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Abstract. This paper shows that we can take advantage of informa-
tion about the probabilities of the occurrences of events, when this
information is available, to refine the classical results ofdiagnos-
ability: instead of giving a binary answer, the approach we propose
allows one to quantify, in particular, the degree of non-diagnosability
in case of negative answer. The dynamics of the system is modelled
by a reducible Markov chain. A state of this chain contains informa-
tion about whether it is faulty (resp. ambiguous) or not. Theuseful
refinements of the decision about diagnosability are then obtained
from the asymptotic analysis of this Markov chain. This analysis may
be very useful in practice since it may lead to take the decision of tol-
erating some non-diagnosable systems, if their non-diagnosability is
not critical, and thus allows one saving the cost of additional sensors
necessary to make these systems diagnosable.2.

1 MOTIVATION

One major requirement in designing today’s real-life complex sys-
tems, is to ensure for them a high level of autonomy. Studyingthe
diagnosability of a system is one of the key issues in this context.
The problem of diagnosability drew the attention of many researchers
from both the discrete-event and the control communities. Aformal
definition of diagnosability has been introduced first in [7]. This work
provides also an algorithm to verify diagnosability in discrete event
systems (DES) represented by finite automata. The proposed method
is based on the so-called diagnoser which is an automaton with only
observable events and which allows one to estimate the stateof the
system after the observation of a sequence of events. Other verifi-
cation algorithms with polynomial complexity (the previous one is
exponential in the states number) have been then proposed and are
based on the twin plant approach which uses a synchronized product
of two automata [3][9]. Adaptations of these algorithms have been
also proposed to deal with the distributed case [5][8]. Another ap-
proach to solve diagnosability problem in DESs is based on model-
checking [1] where the verification of diagnosability is reduced to the
verification of a formula, often expressed in temporal logic, by using
efficient tools developed in the model-checking community.We find
also methods that use algebraic language [2] and more recently SAT
formalism to express and solve diagnosability [6].

However, all these approaches give a binary answer to the ques-
tion of whether the system is diagnosable or not. But, one caneasily
remark that there is no single level in non-diagnosability of a sys-
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tem, i.e., in case of a non-diagnosable system we would like to quan-
tify the degree of this non-diagnosability. The practical importance
of such a refinement is that it could allow the tolerance of a system
with, say, a low level or controllable form of non-diagnosability, if
the cost necessary to making it diagnosable by adding observable
events and thus sensors is very high. This paper shows that this ob-
jective can be achieved by enhancing the transitions of a DESwith
their probabilities. The method consists in extracting a Markov chain
that explains the dynamics of the system and provides probabilities of
the different observable traces leading it to faulty/normal and/or am-
biguous/unambiguous states. Some probability measures can then be
derived from the asymptotic analysis of this Markov chain and pro-
vides useful conclusions that go further than simply deciding if the
system is or is not diagnosable.

In section 2, we define a probabilistic discrete event model,we
show its relationship to a classical DES and we recall some basic
definitions useful to define diagnosability. In section Section 3, we
start by recalling the algorithm used in [7] to verify diagnosability in
case of possible multiple faults, we show after that how to use the di-
agnoser in the case of probabilistic transitions to construct a so-called
estimator (which can be thought of as a probabilistic diagnoser) and
how to extract from it a Markov chain and we explain how we can
use the results of the asymptotic behavior of the Markov chain to
draw the wished conclusions. Section 4 is devoted to some examples
that illustrate different cases one can encounter. Finallywe conclude
and give some perspectives of future work in section 5.

2 PROBABILISTIC DISCRETE EVENT MODEL

This section introduces the notion of a probabilistic discrete event
model which simply corresponds to a classical DES enriched by in-
formation about probabilities of the transitions between its states.

Definition 1 We model a probabilistic discrete event system
(PDES) by the structureΓ = (X, E, θ, x0) where X =
{x0, ..., xn−1} is a finite set of states (|X| = n), E =
{e0, ..., em−1} is a finite set of events occurring onΓ (|E| = m), x0

is the initial state andθ : X × E × X −→ [0..1] is a probabilistic
transition function defined such thatθ(x, e, x′) = α (0 ≤ α ≤ 1) is
the probability that the event e occurs inx and causes the transition
of the system from statex to statex′.

Definition 2 To a PDESΓ = (X, E, θ, x0) we associate a discrete
event system (DES)G = (X, E, δ, x0) having the same states setX,
events setE and initial statex0. The transitions ofG are defined by
δ ⊆ X × E × X where(x, e, x′) ∈ δ ⇔ θ(x, e, x′) > 0.

The DESG is simply the automaton obtained by removing from
Γ the information about the probabilities of its transitions.



The probabilistic transition function can be generalized to a word
s of E∗ (the Kleene closure ofE). θ(x1, s, x2) is the probability
that the system transits fromx1 to x2 following the word s. Since
a transition between two states following a word can in general be
performed by following different paths, this probability is the sum of
probabilities of all paths leading fromx1 to x2. Formally, let us con-
sider thats = e1, . . . ep and letCs

x1,x2
be the set of state sequences

betweenx1 andx2 by which the system may transit to generates:

Cs
x1,x2

= {(y1, . . . yp+1)|x1 = y1, x2 = yp+1, (yi, ei, yi+1) ∈ δ}

We have:θ(x1, s, x2) =
∑

(y1,...,yp+1)∈Cs
x1,x2

∏p

i=1
θ(yi, ei, yi+1).

θ(x1, s, x2) can also be defined recursively by:
θ(x1, s, x2) =

∑n−1

j=0
θ(x1, e1, xj).θ(xj , e2 . . . ep, x2).

Let us now recall some basic definitions and notations relative to
G and useful in the study of diagnosability.

We denote by L the language generated byG. L is a subset ofE∗

and is prefix closed.E = Eo ∪ Euo whereEo (resp.Euo) contains
the observable (resp. unobservable) events.Ef ⊆ Euo is a subset of
unobservable events containing the faults. Moreover, faults are par-
titioned into disjoint sets corresponding to the differentfault types:
Ef = Ef1

∪ . . . ∪ Efp . In what follows, we will focus on one fault
type as in [9][5][8]. This is justified as the system is diagnosable if
and only if it is diagnosable for each fault type. Thus, to check the di-
agnosability of a syetem with several faults, one must checkin turn
its diagnosability w.r.t each fault type by considering allthe other
faults as non observables.

For the sake of simplicity, we will denote byf each occurrence
of the fault type for which we want to verify the diagnosability. We
suppose also that L is live, that there is no cycle inG with only un-
observable events and that we represent in the model all the possible
transitions of the system in each state. Thus, we have for each x in
X:

∑m−1

i=0

∑n−1

j=0
θ(x, ei, xj) = 1.

Example 1 Figure 1 shows an example of a PDESΓ =
(X, E, θ, x0) and its corresponding DESG = (X, E, δ, x0) where:
X = {x0, x1}, E = Eo ∪ Euo with Eo = {a, b, c} and Euo =
{f, uo}, the set of fault events isEf = {f}, the initial state for the
two systems isx0 and the transition functions are defined by:

• θ(x0, uo, x1) = 1/6, θ(x0, f, x1) = 1/2, θ(x0, c, x1) = 1/3,
θ(x1, a, x1) = 1/3 and θ(x1, b, x0) = 2/3. For the other possi-
ble combinations of the source statex, target statey and the event
e, θ(x, e, y) = 0.

• δ(x0, uo) = x1, δ(x0, f) = x1, δ(x0, c) = x1, δ(x1, a) = x1

and δ(x1, b) = x0.

Figure 1. A PDES and the corresponding simple DES

A word of the language L is also called trace. The empty trace
is denoted byǫ. The postlanguage ofL after s is denoted byL/s:
L/s = {t ∈ E∗|st ∈ L}. P : E∗ −→ E∗ is a projection function

that erases from any trace its unobservable events :P (σ) = ǫ if
σ = ǫ or σ ∈ Euo, P (σ) = σ if σ ∈ Eo andP (sσ) = P (s)P (σ)
for s ∈ E∗ andσ ∈ E.

P−1
L is the inverse projection: for anyw ∈ E∗

o , P−1
L (w) =

{s ∈ L|P (s) = w}. It provides for an observable tracew, all
traces ofL whose projection isw. We denote bysf the final event
of a traces and by Ψ(f) all traces ending in the fault eventf :
Ψ(f) = {s ∈ L|sf = f} and we define:Xo = {x0} ∪ {x ∈
X |∃y ∈ X,∃e ∈ Eo, (y, e, x) ∈ δ}. Let L(G, x) denote the set of
traces originating fromx, Lo(G, x) denotes the set of traces origi-
nating fromx and ending at the first observable event andLσ(G, x)
the subset ofLo(G, x) containing traces that end at the observable
eventσ: Lo(G, x) = {s ∈ L(G, x) | s = uσ, u ∈ E∗

uo, σ ∈
Eo}, Lσ(G, x) = {s ∈ Lo(G, x) | sf = σ}.

3 DIAGNOSABILITY

Intuitively, a system is said to be diagnosable if we can deduce with-
out confusion after a finite delay of observations whether a fault
occurred or not in the system. Let us recall here the formal def-
inition given in [7] adapted to our assumption that only one fault
type is considered. The system is diagnosable if the following holds:
(∃n ∈ N)[∀s ∈ Ψ(f)](∀t ∈ L/s)[‖t‖ ≥ n ⇒ D]), where the
diagnosability condition D is:w ∈ P−1

L [P (st)] ⇒ f ∈ w.

3.1 Checking the “binary” diagnosability

We start by checking the ”binary” diagnosability of the system. We
use for that the algorithm of Sampath and al. [7] whose diagnoser is
well adapted to be used for a probabilistic analysis (see below). We
consider the case of possible multiple faults. In what follows we re-
call briefly the construction of the generatorG′ and the diagnoserGd

before giving (without technical details) the necessary and sufficient
condition onG′ andGd for the binary diagnosability of L.

The generatorG′ is defined byG′ = (Xo, Eo, δG′ , x0) whereXo,
Eo andx0 have already been defined.δG′ is such that:(x, σ, x′) ∈
δG′ if (x, s, x′) ∈ δ for some s ∈ Lσ(G, x). The corresponding
probabilistic generator is defined byΓ′ = (Xo, Eo, θΓ′ , x0) where
Xo, Eo andx0 are the same as inG′ and the probabilistic transition
functionθΓ′ : Xo×Eo×Xo −→ [0, 1] is defined by:θΓ′(x, σ, x′) =
∑

s∈Lσ(G,x)
θ(x, s, x′).

Proposition 1 The sum of the probabilities of all transitions issued
from each state ofΓ′ equals 1. Formally:

∑

σ∈Eo

∑

x′∈X0

θΓ′(x, σ, x′) = 1 for each x in X0

.

The diagnoser is a deterministic automaton which is defined by Gd =
(Qd, Eo, δd, q0) where:

• Qd ⊆ 2Xo×{N,F}. A state qd of Qd is of the form: qd =
{(x1, l1), . . . , (xk, lk)} wherexi ∈ Xo andli ∈ {N, F}.

• Eo is the set of the observable events.
• δd : Qd × Eo −→ Qd is the transition function of the diagnoser

defined by:q2 = δd(q1, σ) ⇔ q2 = R(q1, σ) with:

– σ ∈ ed(q1) whereed(q1) =
⋃

(x,l)∈q1
{P (s)|s ∈ Lo(G, x)}

– R : Qd × Eo −→ Qd is a range function defined by:

R(q, σ) =
⋃

(x,l)∈q

⋃

s∈Lσ(G,x)

⋃

(x,s,x′)∈δ
{(x′, LP (x, l, s))}



– LP : Xo × {N, F} × E∗ −→ {N, F} is a label propagation
function defined by:

LP (x, l, s) =

{

N if l = N and f 6∈ s
F else

• q0 = {(x0, N)} is the initial state of the diagnoserGd.

Figure 2. The probabilistic generatorΓ′, the simple generatorG′ and the
diagnoserGd

Figure 2 represents the probabilistic generator, the simple generator
and the diagnoser of the system described in example 1.

A stateq of Gd is said to be f-uncertain if∃(x, l), (x′, l′) ∈ q such
thatl 6= l′, i.e.,l = N andl′ = F or vice versa. Informally, a set of
f-uncertain statesq1, . . . qn is said to form an f-indeterminate cycle
if q1, . . . qn form a cycle inGd to which correspond inG′ a cycle
involving only states with labelF and a cycle involving only states
with labelN . Finally, L is diagnosable if and only if its diagnoserGd

contains no f-indeterminate cycle.

3.2 Constructing the estimator

The diagnoser gives us a general information about the stateof the
system after the observation of a sequence of observable events. For
example, let us suppose that we have, in the diagnoser, a pathfrom
the initial stateq0 = {(x0, N)} to some f-uncertain stateq and that
this path is labeled by the observable tracew. Let us suppose for
instance thatq corresponds to two different statesx1 andx2 with
no fault in the first state and with a fault in the second one, i.e.,
q = {(x1, N), (x2, F )}. If we observe the tracew, we can deduce
that the system is either in statex1 and no fault occurred or in state
x2 with the occurrence of a fault. In a probabilistic framework, the
probabilities to be in statex1 or in statex2 are not necessarily the
same. However, the probability to observew, independently from
the target state represents the probability to be in a f-uncertain state.

The estimator is a PDES which makes explicit this piece of infor-
mation: a state of the estimator is composed of a state name from
the original system, a fault label (N or F) and a new attributewhich
indicates if we can decide or not that a fault occurred when the sys-
tem arrives to this state, i.e., this attribute indicates simply if the state
belongs to some f-uncertain state or not. The transitions ofthe esti-
mators correspond to a refinement of those of the diagnoser. Indeed,
if we have a transition in the diagnoser from a stateq1 to a stateq2

by means of an observableσ then for each sub-state inq2, we have
at least one sub-state inq1 which transits to it byσ, of course, with
some probability. The estimator makes explicit these internal transi-
tions and their corresponding probabilities. Formally, the estimator
is defined by∆ = (Z, Eo, ϕ, z0) where:

• Let q0, . . . , qk be the states of the diagnoserGd such thatq0 =
{(x0, N)}. The set of the states of∆ is Z ⊆ X × {N, F} ×
{NA, A}×{0, . . . , k} whereNA (resp.A) is a new label stand-
ing for non ambiguous (resp. ambiguous). The initial state of ∆ is
z0 = (x0, N, NA, 0) and each sub-state(x, l) of a stateqi of Gd

corresponds to a statez = (x, l, Att, i) of ∆ where:

Att =

{

A if qi is an f − uncertain state
NA else

• Eo is the set of observable events.
• ϕ : Z × Eo × Z −→ [0..1] is the probabilistic transition

function of ∆. Let z = (x, l, Att, i) and z′ = (x′, l′, Att′, i′)
be two states ofZ and σ be an observable event. The transi-
tion probabilityϕ(z, σ, z′) can be different from 0 only if there
is a possible transition fromz to z′. From the construction of
the diagnoserGd, this corresponds to the case where there is
at least some traces ∈ Lσ(G, x) such thatl′ = LP (x, l, s)
and (x, s, x′) ∈ δ. Let S be the set of all such traces:S =
{s ∈ Lσ(G, x)|l′ = LP (x, l, s) and (x, s, x′) ∈ δ}. The
transition probabilityϕ(z, σ, z′) is then the sum of the proba-
bilities of transitions fromx to x′ by the different traces of S:
ϕ(z, σ, z′) =

∑

s∈S
θ(x, s, x′).

Figure 3. The estimator

Figure 3 shows the estimator of the system presented in example 1.

Remark 1 It can be easily shown that the maximum number of
states in the estimator is exponential on the number of states in the
system and since we consider one fault at a time this number islinear
on the number of fault types.

Proposition 2 The sum of the probabilities of all transitions issued
from each state of∆ equals 1:

∑

σ∈Eo

∑

z′∈Z

ϕ(z, σ, z′) = 1 for each z in Z

3.3 Probabilistic analysis

In this section, we show how to extract from the estimator an ho-
mogeneous and discrete Markov chain and then to exploit the well
known results about the asymptotic behaviors of such chains(for
more details about that, see for example [4]) to provide somere-
finement to the classical binary diagnosability. We think that such a
refinement can be, in practice, very useful in taking decisions about
what adaptations have to be done on a non diagnosable system.

3.3.1 The Markov chain associated with the estimator

To an estimator∆ = (Z, Eo, ϕ, z0), we associate the homogeneous
and discrete time Markov chain{Mi, i = 0, 1...} whereMi is a



random variable whose value is the state of the system after the ob-
servation of theith event occurring in the system.Z is the state space
of our Markov chain. Its transition matrixtr is defined by:

∀(z1, z2) ∈ Z2, trz1,z2
=

∑

σ∈Eo

ϕ(z1, σ, z2).

Figure 4 illustrates graphically the Markov chain of the system pre-
sented in example 1. The corresponding transition matrix is:

tr =















z0 z1 z2 z3 z4 z5

z0 0 1/3 1/18 1/9 1/6 1/3
z1 2/3 1/3 0 0 0 0
z2 0 0 1/3 2/3 0 0
z3 0 0 7/18 1/9 1/6 1/3
z4 0 0 0 0 1/3 2/3
z5 0 0 0 0 5/9 4/9















A Markov chain is said to be irreducible if its representative graph

Figure 4. The representative graph of the Markov chain associated with
the estimator

represents one strongly connected component. In the general case a
Markov chain is reducible and its representative graph contains more
than one strongly connected component. This is the case for Markov
chains associated with the estimators described in this work.

Proposition 3 Under the assumption that there is at least one oc-
currence of a fault in the system, the Markov chain{Mi} associated
with the estimator∆ is reducible3.

3.3.2 The asymptotic behavior

In addition to the information about the binary diagnosability prop-
erty of a system, the transition probabilities provide further useful in-
formation especially when the system is not diagnosable. Bystudy-
ing the asymptotical behavior of the Markov chain associated with
the estimator, we can compute relevant probability measures con-
cerning the possible infinite observable traces of the system. The fact
that we consider infinite traces is not disadvantageous in practice be-
cause this study allows also one to estimate the average number of
steps after which the system converges to a stage where it is or not
diagnosable. After an arbitrary infinite execution ofG, we focus on
three probability measures that we think important in this context:
the probabilitypG

Nd that the observed infinite trace (projection of the
execution onto the set of observable events) is non-diagnosable, i.e.,
we cannot decide if the fault occurred or not; the probability pG

F that a

3 Supposing that there is at least one fault occurrence in the system, the esti-
mator must contain at least one state whose fault label isF and it is easy to
prove that from such a state we can never come back to the initial statez0
whose fault label isN .

fault occurred and the probabilitypG
F/Nd that a fault occurred known

that the observed trace is non-diagnosable. To perform our analysis,
we apply the following procedure:

1. Classify the states of the chain{Mi}. We recall that: a class is sim-
ply a strongly connected component in the representative graph of
{Mi}; a persistent class is a class whose states have no successor
outside it; if a persistent class contains only one state, then it is
said to be absorbent and a class which is not persistent is said to
be transitory. Letζ = {C1, . . . , Ch} be the set of the persistent
classes of{Mi} andµ = {µ1, . . . , µr} be the set of transitory
states, i.e., which do not belong to persistent classes.

2. Put the transition matrix in the canonical form in which: persistent
classes are put in the first and the states of each persistent class are
put together. We obtain the transition matrix:

tr =









Tr1 · · · 0 0
...

. . .
...

...
0 · · · Trh 0

R1 · · · Rh Q









Tri is the stochastic matrix containing the transition probabili-
ties inside the persistent classCi. The matrixR = [R1, . . . , Rh]
(resp. the matrixQ) contains the transition probabilities from tran-
sitory states to persistent states (resp. to transitory states).

3. Compute the fundamental matrix of the Markov chain given by:
N = (I − Q)−1 (I is the unit matrix of size r) and the absorption
matrix given byB = N.R. We have the following results: the
probability to be in a transitory state after an infinite number of
steps is0; the average number of steps (observed events) before
absorption (reaching a persistent class) starting from a transitory
statei is given by the sum of the terms of theith row of the funda-
mental matrixN and the probability of absorption in the persistent
statej when we start from statei is given by the termbij of the
matrix B. The absorption probability of a persistent class is then
the sum of the absorption probabilities of its states. The starting
point for us is always the initial statez0 = (x0, N, NA, 0) that
we suppose without loss of generality be the first transitorystate4

which corresponds to the first row ofN andB.

Let ζNd (resp.ζF ) be the subset of persistent classes containing
only ambiguous states (resp. states with the fault label), i.e. states
z = (x, l, Att, i) whereAtt = A (resp.l = F ) and letζNd∧F

be the subset of persistent classes containing only ambiguous states
with the fault label:ζNd∧F = ζNd ∩ ζF . Then we can define the
probabilitiespG

Nd, pG
F andpG

F/Nd as follows:

• pG
Nd is the probability to be absorbed in one of the classes ofζNd

starting fromz0. It is given by:pG
Nd =

∑

c∈ζNd

∑

z∈c
b1z .

• pG
F is the probability to be absorbed in one of the classes ofζF

starting fromz0. It is given by:pG
F =

∑

c∈ζF

∑

z∈c
b1z .

• pG
Nd∧F is the probability to be absorbed in one of the classes of

ζNd∧F starting fromz0. Using the Bayes formulae, we obtain:

pG
F/Nd =

∑

c∈ζNd∧F

∑

z∈c
b1z

∑

c∈ζNd

∑

z∈c
b1z

.

• In addition to these probability measures, we can obtain theav-
erage number of steps before absorption starting from statez0 by

the relation:Nb
G
Abs =

∑r

j=1
(N)1j .

4 z0 is always transitory. See the explanation given in the previous footnote.



Let us now come back to our example (see the transition matrix
in the previous section and the representative graph in figure 4).
We have one persistent classC = {z4, z5} and two transitory
classes: the first one contains the statesz0 andz1 and the other one
contains the statesz2 andz3. After putting the transition matrix in
the canonical form we compute the matrices N and B. The first rows
(corresponding toz0) of these matrices are:

N1 =
(

z0 z1 z2 z3

3/2 3/4 5/12 1/2
)

andB1 =
(

z4 z5

1/3 2/3
)

FromN1 we obtain that:Nb
G
Abs = 3/2 + 3/4 + 5/12 + 1/2 =

3.16 steps. Moreover, we have:ζNd = ζF = ζNd∧F = C. Thus,
we obtain :pG

Nd = pG
F = pG

F/Nd = 1. This means that, in average,
after the observation of3 to 4 events, we are almost sure that the
trace observed corresponds to a non-diagnosable trace theoretically,
but we are also almost sure that a fault has occurred.

4 EXAMPLES

The figures 5 shows four examples of PDES. The lack of space pre-
vents us to examine in detail, for these examples, the whole of the
analysis procedure described in this paper. So, we only comment
briefly the final results that are summed up in table 1.

Figure 5. Examples

G1 has exactly the same structure that the system discussed in this
paper but with different probability transitions: we put a very small
probability in the transition containing the fault. We obtain the same
probabilities:pNd = pF = pF/Nd = 1 but the average number of
steps before being absorbed passes from3.16 to 150.5. In G2, we
have the probability of6/13 that an arbitrary infinite trace observed
in the system be non-diagnosable and the same probability that it
contains a fault (the probability to be in a diagnosable trace (resp. in
a trace without fault) is then1 − 6/13 = 7/13). We have the prob-
ability of 1/2 that a non-diagnosable trace contains a fault. Even if
G3 is theoretically non-diagnosable, the probability to observe a non-
diagnosable trace tends to0 when the length of this trace tends to∞.
In addition, in average, we must not wait for a long time before ob-

taining a diagnosable trace(Nb
G3

Abs = 3) in which the probabilities
of having or not a fault are here equal. FinallyG4 is diagnosable, it
is then obvious to obtain thatpNd = 0 as inG3. However, the dif-
ference between the two cases is that the estimator ofG3 contains
at least one ambiguous state (withAtt = A) but that is transitory,
whereas all states inG4 are unambiguous (withAtt = NA).

G1 andG2 are examples where the probability of non diagnosabil-
ity tends to a strictly positive value when the length of the observed
trace tends to∞. But, even in this case, the knowledge about the
fault probability in an arbitrary infinite trace can be significant for
taking decisions: inG1 even if we are sure that all infinite traces are
”theoretically” not diagnosable, we know that the probability that a
fault occurs tends to1. The situation is completely different inG2 in
which the non diagnosability of the system is more ”effective”. G3

is an example of a system which can be kept unchanged even if not
diagnosable unless the average time before absorption is judged very
long, because the probability to stay in a non-diagnosable trace tends
to 0 when the length of the observed trace tends to∞.

Table 1. Results for the PDESsG1 to G4.

# pers. classes pNd pF pF/Nd Nb
Gi

Abs

G1 1 1 1 1 150.5
G2 4 6/13 6/13 1/2 2.38
G3 2 0 1/2 no 3

G4 2 0 8/15 no 3.2

5 CONCLUSION

We have shown that using probabilistic information about the transi-
tions of a DES, when available, can provide useful refinementof the
binary decision about the diagnosability of the system. Especially,
this refinement can lead in practice to tolerate non-diagnosability in
cases where it is not persistent, i.e., in cases where it suffices to let the
system run for enough long time to be almost sure that the observed
trace will allow one to decide if a fault occurred or not.

Different perspectives are open from this first investigation. We
want to generalize this work to other DES formalisms like Petri nets
and symbolic transition systems, to the distributed case, and to the
case where reparability actions are also available, in order to study
global self-healability in a probabilistic framework.
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