamps. We have also shown that all representation independent TSQL2
queries are expressible in SQL/TP (follows from [19]).

Future Work. Our proposal is only a first step towards an implementation of
SQL/TP on top of an ordinary RDBMS systems. There are still many open
questions:

— Can we use more complex temporal domains? In our proposal we used a
discrete linear order with a limited way of counting. Is it possible to use
richer temporal domains while maintaining the properties of the proposed
language? What are the tradeoffs?

— We have chosen an interval-based encoding of sets of time instants in the
concrete data model. While this encoding can compactly describe periods of
time, it fails, e.g., for periodic events. Is it possible to extend the encoding
scheme and this way to enlarge the class of finitary temporal databases?

— What optimization techniques can be used in conjunction with our query
translation procedure?

— How do we perform updates efficiently? The area of updates presents a com-
pletely new set of problems, the main problem being the in-place updates of
the encoded temporal relations. This problem goes hand in hand with defin-
ing various normal forms [6, 19] of temporal relations and enforcing them
over updates!®.

— Can the standard indices built-in relational systems aid the query evalua-
tion based on the proposed compilation technique? What are the tradeoffs
comparing to specialized indices?

Note that there are few answers to these questions even for the established tem-
poral query languages like TSQL2 or SQL/Temporal. Note also that our tech-
nique allows us to reuse most of the efforts aimed towards boosting performance
of temporal DBMS, e.g., the development of efficient temporal and spatial joins,
and sophisticated access methods.

13 In this paper we did not assume any particular normal form for the temporal rela-
tions.

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

. Abiteboul, S., Herr, L., Van den Bussche, J. Temporal versus First-Order Logic to

Query Temporal Databases. Proc. ACM PODS 1996, 4957, 1996.

Allen, J. F. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832-843, 1983.

Bohlen, M. H., Chomicki, J., Snodgrass, R. T., Toman, D. Querying TSQL2 Da-
tabases with Temporal Logic. In Proc. EDBT’96, LNCS 1057, 325-341, 1996.
Bohlen, M. H., Jensen, C. S. Seamless Integration of Time into SQL. University of
Aalborg, http://www.cs.auc.dk/ boehlen/Software/Tiger/atsql.ps.gz, 1996.

. Bohlen, M. H., Jensen, C. S., Snodgrass, R. T. Evaluating and Enhancing the Com-

pleteness of TSQL2. Technical Report TR 95-5, Computer Science Department,
University of Arizona, June 1995.

. Bohlen, M. H., Snodgrass, R. T., Soo, M. D. Coalescing in Temporal Databases.

Proc. 22nd Int. Conf. on Very Large Databases, 180-191, 1996.

Clifford J., Croker A., Tuzhilin A. On Completeness of Historical Relational Query
Languages. ACM Transactions on Database Systems, Vol. 19, No. 1, 64-116, 1994.
Codd, E. F. Relational completeness of database sublanguages. In Rustin, R.(ed.)
Courant Computer Science Symposium 6: Data Base Systems, 65—98, Prentice-
Hall, 1972.

. Chomicki J. Temporal Query Languages: a Survey. Proc. International Conference

on Temporal Logic, July 1994, Bonn, Germany, Springer-Verlag (LNAI 827), 506—
534.

Chomicki, J., Kuper, G. M. Measuring Infinite Relations. Proc. ACM PODS 1995,
78-85, 1995.

Chomicki, J., Goldin, D. Q., Kuper, G. M. Variable Independence and Aggregation
Closure. Proc. ACM PODS 1996, 4048, 1996.

Date, C. J., Drawen, H. A Guide to the SQL Standard (3rd ed.), Addison—Welsley,
1993.

IBM Database 2, SQL Reference for common servers. IBM Corp., 1995.

Jensen, C. S., Snodgrass, R. T., Soo, M. J. Unification of Temporal Data Models.
Proc. 9th Int. Conf. on Data Engineering, 262—271, 1993.

Kanellakis, P. C., Kuper, G. M., Revesz, P.Z . Constraint Query Languages. Jour-
nal of Computer and System Sciences 51(1):26-52, 1995.

Snodgrass R. T. The Temporal Query Language TQuel. ACM Transactions on
Database Systems, 12(2):247-298, June 1987.

Snodgrass R.T. (editor). The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, 674+xxiv pages, 1995.

Snodgrass, R. T., Béhlen, M. H., Jensen C. S., Steiner, A. Adding Valid Time to
SQL/Temporal, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2 21/11/96, (change
proposal).

Toman, D. Point-based vs. Interval-based Temporal Query Languages Proc. ACM
PODS 1996, 58-67, 1996.

Toman, D., Niwinski, D. First-Order Temporal Queries Inexpressible in Temporal
Logic Proc. EDBT’96, Arpes, Bouzeghoub (eds.), LNCS 1057, 307-324, 1996.
Williams, H. P. Fourier—Motzkin Elimination Extension to Integer Programming
Problems. In Journal of Combinatorial Theory (A) 21, 118-123, 1976.

Kabanza, F., Stevenne, J.-M., Wolper, P. Handling Infinite Temporal Data. JCSS
51(1): 3-17, 1995.

This article was processed using the KTEX macro package with LLNCS style

