
Distributed Reasoning in a Peer-to-Peer Setting
P. Adjiman and P. Chatalic and F. Goasdoué and M.-C. Rousset and L. Simon

�

Abstract. In a peer-to-peer inference system, each peer can rea-
son locally but can also solicit some of its acquaintances, which are
peers sharing part of its vocabulary. In this paper, we consider peer-
to-peer inference systems in which the local theory of each peer is
a set of propositional clauses defined upon a local vocabulary. An
important characteristic of peer-to-peer inference systems is that the
global theory (the union of all peer theories) is not known (as op-
posed to partition-based reasoning systems). The contribution of this
paper is twofold. We provide the first consequence finding algorithm
in a peer-to-peer setting: it is anytime and computes consequences
gradually from the solicited peer to peers that are more and more
distant. We exhibit a sufficient condition on the acquaintance graph
of the peer-to-peer inference system for guaranteeing the complete-
ness of this algorithm. We also present first experimental results that
are promising.

1 Introduction

Recently peer-to-peer systems have received considerable attention
because their underlying infrastructure is appropriate to scalable and
flexible distributed applications over Internet. In a peer-to-peer sys-
tem, there is no centralized control or hierarchical organization: each
peer is equivalent in functionality and cooperates with other peers in
order to solve a collective task. Peer-to-peer systems have evolved
from simple keyword-based peer-to-peer file sharing systems like
Napster [13] and Gnutella [5] to schema-based peer data manage-
ment systems like Edutella [14] or Piazza [8], which handle seman-
tic data description and support complex queries for data retrieval.
In those systems, the complexity of answering queries is directly re-
lated to the expressivity of the formalism used to state the semantic
mappings between peers schemas [7].

In this paper, we are interested in peer-to-peer inference systems
in which each peer can answer queries by reasoning from its local
(propositional) theory but can also ask queries to some other peers
with which it is semantically related by sharing part of its vocabulary.
This framework encompasses several applications like peer-to-peer
information integration systems or intelligent agents, in which each
peer has its own knowledge (about its data or its expertise domain)
and some partial knowledge about some other peers. In this setting,
when solicited to perform a reasoning task, a peer, if it cannot solve
completely that task locally, must be able to distribute appropriate
reasoning subtasks among its acquainted peers. This leads to a step
by step splitting of the initial task among the peers that are relevant
to solve parts of it. The outputs of the different splitted tasks must
then be recomposed to construct the outputs of the initial task.

We consider peer-to-peer inference systems in which the local the-
ory of each peer is composed of a set of propositional clauses defined

�
LRI, CNRS & Université Paris-Sud – INRIA Futurs, Bâtiment 490, 91405,
Orsay Cedex, France

upon a set of propositional variables (called its local vocabulary).
Each peer may share part of its vocabulary with some other peers.
We investigate the reasoning task of finding consequences of a cer-
tain form (e.g., clauses involving only certain variables) for a given
input formula expressed using the local vocabulary of a peer. Note
that other reasoning tasks like finding implicants of a certain form
for a given input formula can be equivalently reduced to the conse-
quence finding task.

The contribution of this paper is twofold. We provide the first con-
sequence finding algorithm in a peer-to-peer setting: it is anytime and
computes consequences gradually from the solicited peer to peers
that are more and more distant. We exhibit a sufficient condition on
the acquaintance graph of the peer-to-peer inference system for guar-
anteeing the completeness of this algorithm.

It is important to emphasize that the problem of distributed rea-
soning that we consider in this paper is quite different from the prob-
lem of reasoning over partitions obtained by decomposition of a the-
ory ([3, 1]). In that problem, a centralized large theory is given and
its structure is exploited to compute its best partitioning in order to
optimize a partition-based reasoning algorithm. In our problem, the
whole theory (i.e., the union of all the local theories) is not known
and the partition is imposed by the peer-to-peer architecture. As we
will illustrate it on an example (Section 2), the algorithms based on
transmitting clauses between partitions in the spirit of ([1, 3, 4]) are
not appropriate for our consequence finding problem. Our algorithm
splits clauses if they involve vocabularies of several peers. Each piece
of a splitted clause is then transmitted to the corresponding theory
to find its consequences. The consequences that are found for each
piece of splitted clause must then be recomposed to get the conse-
quences of the clause that had been splitted.

The paper is organized as follows. Section 2 defines formally the
peer-to-peer inference problem that we address in this paper. In Sec-
tion 3, we describe a distributed consequence finding algorithm and
we state its properties. Section 4 reports some experimental results.
Related work is summarized in Section 5. We conclude with a short
discussion in Section 6.

2 Peer-to-peer inference: problem definition

A peer-to-peer inference system (P2PIS) is a network of peer the-
ories. Each peer � is a finite set of propositional formulas of a lan-
guage ��� . We consider the case where ��� is the language of clauses
without duplicated literals that can be built from a finite set of propo-
sitional variables � � , called the vocabulary of � . Peers can be se-
mantically related by having common variables in their respective
vocabularies, called shared variables. In a P2PIS, no peer has the
knowledge of the global P2PIS theory. Each peer only knows its own
local theory and that it shares some variables with some other peers
of the P2PIS (its acquaintances). It does not necessarily know all the
peers with which it shares variables. When a new peer joins a P2PIS

it simply declares its acquaintances in the P2PIS, i.e., the peers it
knows to be sharing variables with. A P2PIS can be formalized as an
acquaintance graph.

Definition 1 (Acquaintance graph) Let
����� �����	��
 �	� � be a fam-

ily of clausal theories on their respective vocabularies � ��� , let � �� ��
 �	� � � ��� . An acquaintance graph is a graph � �������
ACQ � where�

is the set of vertices and ACQ � ��� � � � is a set of labelled edges
such that for every

����� ��� � ����� � ACQ, ! "�$# and
� � � ���&% � ��' .

A labelled edge
����� ��� � ���(� expresses that peers ��� and ��� know

each other to be sharing the variable
�
. For a peer � and a literal) ,

ACQ
�) � �*� denotes the set of peers sharing with � the variable of) .

For each theory � , we consider a subset of target variables+ � � � � � , supposed to represent the variables of interest for the
application, (e.g., observable facts in a model-based diagnosis appli-
cation, or stored classes in an information integration application).
The goal is, given a clause (called the query) provided as an input
to a given peer, to find all the consequences (called answers) that
belong to some target language.

The point is that the query only uses the vocabulary of the queried
peer, but that the expected answers may involve target variables of
different peers. The target languages handled by our algorithm are
defined in terms of target variables and require that a shared variable
has the same target status in all the peers sharing it.

Definition 2 (Target Language) Let � �,�����
ACQ � be a P2PIS,

and for very peer � , let
+ � � be the set of its target variables such

that if
����� � � � � � �-� ACQ then

� � + � ��� iff
� � + � ��' . For a sub-

set . � of peers of
�

, we define its target language
+*/10325476 � . �*� as

the language of clauses (including the empty clause) involving only
variables of 8 �&91: � + � � .

Among the possible answers we distinguish local answers, involv-
ing only target variables of the solicited peer, navigational answers,
which involve target variables of a single peer, and integrating an-
swers which involve target variables of several peers.

Definition 3 (Proper prime implicate w.r.t a theory) Let � be a
clausal theory and ; be a clause. A clause < is said to be:= a prime implicate of ; w.r.t � iff � �*> ;�?A@ � < and for any other
clause <CB , if � �D> ;7?E@ � <CB and <CB�@ � < then <CBGFH< .= a proper prime implicate of ; w.r.t � iff it is a prime implicate of
; w.r.t � but �I"@ � < .

Definition 4 (Consequence finding problem) Let
�J�K� � � � �L
 �	� �

be a family of clausal theories with respective target variables
(
+ � ���M�	�L
 �	� � and let � �������

ACQ � be a �*N �*O5. . The consequence
finding problem is, given a peer � and a clause ;C� � � to find the
set of proper prime implicates of ; w.r.t 8 �L
 �	� � � � which belong to+*/10�2P476 ��� � .

The following example illustrates the main characteristics of the
distributed algorithm presented in Section 3.

Example 1 Let us consider 4 peers. � � describes a tour operator. Its
theory expresses that its current far destinations (F) are either Kenya
(Q) or Chile (R). These far destinations are international destina-
tions (I) and expensive (S). The peer �UT is only concerned with
police regulations and expresses that a passport is required (�) for
international destinations. �UV focuses on sanitary conditions for trav-
elers. It expresses that, in Kenya, yellow fever vaccination (W) is
strongly recommended and that a strong protection against paludism
should be taken (�*X) when accomodation occurs in Lodges (X). ��Y

describes accommodation conditions for the trips : Lodges for Kenya
and Hotels (Z) for Chile. It also expresses that when anti-paludism
protection is required, accommodations are equipped with appropri-
ate anti-mosquito protections (AM). Shared variables are indicated
on the edges of the acquaintancegraph (Figure 1) and target variables
are defined by :

+ � �7[� > S*? , + � �]\ � > �*? , + � �]^ � > X � W � �*X�?
and

+ � �(_ � > X � Z � �*X �M`*a ? .
b [Uced F f E d F f Id F f K f C

b \ c d I f P

I

b ^gc d K f Yd L f d K f PL

K

b _ c d K f Ld C f Hd PL f AM

K,C

L,PL

Figure 1. Acquaintance graph for the tour operator example

Suppose that the query F is asked to peer � � . The local conse-
quences that can be derived by local reasoning on � � are E,I and
K h C. E is returned immediately as a local answer since it is in+i/10325476 � � � � . Since I is shared with � T , it is transmitted to � T , which
produces the clause P. Since P is in

+i/10325476 � �UT7� , it is a navigational
answer for the initial query. The clause K h C is made of shared
variables. Our algorithm splits such clauses and transmits each com-
ponent (here K and C) separately to the acquaintances of � � shar-
ing respectively K and C with � � . C is therefore transmitted to � Y ,
which returns the clause H as unique answer. Similarly, the clause
K is transmitted (independently) to peers �UY and � V (both sharing
the variables K with � �). On � Y , this produces locally the clause L.
Since L � +j/1032P4�6 � � Y � it is returned as an answer for K. But L is also
shared, and therefore it is transmitted to the peer � V , which in turn
produces the clause k K h PL. This clause is splitted in two pieces k K
and PL. �lY is asked for PL and returns AM as its only answer for PL.
� � is asked for computing the implicates of k K, while the comple-
mentary query K is still under process. We will see in Section 3 that
this is handled in our algorithm by an history which keeps track of
the current reasoning branch: when a same reasoning branch contains
two complementary literals, it is stopped and returns m as answer. In
our example, the answer produced by � � for k K is thus m , which is
sent back to � V . � V now combines the answers obtained from the two
reasoning branches resulting from the splitting of k K h PL, namely
AM returned by � Y for PL, and m returned by � � for k K. This pro-
duces AM as answer produced by � V for k K h PL. � V sends this
answer back to � Y as an answer for L. � Y transmits to � � each of
the answers L, PL and AM it has computed for X , as answers for K.
We do not detail the reasoning branch corresponding to the propaga-
tion of K in � V , which adds a new answer, Y, to the set of answers
that are obtained by ��n for K. As they are produced, those answers
are combined with the only answer for C (i.e., H). Therefore, the set
of answers for the initial query that will have been produced at the
end is:

>
H h L

�
H h PL

�
H h AM

�
H h Y ? . Among those answers,

it is important to note that some of them (e.g., H h Y) involve target
variables from different peers. Such implicates cannot be obtained by
partition-based algorithms like in [1]. This is made possible thanks
to the splitting/recombining strategy of our algorithm.

3 Distributed consequence finding algorithm

The message passing distributed algorithm that we provide is de-
scribed in Section 3.2. We show that it terminates and that it com-
putes the same results as the recursive algorithm described in Section

3.1. We exhibit a property of the acquaintance graph that guarantees
the completeness of this recursive algorithm, and therefore of the
message passing distributed algorithm (since both algorithms com-
pute the same results).
For both algorithms, we will use the following notations :

- for a literal ; , � 4����) � 4��&6 � ; � �*� denotes the set of clauses ob-
tained by resolution between ; and a clause of � ,

- for a literal ; , �; denotes its complementary literal,
- for a clause � of a peer � , . � �]� (resp. X � �(�) denotes the disjonc-

tion of literals of � whose variables are shared (resp. not shared) with
any acquaintance of � . The condition . � �]� � m thus expresses that
� does not contain any variable shared with an acquaintance of � ,

- an history �&! �]6 is a sequence of triples
�) � � � �]� (where) is

a literal, � a peer, and � a clause). An history 	 �) � � � � � ��
�
�
���) � � � � � � � � ���)�� � �� � ���]��� represents a branch of reasoning initiated
by the propagation of the literal) � within the peer � � , and the split-
ting of the clause � � : for every !l��	 �
�
 ��� n�� , � � is a consequence of
) � and �U� , and) ��� � is a literal of � � , which is propagated in ����� � ,

- � is the distribution operator on sets of clauses: . � ���������$.
=
> � � h������7h�� @ � � � . � ��
�
�
�� � � . ? . If X � >) � ��
�
�
 �)��5? , we

will use the notation �! �9#" .$ to denote .$ �[%�&������� .$ ' .

3.1 Recursive consequence finding algorithm

Let � �������
ACQ � be a P2PIS.

� R)(� ; � � � �U� computes implicates
of the literal ; w.r.t

�
, starting with the computation of consequences

of ; w.r.t � , and then being guided by the topology of the acquain-
tance graph of the P2PIS. To ensure termination, it is necessary to
keep track of the literals already processed by peers. This is done by
the recursive algorithm

� R)(*Z � ; � . � � � � �&! �]6 � , where � ! �]6 is the
history of the reasoning branch ending up to the propagation of the
literal ; in . � (a set of acquaintances of the last peer added to the
history).

Algorithm 1: Recursive consequence finding algorithm� R)((; � � � �)
(1) return

� R)(*Z � ; � > �*? � � �+* �� R)(*Z (; � . � � � � �&! �]6)
(1) if (�; � � � �,�&! �]6 return

> m ?
(2) else if there exists � � . � s.t ;$� � or for every � �I. � ,� ; � � � � �-�&! � 6 return

*
(3) else LOCAL . > ;7? � � 8 �&9�: � � 4/���) � 4���6 � ; � �*�	�
(4) if me� LOCAL return

> m ?
(5) else LOCAL . > � � LOCAL @ X � �]� � +i/10325476 � . �*�	?
(6) if for every � � LOCAL, . � �]� � m , return LOCAL

(7) else RESULT . LOCAL

(8) foreach � � LOCAL s.t . � �]�j"� m
(9) let � be the peer of . � s.t. �j� � 4����) � 4/�&6 � ; � �*�
(10)

� B . �)0 > kU; h1�]? , � B . ��� B � ACQ �
(11) foreach literal)U�D. � �(�
(12) ANSWER

�) �2. � R)(*Z �) � ACQ
�) � �*� � ��B � 	 � ; � � � �]� @ � ! �]6 ���

(13) DISJCOMB . � � �9�:4365�7 ANSWER
�)��	�$� > X � �]�	?

(14) RESULT . RESULT
�

DISJCOMB

(15) return RESULT

Theorem 1
� R)((; � � � �U� is sound and terminates.

Sketch of proof: For the soundness, it is easy to show (by in-
duction on the number of recursive calls) that every result re-
turned by

� R)(*Z (; � > �*? � � �8* � is an implicate of
� �$> ;�? . For

the termination, we notice that at each recursive call, a new triple� �) � � � �]� is added to the history. If the algorithm did not termi-
nate, the history would be infinite, which is not possible since

the number of peers, literals and clauses within a P2PIS is fi-
nite. Soundness: if the history �&! �]6 is not empty, it is of the
form 	 �) � � � � � ��
�
�
�� �)�� � �� � ���]��� . We prove by induction on the
number

0 � of recursive calls of
� R)(*Z (; � . � � � � � ! �]6 � that ev-

ery result returned by
� R)(*Z (; � . � � � � �&! �]6 � is an implicate of� �C> ; �) ��
�
�
 �)��]? which belongs to the target language.= 0 � = � : either one of the conditions of Line (1), Line (2), Line

(4) or Line (6) is satisfied.
- If either there exists a peer � such that

� �; � � � �9�&! � 6 or
m � LOCAL: in both cases, m is returned by the algorithm (in re-
spectively Line (1) and Line (4)) and it is indeed an implicate of� �C> ; �) ��
�
�
 �) � ? belonging to the target language.

- If there exists � � . � such that ;�� � or for every ��� . � ,� ; � � � � �:�&! � 6 : in this case, an empty result is returned (Line(2))
because ; is already in

� � > ; �) ��
�
�
 �)��7? .
- In the last case (Line (6)),

0 � LOCAL, and it is obvioulsy an
implicate of

� �D> ; �) ��
�
�
 �) � ? (as a resolvent of ; and of a clause
of 8 �&91: � �), and it belongs to the target language.= Suppose the induction hypothesis true for

0 �<;>= , and let
� � �����

ACQ � a P2PIS such that
� R)(*Z (; � . � � � � � ! �]6 � re-

quires =-?�n recursive calls to terminate. Let
0

a result returned by� R)(*Z (; � . � � � � �&! �]6 � .
- If

0 � LOCAL, it is obvioulsy an implicate of
� ��> ; �) ��
�
�
]�)��]?

belonging to the target language.
-If

0 "� LOCAL, it is obtained at Line (13): there exist a
clause � = . � �]��h�X � �]� such that . � �(� �)) � h@����� h�))BA and0 � 0 � hC����� h 0 A h X � �(� , where every

0 � is a result returned by� R)(*Z �)) � � ACQ
�)) � � �*� � � B � 	 � ; � � � �]� @ �&! � 6 ��� (Line (12)). Accord-

ing to the induction hypothesis (the number of recursive calls of� R)(*Z �)) � � ACQ
�)) � � �*� � � B � 	 � ; � � � �]� @ �&! � 6 ��� for every)) � is less

than =), every
0 � is an implicate of

�)0 > kU;�hD�]? �A>)) � � ; �) ��
�
�
]�) � ?
belonging to the target language. Therefore,

0 � h������7h 0 A is an im-
plicate of

�)0 > k�;AhE�(? �$> . � �]� � ; �) ��
�
�
 �)���? , which belongs to
the target language. Since X � �]� belongs to the target language and
� � . � �]�UhDX � �]� , 0 (i.e,

0 � h������7h 0 A h�X � �]�) belongs to the target
language, and is an implicate of

�)0 > kU;�h��]? � > � � ; �) ��
�
�
 �)���? .
Since �*� LOCAL, � is an implicate of

� � > ;7? , and therefore
0

is an
implicate of

� �C> ; �) ��
�
�
 �)��]? belonging to the target language.
Termination: at each recursive call, a new triple

� �) � � � �(� is added
to the history. If the algorithm did not terminate, the history would
be infinite, which is not possible since the number of peers, literals
and clauses within a P2PIS is finite. m

The following theorem exhibits a sufficient condition for the algo-
rithm to be complete.

Theorem 2 Let � � �����
ACQ � be a P2PIS all local theories of

which are saturated by resolution. If for every � , ��B and
� � � �A%

� �GF there exists a path between � and ��B in � , all edges of which
are labelled with

�
, then for every literal ; � � � ,

� R)((; � � � � �
computes all the proper prime implicates of ; w.r.t

�
which belong

to
+j/10325476 ��� � .

Sketch of proof: If the history �&! �]6 is not empty, it is of the form
	 �) � � � � � ��
�
H
�� �) � � � � � � � ��� . We prove by induction on the num-
ber

0 � of recursive calls that
� R)(*Z (; � . � � � � �&! �]6 � computes all

the proper prime implicates of ; w.r.t
� �E>) ��
�
�
 �)��7? which belong

to the target language.= 0 � = � : either one of the conditions of Line (1), Line (2), Line (4)
or Line (6) is satisfied.

- If either there exists a peer � such that
� �; � � � �9�&! � 6 or

m � LOCAL: in both cases, m is the only prime implicate of ; w.r.t� �A>) ��
H
�
 �) � ? and is returned by the algorithm (respectively Line

(1) and Line (4)).
- If there exists � � . � such that ; � � or for every � �

. � ,
� ; � � � �-� �&! �]6 : in this case, all the prime implicates of ; w.r.t� � >) ��
�
�
��) � ? are prime implicates of

� � >) ��
�
�
 �) � ? . Therefore,
the set of proper prime implicates of ; w.r.t

� � >) ��
�
�
 �) � ? is empty:
it is returned by the algorithm (Line(2)).

- If for every � � . � , every resolvent of ; w.r.t � has no
shared variable with any acquaintance of � : if

�
satisfies the prop-

erty stated in the theorem, this means that every prime implicate of ;
w.r.t � shares no variable with any other theory of

�
.

According to Lemma 1, the set of proper prime implicates of ; w.r.t� �A>) ��
�
�
��) � ? is included in LOCAL, and thus every proper prime
implicates of ; w.r.t

� � >) ��
�
�
]�)��(? , which is in the target language,
is returned by the algorithm (Line(6)).= Suppose the induction hypothesis true for

0 �<;>= , and let
� � �����

ACQ � a P2PIS satisfying the property stated in the the-
orem and such that

� R)(*Z (; � . � � � � �&! �]6 � requires = ? n recur-
sive calls to terminate. Let < be a proper prime implicate of ; w.r.t� �A>) ��
�
�
��) � ? , which is in the target language. Let us show that it
belongs to the result returned by

� R)(*Z (; � . � � � � �&! �]6 � .
- If < is a resolvent of ; w.r.t a given � of . � , then <J� LOCAL

and is returned by the algorithm if it is in the target language.
-If < is not a resolvent of ; w.r.t a given � of . � , then,

according to Lemma 1, either ; shares its variable with clauses
in
� �H>) �H
�
�
 �)��7? 0 8 �&91: � � , or there exists a clause kU;AhE�

in 8 ��91: � � such that k�; h&� has shared variables with
� �

>) ��
�
�
��) � ? 0 8 �&9�: � � and < is a proper prime implicate of � w.r.t�)0 > k�;�hD�]? � > ; �) ��
�
�
 �)��7? . Therefore, if the non shared variables
of � are target variables, � is involved in an iteration of the loop of
Line (8). If � verifies the property stated in the theorem, ��B satisfies
it too. According to the induction hypothesis (the number of recur-
sive calls to obtain ANSWER

�)�� in Line (12) is less than =), for every
)U�D. �) � , ANSWER

�) � includes the set of proper prime implicates of)
w.r.t

�)0 > k�;�h �]? �A> ; �) ��
�
�
 �) � ? , which are in the target language.
We now apply Lemma 2 to infer that

� ! � # R � <!= , which is com-
puted in Line (13), includes the set of proper prime implicates of �
w.r.t

�)0 > k�;�h �]? �A> ; �) ��
�
�
 �)��7? , which are in the target language,
and in particular < . m
Lemma 1 Let � be a set of clauses and < be a proper prime im-
plicate of ; w.r.t � . Let � B � � saturated by resolution such that
it contains clauses sharing the variable of ; . If < is a proper prime
implicate of ; w.r.t � , then :

- either < is a proper prime implicate of ; w.r.t ��B ,
- or the variable of ; is shared with clauses of � 0 � B ,
- or there exists a clause k�;�h�� of � B such that � has shared

variables with clauses of � 0 ��B and < is a proper prime implicate
of � w.r.t � 0 > k�;ghC�]? � > ;7? .
Sketch of proof: Let < be a proper prime implicate of ; w.r.t � . If
< is different from ; , there exists a clause kU; h�� in � such that <
is a proper prime implicate of � w.r.t � 0 > k�; h1�]? �C> ;�? .

- If such a clause does not exist in �iB , it exists in � 0 �*B and there-
fore ; shares its variable with clauses of � 0 � B .

- If there exists a clause k�; h)� in ��B such that < is a proper prime
implicate of � w.r.t � 0 > k�; hC�(? � > ;7? , and < is not a proper prime
; w.r.t �*B , then for every proof of < there must exist a clause �7B in
� 0 � B with which either ; or k�; h�� must be resolved. Therefore,
either ; or � has shared variables with clauses of � 0 � B . m
Lemma 2 Let � be a set of clauses, and let � �) � h������7hC) be a
clause. For every proper prime implicate < of � w.r.t � , there exists

< � ��
�
�
�� < such that <JFH< � h�������h*< , and for every !U��	Ln
�
 � � ,
<C� is a proper prime implicate of) � w.r.t � .

Sketch of proof: Let < be a proper prime implicate of � w.r.t � . For
every literal) � , let

a ��� �) � � be the set of models of � which make
) � true. If

a ��� �) � � �@*
, that means that m is the only proper prime

implicate of) � w.r.t � . For every ! such that
a ��� �) � � "� *

, every
model in

a ��� �) ��� is a model of � � > �(? , and then a model of <
; therefore, < is a proper implicate of � � >) � ? , and, by definition
of proper prime implicates, there exists a proper prime implicate
<C� of) � w.r.t � such that <C� @ � < . Consequently, there exists
< � ��
�
�
�� < such that < � h�������h*< @ � < , and for every !U��	Ln
�
 � � ,
<C� is a proper prime implicate of) � w.r.t � (<C� may be m). Since
� �A>) � h�������hE) ?E@ � < � h ������h < , and < is a proper implicate
of) � h)� ��� h-) w.r.t � , we necessarily get that <�F < � h!������h < . m

3.2 Message-based consequence finding algorithm

In this section, we exhibit the result of the transformation
of the previous recursive algorithm into a message-based dis-
tributed consequence finding algorithm. Each peer has the algo-
rithm implemented locally. It is composed of three procedures,
each one being triggered by the reception of a message. The
procedure RECEIVEQUERYMESSAGE is triggered by the recep-
tion of a ;�� 470�� message < � . 4����5470 ��� 4 � 4 ! � 470 � ;�� 470�� � � ! �]6 �) �
sent by the peer . 4����54�0 to the peer

� 4 � 4 ! � 470 which exe-
cutes the procedure: on the demand of . 4����5470 , with which it
shares the variable of) , it processes the literal) . The procedure
RECEIVEANSWERMESSAGE is triggered by the reception of an/#� ��� 4�0

message < � . 4����5470 ��� 4 � 4 ! � 470 � /#�$���-470 � �&! �]6 � 0 � sent by
the peer . 4����54�0 to the peer

� 4 � 4 ! � 470 which executes the pro-
cedure: it processes the answer

0
(which is a clause the variables

of which are target variables) sent back by . 4��	�5470 for the lit-
eral) (last added in the history) ; it may have to combine it with
other answers for literals being in the same clause as) . The pro-
cedure RECEIVEFINALMESSAGE is triggered by the reception of a
 ! �G/) message < � . 4��	�5470 ��� 4 � 4 ! � 470 ��
 ! �G/) � �&! �]6 � 6�0 � 4 � : the peer
. 4/���5470 notifies the peer

� 4 � 4 ! � 470 that answer computation for the
literal) (last added in the history) is completed. Those procedures
handle two data structures stored at each peer: ANSWER

�) � �&! �]6 �
caches the answers resulting from the propagation of) within the
reasoning branch corresponding to �&! �]6 ; FINAL

� ; � �&! � 6 � is set to
true when the propagation of ; within the reasoning branch of
the history �&! �]6 is completed. The reasoning is initiated by the
user (denoted by a particular peer � � 470) sending to a given peer
� a message < � � � 4�0 � � � ;�� 470�� ��*1� ;7� , which triggers the proce-
dure RECEIVEQUERYMESSAGE

� < � � � 470 � � � ;�� 4�0�� ��*�� ;��	� that is
locally executed by � . In the description of the procedures, since
they are locally executed by the peer which receives the message, we
will denote by . 4)
 the receiver peer.

The following theorem states two important results: first, the
message-based distributed algorithm computes the same results as
the algorithm of Section 3.1, and thus, is complete under the same
conditions as in Theorem 2 ; second the user is notified of the termi-
nation when it occurs, which is crucial for an anytime algorithm.
Theorem 3 Let

0
be a result returned by

� R)(� ; � � � �U� . If
� receives from the user the message < � � �(470 � � � ;�� 470�� ��*�� ;7� ,
then a message < � � � � �(470 � /#� ��� 4�0 � 	 � ; � � � ��� � 0 � will be pro-
duced. If

0
is the last result returned by

� R)(� ; � � � �U� , then
the user will be notified of the termination by a message
< � � � � � 4�0 �
 ! �G/) � 	 � ; � � � 6�0 � 4 ��� � 6�0 � 4 � .

Algorithm 2: Message passing procedure for processing queries
RECEIVEQUERYMESSAGE(< � . 4��	�5470 � . 4)
 � ;�� 4�0�� � �&! �]6 � ;7�)
(1) if

� �; � � � �,�&! �]6
(2) send < � . 4)
G� . 4��	�5470 � /#� ��� 4�0 � 	 � ; � . 4)
 � m � @ �&! �]6 � � m �
(3) send < � . 4)
G� . 4��	�5470 �
 ! �G/) � 	 � ; � . 4)
G� 6�0 � 4 � @ �&! �]6 � � 6 0 � 4 �
(4) else if ;�� . 4)
 or

� ; � . 4)
G� � �,�&! �]6
(5) send < � . 4)
G� . 4��	�5470 �
 ! �G/) � 	 � ; � . 4)
G� 6�0 � 4 � @ �&! �]6 � � 6 0 � 4 �
(6) else
(7) LOCAL

� . 4)
 � . > ;7? � � 4����) � 4��&6 � ; � . 4)
 �
(8) if m � LOCAL

� . 4)
 �
(9) send < � . 4)
 � . 4��	�5470 � /#� ��� 4�0 � 	 � ; � . 4)
 � m � @ �&! � 6 � � m �
(10) send < � . 4)
G� . 4����5470 �
 ! � /) � 	 � ; � . 4)
G� 6 0 � 4 � @ �&! � 6 � � 6 0 � 4 �
(11) else
(12) LOCAL

� . 4)
 � . > � � LOCAL
� . 4)
 � @ X � �]� �+j/1032P4�6 � . 4)
 �	?

(13) if for every � � LOCAL
� . 4)
 � � . � �]� � m

(14) foreach �j� LOCAL
� . 4)
 �

(15) send < � . 4)
G� . 4��	�5470 � /#� ��� 4�0 � 	 � ; � . 4)
 � �]� @ � ! �]6 � � �]�
(16) send < � . 4)
G� . 4����5470 �
 ! �G/) � 	 � ; � . 4)
G� 6�0 � 4 � @ �&! �]6 � � 6 0 � 4 �
(17) else
(18) foreach �*� LOCAL

� . 4)
 �
(19) if . � �]� � m
(20) send < � . 4)
G� . 4��	�5470 � /#�$���-470 � 	 � ; � . 4)
G� �]� @ � ! �]6 � � �]�
(21) else
(22) foreach literal)U� . � �]�
(23) if)�� +*/10�2P476 � . 4)
 �
(24) ANSWER

�) � 	 � ; � . 4)
G� �]� @ �&! �]6 � � . >) ?
(25) else
(26) ANSWER

�) � 	 � ; � . 4)
G� �]� @ �&! �]6 � � . *
(27) FINAL

�) � 	 � ; � . 4)
G� �]� @ �&! �]6 � � .
 /) � 4
(28) foreach

� � � ACQ
�) � . 4)
 �

(29) send < � . 4)
 �+� � � ;�� 470�� � 	 � ; � . 4)
 � �(� @ �&! �]6 � �)��
Algorithm 3: Message passing procedure for processing answers
RECEIVEANSWERMESSAGE(< � . 4����54�0 � . 4)
G� /#�$� � 470 � � ! �]6 � 0 �)
(1) �&! �]6 is of the form 	 �) B � . 4����5470 � � B � � � ; � . 4)
G� �]� @ �&! � 6 B �
(2) ANSWER

�) B � �&! �]6 � . ANSWER
�) B � �&! �]6 � �C> 0 ?

(3) RESULT . � �9�:4365�7 ��� �F�� ANSWER
�) � �&! � 6 �� > X � �]�&h 0 ?

(4) if � ! �]6 B �E* , �@. � � 470 else �@. the first peer � B of �&! � 6 B
(5) foreach � � � RESULT

(6) send < � . 4)
G� � � /#� ��� 4�0 � 	 � ; � . 4)
 � �]� @ � ! �]6 B � � � � �
Algorithm 4: Message passing procedure for notifying termination
RECEIVEFINALMESSAGE(< � . 4��	�5470 � . 4)
 ��
 ! �G/) � � ! �]6 � 6 0 � 4 �)
(1) �&! �]6 is of the form 	 �) B � . 4����5470 � 6�0 � 4 � � � ; � . 4)
G� �]� @ �&! �]6 B �
(2) FINAL

�) B � �&! �]6 � . 6�0 � 4
(3) if for every) � . � �]� , FINAL

�) � �&! �]6 � � 6 0 � 4
(4) if � ! �]6 B � * ��. � � 470 else ��. the first peer � B of �&! �]6 B
(5) send < � . 4)
G� � ��
 ! �G/) � 	 � ; � . 4)
 � 6�0 � 4 � @ �&! �]6 B � � 6�0 � 4 �
(6) foreach)U� . � �]�
(7) ANSWER

�) � 	 �) � . 4����5470 � � � � ; � . 4)
G� �]� @ �&! �]6 B � � . *

Sketch of proof: We prove by induction on the number of recursive
calls of

� R)(*Z � ; � . � � � � �&! � 6 � that:
(1) for any result

0
returned by

� R)(*Z � ; � . � � � � �&! � 6 � , there
exists � � . � such that � is bound to send a message
< � � � . � /#�$���-470 � 	 � ; � � � � @ �&! �]6 � � 0 � after receiving the message
< � . � � � ;�� 470�� � �&! �]6 � ;�� ,

(2) if
0

is the last result returned by
� R)(*Z � ; � . � � � � �&! �]6 � ,

all the peers � � . � are bound to send the message
< � � � . �
 ! �G/) � 	 � ; � � � 6 0 � 4 � @ �&! �]6 � � 6�0 � 4 � , where . is the first peer
in the history.

= 0 � = � : either one of the conditions of Lines (1), (2), (4)
or (6) of the algorithm

� R)(*Z � ; � . � � � � �&! �]6 � is satisfied. We
have shown in the proof of Theorem 2 that if the conditions
of Lines (1) and (4) are satisfied, m is the only result returned
by the algorithm. The condition of Line (1) of the algorithm� R)(*Z � ; � . � � � � �&! �]6 � corresponds to the condition of Line
(1) of the algorithm RECEIVEQUERYMESSAGE(< � . � � � ;�� 470�� ,
�&! � 6 � ;7�) for any � of . � , which triggers the sending of a mes-
sage < � � � . � /#� ��� 4�0 � 	 � ; � � � m � @ �&! �]6 � � m � (Line (2)) and of a
message < � � � . �
 ! �G/) � 	 � ; � � � 6 0 � 4 � @ �&! �]6 � � 6�0 � 4 � (Line(3)). If the
condition of Line (4) of the algorithm

� R)(*Z � ; � . � � � � � ! �]6 �
is satisfied, since LOCAL is 8 �&91: � LOCAL

� �*� , there ex-
ists � � . � such that m � � . That condition corre-
sponds to the condition of Line (8) of the algorithm for
RECEIVEQUERYMESSAGE(< � . � � � ;�� 470�� � �&! �]6 � ;7�), which trig-
gers the sending of a message < � � � . � /#�$���-470 � 	 � ; � � � m � @ � ! �]6 � � m �
(Line (9) and of a message < � � � . �
 ! �G/) � 	 � ; � � � 6 0 � 4 � @ �&! �]6 � � 6�0 � 4 �
(Line (10)). The condition (2) of the algorithm� R)(*Z � ; � . � � � � �&! �]6 � , in which no result is returned (see
proof of Theorem 2), corresponds to the condition of Line (4) of
the algorithm RECEIVEQUERYMESSAGE(< � . � � � ;�� 4�0�� � �&! �]6 � ;7�),
for every � � . � , which only triggers the sending of a final
message (Line (5)). Finally, if the condition of Line (6) of the
algorithm

� R)(*Z � ; � . � � � � �&! �]6 � is satisfied,
0

is necessarily
an element of LOCAL, i.e., there exists � � . � such that0 � LOCAL

� �*� . The condition of Line (6) of the algorithm� R)(*Z � ; � . � � � � �&! �]6 � corresponds to the condition of Line
(13) in RECEIVEQUERYMESSAGE(< � . � � � ;�� 470�� � �&! �]6 � ;7�),
which triggers the sending of all the messages
< � � � . � /#�$� � 470 � 	 � ; � � � �]� @ �&! � 6 � � �]� , where � is a clause
of LOCAL

� �*� (Line (15)), and in particular the message
< � � � . � /#�$� � 470 � 	 � ; � � � 0 � @ �&! �]6 � � 0 � . It triggers too the send-
ing of a final message (Line (16)) for � . If

0
is the last result

returned by
� R)(*Z � ; � . � � � � �&! �]6 � , such final messages has been

sent by every � � . � .= Suppose the induction hypothesis true for
0 �1; = , and let � ������

ACQ � a P2PIS such that
� R)(*Z (; � . � � � � �&! �]6 � requires = ? n

recursive calls to terminate.
- If

0 � LOCAL (
0

is not the last result returned by the algorithm)
there exists � � . � such that

0 � LOCAL
� �*� , and

0
is one of

the clauses � involved in the iteration of the loop of Line (18) of
the algorithm RECEIVEQUERYMESSAGE(< � . � � � ;�� 4�0�� � �&! �]6 � ;7�),
and verifying the condition of Line (19), which triggers the sending
of the message < � � � . � /#� ��� 4�0 � 	 � ; � � � 0 � @ �&! �]6 � � 0 � (Line (20)).

-If
0 "� LOCAL, there exists ���e. � and a clause ���&) � h������7h

) A h X � �]� of LOCAL
� �*� such that � is involved in the iteration of

the loop of Line (8) of the algorithm
� R)(*Z � ; � � � � � �&! �]6 � , and

0
is

an element
0 � h ������h 0 A hCX � �]� of

� � �9�:43�5 7 ANSWER
�)��	�$� > X � �(�	?

computed at Line (12), where each ANSWER
�)�� is obtained as the re-

sult of
� R)(*Z �) � ACQ

�) � �*� � � B � 	 � ; � � � �]� @ �&! � 6 ��� (Line (13)), which
requires less than = recursive calls. By induction, for each literal
) � � . � �]� , there exists

� �U� � ACQ
�) � � �*� such that

� �U� sends
a message < � � ��� � � � /#�$���-470 � 	 �) � ��� �U� � � � � ; � � � �]� @ �&! �]6 � � 0 ��� if
it has received the message < � � ��� � � � ;�� 470�� � 	 � ; � � � �]� @ �&! �]6 � �) � � .
The loop of Line (11) of the algorithm

� R)(*Z � ; � . � � � ,
�&! � 6 � corresponds to the loop of Line (22) of the algorithm
RECEIVEQUERYMESSAGE(< � . � � � ;�� 470�� , � ! �]6 , ;7�), which triggers
the sending of the messages < � � � � ��� , ;�� 4�0�� � 	 � ; � � � �]� @ �&! � 6 � ,
) ��� for each literal) � � . � �(� (Line (29)). Therefore, according to
the induction hypothesis, for every) � � . � �]� , � �U� sends a mes-
sage < � � � � � � � /#�$���-470 � 	 �) � ��� � � � � � � ; � � � �]� @ � ! �]6 � � 0 � � . When the

last of those messages (let us say < � � � � , � � /#�$���-470 , 	 �) � ��� � � � � ,� ; � � � �(� @ �&! �]6 � , 0 �(�) is processed,
0

is produced by Line (3)
of RECEIVEANSWERMESSAGE(< � � � � � � ,

/#� ��� 4�0 � 	 �) � ��� ��� � � ,� ; � � � �(� @ �&! �]6 � , 0 �]�), and there exists a peer � such that � is bound
to send to it the message < � � � � � /#�$���-470 � 	 � ; � � � �]� @ �&! �]6 � � 0 � (Line
(6)).

- If
0

is the last result returned by the algorithm
� R)(*Z (; � . � ,

� , �&! �]6 � , for every �J� . � , for every � � LOCAL
� �*� , for every

) � . � �(� , � R)(*Z �) � ACQ
�) � �*� , �UB , 	 � ; � � � �]� @ �&! �]6 � � has fin-

ished, and, by induction, every peer
� � of ACQ

�) � �*� has sent
a message < � � � � � �
 ! �G/) , 	 �) ��� � � 6�0 � 4 � , � ; � � � �]� @ � ! �]6 � ,6 0 � 4 � . Therefore, the condition of Line (3) of the algo-
rithm RECEIVEFINALMESSAGE(< � � � � � �
 ! � /) � 	 �) ��� � � � �� ; � � � �(� @ �&! �]6 � � 6 0 � 4 �) is satisfied, which triggers the sending of a
message < � � � � �
 ! � /) � 	 � ; � � � 6�0 � 4 � @ �&! �]6 � � 6 0 � 4 � (Line (5)). m

For sake of simplicity, both recursive and distributed algorithms
have been presented as applying to literals. It does not mean that the
queries that we consider are limited to literals. Clausal queries can be
handled by splitting them into literals and then using the � operator
to recompose the results obtained for each literal.

4 Experiments

A P2PIS architecture has been developped in Java and deployed on
a cluster of 28 Athlon 1800+ Linux machines with 1GB memory.
Local implicates computation is ensured by a local version of the
distributed algorithm we presented; we optimized its whole behavior
by filtering as many subsumed clauses as possible (because of the
distributed and anytime properties of our algorithm, not all subsumed
clauses can be detected).

Benchmark generation: Evaluating distributed systems perfor-
mances is not an easy task. We chose to focus on random theories
because they have been extensively studied in previous (centralized)
work [17] and represent real challenges for compilation: it is well
known that very small theories can easily produce very large com-
piled theories. Our benchmark generator takes the characteristics of
the acquaintance graph as an input (

�
nodes and

4
edges), and fill

its nodes with uniform-random 3CNF theories, all having the same
(fixed) number < of clauses and variables (

�
). All edges of the con-

nected graph are labelled with a given number ; of variables that
both peers connected by the edge do share. In order to simply en-
code shared variables while ensuring that theorem 2 applies, we add
two clauses in both peers to enforce the equivalence between a local
and a remote variable. Thus, we have a global theory of

�
 < random
clauses of length 3,

�
 �
variables, and

�
 ;
 4 clauses of length 2 that
encodes equivalences of shared variables. Another parameter, = , is
the number of target variables of each peer.

In our experiments, we fixed ; � n and
4 � n
 ��� � (to obtain

not too constrained graphs), with
� � >�� � n�� � N��P? . We also limited

our tests to small peers (less than 30 clauses). Such theories may
already contains an important number of implicates [17]. State of the
art algorithms [19] can solve only up to 150 clauses and 50 variables
at random, wich already corresponds to 5 peers of 30 clauses.

Experimental analysis: The first observations we made while
running our experiments was that short clauses usually came first
and that produced clauses did contain target variables from a number
of distant peers. We also observed large differences in the algorithm
behavior for different queries on the same P2PIS.

We report on each line of Table 1 average values over ten P2PIS
benchmarks. Each benchmark consists itself of a synthesis over a
number �
	 of different queries on the same P2PIS. Column �
	

gives the number of asked queries, the number of queries that fin-
ished before the timeout and their computation time. The column
#Imp gives the number of found implicates and its median. The last
column gives the time to produce respectively the first 2, 10, 100 and
1000 answers (when applicable). Those values give clues on produc-
tion speed of the algorithm. We considered a timeout of 30s for each
queries, which represents a reasonable waiting time for a human ask-
ing queries to the P2PIS.

� < � = #Q (#Ended) #Imp Time
5 22 11 2 55 (19, 5s) 14 (7) 2,8,–,–
5 22 11 5 55 (3, 1s) 7799 (1431) 1,3,5,8

10 22 11 5 40 (4, 1s) 23132 (1651) 1,2,5,9
10 30 15 5 40 (4, 2s) 7099 (648) 3,7,13,17
28 22 11 5 112 (20, 2s) 8120 (513) 2,3,6,10
28 30 15 5 112 (7, 4s) 1132 (54) 8,13,20,24

Table 1. Results for multiple queries over different P2PIS

The first lines (
� � �

) shows that reducing the size of the target
language does not necessarily lead to performance enhancements.
On one hand, each peer may ask less queries and may quickly find
all results (19 queries finished in 5s) but on the other hand, the larger
the target language is, the faster the first answers will come.

For the experiments with 10 peers, large differences in mean and
median values for #Imp may be explained by a very disparate distri-
bution, which emphasizes that the same P2PIS behaves in very differ-
ent ways depending on the query. We can see that even if only 10% of
the queries end, the production speed of the algorithm is good (1000
production clauses in less that 10s for < � N7N). When the complex-
ity of local theories grows (< ��� �), the effect is a slow-down of the
production speed.

At last, we tested the scalability of our approach by deploying the
architecture over the 28 nodes of the cluster, with different theory
sizes. Even if only few queries end within the timeout, our algorithm
scales up well, and quickly produces a large number of target clauses.
We see that when local theories are harder, first results still come in
a reasonable amount of time. Note that zres [19] could not pro-
cess within one hour the global theories (988 clauses, 420 variables)
corresponding to the union of the local theories of these benchmarks.

5 Related work

The message passing distributed algorithm that we have described in
Section 3 may be viewed as a distributed version of an Ordered Lin-
ear deduction [2] to produce new target clauses, which was extended
by [18] in order to produce all implicates of a given clause belonging
to some target language, and further extended to the first order case
by Inoue in [9]. New derived clauses (the “proper implicates” in sec-
tion 2) computation has already been extensively studied (see [11]
for a survey). In particular, this problem, also known as � -implicates
computation has been addressed in [18, 9] and in [10].

We have already pointed out the differences between our work
and [1]. In a peer-to-peer setting, using tree-decomposition of the ac-
quaintance graph is not possible, but we can apply our algorithm to
partitioned theories in place of the one of [1]. It may benefit from the
theory tree-decomposition to speed-up results. As we have shown in
the introducing example, the algorithm of [1] requires to be com-
plete that the global target language is the union of the local target
languages. [6] relies on that observation in order to encode a P2PIS
with peer/super-peers topology into a partitioned propositional the-
ory and to use the consequence finding algorithm of [1]. The global
knowledge on the target variables of the whole P2PIS must be known
and is distributed among the super-peers. The model-based diagnosis

framework for distributed embeddedsystems [16] is based on [1]. We
think it can benefit from our approach to apply to a real peer-to-peer
setting in which no global knowledge has to be shared.

In distributed ATMS [12], agents exchange nogood sets in order
to converge to a globally consistent set of justifications. In contrast
with a peer-to-peer vision, such a distributed vision of ATMS relies
on a global knowledge shared by all the agents and aims at getting a
unique global solution.

6 Conclusion

The contributions of this paper are both theoretical and practical. We
have provided the first distributed consequence finding algorithm in
a peer-to-peer setting, and we have exhibited a sufficient condition
for its completeness. We have developped a P2PIS architecture that
implements this algorithm and for which the first experimental re-
sults look promising. This architecture is used in a joint project with
France Télécom, which aims at enriching peer-to-peer web applica-
tions with reasoning services (e.g., Someone [15]).

So far, we have restricted our algorithm to deal with a vocabulary-
based target language. However, it can be adapted to more sophisti-
cated target languages (e.g., implicates of a given, maximal, length,
language based on literals and not only variables). This can be done
by adding a simple tag over all messages to encode the desired tar-
get language. Another possible extension of our algorithm is to al-
low more compact representation of implicates, as it is done in [19].
That work relies on an efficient clause-distribution operator. It can
be adapted by extending messages in our algorithm in order to send
compressed sets of clauses instead of one clause as it is the case right
now, without changing the deep architecture of our algorithm.

REFERENCES
[1] E. Amir and S. McIlraith, ‘Partition-based logical reasoning’, in KR’00.
[2] C. L. Chang and R. C. Lee, Symbolic Logic and Mechanical Theorem

Proving, Computer Science Classics, Academic Press, 1973.
[3] R. Dechter and I. Rish, ‘Directed resolution: the davis-putnam proce-

dure revisited’, in KR’94.
[4] A. del Val, ‘A new method for consequence finding and compilation in

restricted languages’, in AAAI’99.
[5] Gnutella. http://gnutella.wego.com.
[6] F. Goasdoueand M.-C. Rousset, ‘Querying distributed data through dis-

tributed ontologies: a simple but scalable approach’, IEEE Intelligent
Systems, (18), (2003).

[7] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov, ‘Schema mediation in
peer data management systems’, in ICDE’03.

[8] A. Halevy, Z. Ives, I. Tatarinov, and Peter Mork, ‘Piazza: data manage-
ment infrastructure for semantic web applications’, in WWW’03.

[9] K. Inoue, ‘Linear resolution for consequence finding’, Artificial Intelli-
gence, (56), (1992).

[10] A. Kean and G. Tsiknis, ‘An incremental method for generating prime
implicants/implicates’, Journal of Symbolic Computation, 9, (1990).

[11] P. Marquis, Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems, volume 5, chapter Consequence Finding Algorithms,
Kluwer Academic Publishers, 1999.

[12] C.L. Mason and R.R. Johnson, Distributed Artificial Intelligence II,
chapter DATMS: a framework for distributed assumption based rea-
soning, Pitman, 1989.

[13] Napster. http://www.napster.com.
[14] W. Nedjl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,

M. Palmer, and T. Risch, ‘Edutella: a p2p networking infrastructure
based on rdf’, in WWW’02.

[15] M. Plu, P. Bellec, L. Agosto, and W. van de Velde, ‘The web of people:
A dual view on the WWW’, in Int. World Wide Web Conf., (2003).

[16] G. Provan, ‘A model-based diagnosis framework for distributed embed-
ded systems’, in KR’02.

[17] R. Schrag and J. Crawford, ‘Implicates and prime implicates in random
3-sat’, Artificial Intelligence, 81, (1996).

[18] P. Siegel, Représentation et utilisation de la connaissance en calcul
propositionnel, Ph.D. dissertation, Université d’Aix-Marseille II, 1987.

[19] L. Simon and A. del Val, ‘Efficient consequence finding’, in IJCAI’01.

