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Abstract. This paper shows that we can take advantage of informatem, i.e., in case of a non-diagnosable system we woulddikgian-

tion about the probabilities of the occurrences of eventgmthis
information is available, to refine the classical resultddizgnos-
ability: instead of giving a binary answer, the approach weppse
allows one to quantify, in particular, the degree of norgdisability
in case of negative answer. The dynamics of the system isliadde
by a reducible Markov chain. A state of this chain contairierima-
tion about whether it is faulty (resp. ambiguous) or not. Tkeful
refinements of the decision about diagnosability are thenioéd
from the asymptotic analysis of this Markov chain. This ge@ may
be very useful in practice since it may lead to take the dewcisf tol-
erating some non-diagnosable systems, if their non-disagitity is
not critical, and thus allows one saving the cost of addéi@@nsors
necessary to make these systems diagnosable.

1 MOTIVATION

One major requirement in designing today’s real-life campdys-
tems, is to ensure for them a high level of autonomy. Studyfireg
diagnosability of a system is one of the key issues in thigedn
The problem of diagnosability drew the attention of mangesshers
from both the discrete-event and the control communitieforanal
definition of diagnosability has been introduced firstin [[fjis work
provides also an algorithm to verify diagnosability in dite event
systems (DES) represented by finite automata. The proposttbch
is based on the so-called diagnoser which is an automatdnomniy
observable events and which allows one to estimate the aitadte
system after the observation of a sequence of events. Odhidi- v
cation algorithms with polynomial complexity (the previoane is
exponential in the states number) have been then proposkdran
based on the twin plant approach which uses a synchronizetligir
of two automata [3][9]. Adaptations of these algorithmséaeen
also proposed to deal with the distributed case [5][8]. Arotap-
proach to solve diagnosability problem in DESs is based odelro
checking [1] where the verification of diagnosability isuedd to the
verification of a formula, often expressed in temporal lpbicusing
efficient tools developed in the model-checking commutg. find
also methods that use algebraic language [2] and more hp S
formalism to express and solve diagnosability [6].

tify the degree of this non-diagnosability. The practicapbrtance
of such a refinement is that it could allow the tolerance ofsiesp
with, say, a low level or controllable form of non-diagnogiay if
the cost necessary to making it diagnosable by adding céisierv
events and thus sensors is very high. This paper shows ikaitth
jective can be achieved by enhancing the transitions of a DES
their probabilities. The method consists in extracting akde chain
that explains the dynamics of the system and provides piiitiesof
the different observable traces leading it to faulty/ndramal/or am-
biguous/unambiguous states. Some probability measunethen be
derived from the asymptotic analysis of this Markov chaid aro-
vides useful conclusions that go further than simply degjdf the
system is or is not diagnosable.

In section 2, we define a probabilistic discrete event model,
show its relationship to a classical DES and we recall sonsicba
definitions useful to define diagnosability. In section &8, we
start by recalling the algorithm used in [7] to verify diagability in
case of possible multiple faults, we show after that how toths di-
agnoser in the case of probabilistic transitions to corstso-called
estimator (which can be thought of as a probabilistic diagnpand
how to extract from it a Markov chain and we explain how we can
use the results of the asymptotic behavior of the Markov rchai
draw the wished conclusions. Section 4 is devoted to somars
that illustrate different cases one can encounter. Fivedlyonclude
and give some perspectives of future work in section 5.

2 PROBABILISTIC DISCRETE EVENT MODEL

This section introduces the notion of a probabilistic déserevent
model which simply corresponds to a classical DES enricheid-b
formation about probabilities of the transitions betwesrstates.

Definition 1 We model a probabilistic discrete event system
(PDES) by the structureI' = (X,E,0,x0) where X =
{z0,...,zn—1} is a finite set of states|X| = n), FE
{eo, ..., em—1} is afinite set of events occurring &(|E| = m), zo

is the initial state and) : X x E x X — [0..1] is a probabilistic
transition function defined such théz,e,z’) = a (0 < a < 1)is
the probability that the event e occursadrand causes the transition

However, all these approaches give a binary answer to the que©f the system from stateto statez’.

tion of whether the system is diagnosable or not. But, oneceaily
remark that there is no single level in non-diagnosabilitya ®ys-
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Definition 2 To a PDES" = (X, E, 6, x0) we associate a discrete
event system (DE$®) = (X, E, §, zo) having the same states sg{
events seE and initial statex. The transitions of5 are defined by
§ C X x E x X where(z,e,z’) € § & 0(z,e,z’) > 0.

The DESG is simply the automaton obtained by removing from
T" the information about the probabilities of its transitions



The probabilistic transition function can be generalized tvord
s of E* (the Kleene closure oF). 6(z1,s,x2) is the probability
that the system transits fronn to x2 following the word s. Since
a transition between two states following a word can in ganiee
performed by following different paths, this probabilig/the sum of
probabilities of all paths leading fromy to 2. Formally, let us con-

sider thats = e1, ... e, and letC;, ., be the set of state sequences

betweenr; andz. by which the system may transit to generate

02'1,1'2 = {(y17 ..

Yp+1)|T1 = Y1, T2 = Yp+1, (Yis €4, Yir1) € I}
We haved(z1, s, z2) = Z(thyﬁl)ecﬁ

. [15_, 0(yis i, yitr)
0(x1,s,z2) can also be defined recursively by:

O(x1,s,22) = Z":_Ol O(x1,e1,z5).0(zj,ez...ep,x2).

Let us now recall some basic definitions and notations edat
G and useful in the study of diagnosability.

We denote by L the language generatedby is a subset of5™*
and is prefix closedtl = E, U E., whereE, (resp.E,,) contains
the observable (resp. unobservable) evelijsC E.,, is a subset of
unobservable events containing the faults. MoreovertSare par-
titioned into disjoint sets corresponding to the differéilt types:
Ey = Ey, U...U Ey,. Inwhat follows, we will focus on one fault
type as in [9][5][8]. This is justified as the system is diagable if
and only if it is diagnosable for each fault type. Thus, toaktime di-
agnosability of a syetem with several faults, one must cliedlrn
its diagnosability w.r.t each fault type by considering thé other
faults as non observables.

For the sake of simplicity, we will denote hf each occurrence
of the fault type for which we want to verify the diagnosatyiliwe
suppose also that L is live, that there is no cyclé&invith only un-
observable events and that we represent in the model albtshpe
transitions of the system in each state. Thus, we have fdr eac

XY S 0w e ) = 1

Example 1 Figure 1 shows an example of a PDES =

(X, E,0,x0) and its corresponding DE& = (X, E, §, z¢) where:

X = {xo,xl}, FEF = FE,UFE,, with FE, = {a,b, C} and Fu.o =

{f, uo}, the set of fault events i§; = {f}, the initial state for the
two systems is, and the transition functions are defined by:

e O(xzo,u0,x1) = 1/6, 6(xo, f,z1) = 1/2, 6(x0,c,z1) = 1/3,
6(z1,a,z1) = 1/3 and 6(z1, b, zo) = 2/3. For the other possi-
ble combinations of the source statgtarget statey; and the event
e, O(z,e,y) =0.

e (xzo,u0) = x1, (o, f) = x1, 6(x0,¢) = z1, (z1,a) = =1
and (5($17 b) = Xg.

c.1/3

@e@ .
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Figure 1. A PDES and the corresponding simple DES

A word of the language L is also called trace. The empty trace

is denoted by. The postlanguage df after s is denoted byL/s:
L/s ={t € E*|st € L}. P: E* — E™ is a projection function

that erases from any trace its unobservable eveés:) = e if
oc=¢€0ro € Ey, P(o) =0 if 0 € E, andP(so) = P(s)P(o)
fors € E* ando € E.

P; ! is the inverse projection: for amy € E;, P;'(w) =
{s € L|P(s) = w}. It provides for an observable trace, all
traces ofL whose projection isv. We denote by ¢ the final event
of a traces and by ¥(f) all traces ending in the fault everft
U(f) = {s € L|sy = f} and we defineX, = {zo} U {z €
X |3y € X,3e € E,, (y,e,x) € §}. Let L(G, =) denote the set of
traces originating from:, L,(G, ) denotes the set of traces origi-
nating fromz and ending at the first observable event dndG, x)
the subset of., (G, z) containing traces that end at the observable
evento: L,(G,z) = {s € L(G,z) | s = uo,u € E;,,0 €
E,},Ly(G,z) ={s € Lo(G,x) | sy = o}

3 DIAGNOSABILITY

Intuitively, a system is said to be diagnosable if we can deduith-
out confusion after a finite delay of observations whetheaut f
occurred or not in the system. Let us recall here the form& de
inition given in [7] adapted to our assumption that only onalf
type is considered. The system is diagnosable if the fotigvtiolds:
(3n € N)|Vs € ¥(f)](Vt € L/s)[||t|| > n = D]), where the
diagnosability condition D isw € P, '[P(st)] = f € w.

3.1 Checking the “binary” diagnosability

We start by checking the "binary” diagnosability of the gyt We
use for that the algorithm of Sampath and al. [7] whose diagnis
well adapted to be used for a probabilistic analysis (seewjeMe
consider the case of possible multiple faults. In what fefiave re-
call briefly the construction of the generat@t and the diagnose®,
before giving (without technical details) the necessany sufficient
condition onG’ and G for the binary diagnosability of L.

The generato€” is defined byG’ = (X,, Fo, 6/, To) WhereX,,
E, andz( have already been definef;: is such that(z, o, z') €
dar if (x,s,2") €6 for somes € L,(G,x). The corresponding
probabilistic generator is defined &Y = (X,, E,, 1/, o) Where
X,, E, andxo are the same as i@’ and the probabilistic transition
functionfr : X, x E,x X, — [0, 1] is defined byfy (z,0,2") =
ZseLC,(G’I) 0(z, s, ).

Proposition 1 The sum of the probabilities of all transitions issued
from each state o’ equals 1. Formally:

Z Z Or (xz,0,2") =1 for each x in Xo

c€EE, ' €Xg

The diagnoser is a deterministic automaton which is defiged b=
(Qa Eo, 84, qo) Where:

o Qg C 2XXINF} A stategy of Qq is of the form:gy =
{(z1,l1),..., (zk,lx)} wherez,; € X, andl; € {N, F'}.

e F, is the set of the observable events.

e 04: Qa4 x E, — Qg is the transition function of the diagnoser
defined by:gz = §d(q1, O') = q2 = R(ql,a) with:

— o € ea(q1) Whereeq(q1) = U(z,z)eql{P(3)|5 € Lo(G,z)}
— R: Qa4 x E, — Qg is arange function defined by:
R(q7 U) = U(z,l)eq USGLG(G,IE) U(z,s,z/)eé{(x/’ LP(x’ l’ 8))}



— LP: X, x {N,F} x E* — {N, F} is a label propagation
function defined by:
N

LP(z,l,s) = { I

o qo = {(z0, N)} is the initial state of the diagnosé,.

if Il=Nand f&s

else
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Figure 2. The probabilistic generatdt’, the simple generatas’ and the
diagnoseiGy

Figure 2 represents the probabilistic generator, the srgpherator
and the diagnoser of the system described in example 1.

A stateq of G, is said to be f-uncertain #(z, 1), (z',1") € g such
that! # I',i.e.,l = N andl’ = F or vice versa. Informally, a set of
f-uncertain states, . .. ¢, is said to form an f-indeterminate cycle
if q1,...q, form a cycle inG, to which correspond ii’ a cycle
involving only states with labeF and a cycle involving only states
with label N. Finally, L is diagnosable if and only if its diagnos@y,
contains no f-indeterminate cycle.

3.2 Constructing the estimator

The diagnoser gives us a general information about the sfdte
system after the observation of a sequence of observahhsewor
example, let us suppose that we have, in the diagnoser, drpath
the initial statego = {(xo, V) } to some f-uncertain stateand that
this path is labeled by the observable tracelLet us suppose for
instance that corresponds to two different states and xo with
no fault in the first state and with a fault in the second ore, i.
q = {(z1, N), (z2, F)}. If we observe the trace), we can deduce
that the system is either in state and no fault occurred or in state
x2 with the occurrence of a fault. In a probabilistic framewcdithe
probabilities to be in state; or in statex, are not necessarily the
same. However, the probability to observe independently from
the target state represents the probability to be in a frtmicestate.

The estimator is a PDES which makes explicit this piece afrinf
mation: a state of the estimator is composed of a state naone fr
the original system, a fault label (N or F) and a new attritwitéch
indicates if we can decide or not that a fault occurred wherstls-
tem arrives to this state, i.e., this attribute indicategpdy if the state
belongs to some f-uncertain state or not. The transitiorthegsti-
mators correspond to a refinement of those of the diagnasied,
if we have a transition in the diagnoser from a statéo a statey,
by means of an observabtethen for each sub-state in, we have
at least one sub-state in which transits to it by, of course, with
some probability. The estimator makes explicit these iratktransi-
tions and their corresponding probabilities. Formallg #stimator
is defined byA = (Z, E,, ¢, z0) where:

e Letqo,...,qr be the states of the diagnos@y such thatgy =
{(z0, N)}. The set of the states &k is Z C X x {N, F} x
{NA, A} x{0,...,k} whereN A (resp.A) is a new label stand-
ing for non ambiguous (resp. ambiguous). The initial statA s
z0 = (x0, N, NA,0) and each sub-state;, ) of a statey; of G4
corresponds to a state= (x, [, Att,i) of A where:

A if qiisan f — uncertain state

NA else

e F, is the set of observable events.

e v : Z x E, x Z — [0..1] is the probabilistic transition
function of A. Let 2 = (x,1, Att,i) and 2’ = (2,1, Att',4")
be two states ofZ and o be an observable event. The transi-
tion probability ¢(z, o, 2) can be different from 0 only if there
is a possible transition from to z’. From the construction of
the diagnoseiG,, this corresponds to the case where there is
at least some trace € L.,(G,z) such thatl’ = LP(z,l,s)
and (x,s,2') € 4. Let S be the set of all such traceS: =
{s € L,(G,z)|l' = LP(z,l,s) and (z,s,z’) € §}. The
transition probabilityy(z, o, 2') is then the sum of the proba-
bilities of transitions fromz to 2’ by the different traces of S:

o(z,0,2") =3 s 0(z,5,2).

Att =

al/3

A
D 2,2/9
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Figure 3. The estimator

Figure 3 shows the estimator of the system presented in dgamp

Remark 1 It can be easily shown that the maximum number of
states in the estimator is exponential on the number of statéhe
system and since we consider one fault at a time this numbeear

on the number of fault types.

Proposition 2 The sum of the probabilities of all transitions issued
from each state ofA equals 1:

Z Z ©(z,0,2") =1 foreachzin Z

oc€E, z'e€Z

3.3 Probabilistic analysis

In this section, we show how to extract from the estimator an h
mogeneous and discrete Markov chain and then to exploit #ie w
known results about the asymptotic behaviors of such chi@ors
more details about that, see for example [4]) to provide soene
finement to the classical binary diagnosability. We thinkttsuch a
refinement can be, in practice, very useful in taking densiabout
what adaptations have to be done on a non diagnosable system.

3.3.1 The Markov chain associated with the estimator

To an estimato\ = (Z, E,, ¢, z0), we associate the homogeneous
and discrete time Markov chaifiM;,i = 0,1...} wherel; is a



random variable whose value is the state of the system &féeolt-  fault occurred and the probabilipf? , that a fault occurred known
servation of the'” event occurring in the systerfl.is the state space  that the observed trace is non-diagnosable. To performmalysis,

of our Markov chain. Its transition matrix is defined by: we apply the following procedure:
Y(z1,22) € A T Z (21,0, 22). 1. Classify the states of the chdii; }. We recall that: a class is sim-
ocE, ply a strongly connected component in the representatieigof
{M;}; a persistent class is a class whose states have no successor
Figure 4 illustrates graphically the Markov chain of theteys pre- outside it; if a persistent class contains only one stan this
sented in example 1. The corresponding transition matrix is said to be absorbent and a class which is not persistentdgcai

be transitory. Let = {C1,...,C.} be the set of the persistent

oA 22 A 25 classes of M;} andy = {u1,..., .} be the set of transitory
z (0 1/3 1/18 1/9 1/6 1/3 states, i.e., which do not belong to persistent classes.
2| 2/3 1/3 0 0o 0 0 2. Put the transition matrix in the canonical form in whicbrgistent
w2 0 0 1/3:2/3 0 0 classes are put in the first and the states of each persiktestre
zz| 0 0 7/18 1/9 1/6 1/3 put together. We obtain the transition matrix:
4| 0 0o o 0 1/3 2/3
»5\0 0 0 0 5/9 4/9
L . . . . . Tr 0 0
A Markov chain is said to be irreducible if its representatyyraph .
/ = T
L 0 - Trp, 0
‘ 173 R . Ry Q

" Tr; is the stochastic matrix containing the transition prolabi
s MDS@ ties inside the persistent cla€s. The matrixR = [Rx1, ..., Rn]
(resp. the matrixQ) contains the transition probabilities from tran-
sitory states to persistent states (resp. to transitotgsgta
3. Compute the fundamental matrix of the Markov chain givegn b
N = (I —Q)~" (lis the unit matrix of size r) and the absorption
matrix given by B = N.R. We have the following results: the
Figure 4. The representative graph of the Markov chain associatéd wit probability to be in a transitory state after an infinite nembf
the estimator steps is0; the average number of steps (observed events) before
absorption (reaching a persistent class) starting fronarsstrory
statei is given by the sum of the terms of thé& row of the funda-
mental matrixV-and the probability of absorption in the persistent
statej when we start from stateis given by the ternd;; of the
matrix B. The absorption probability of a persistent class is then
the sum of the absorption probabilities of its states. Thetisg
point for us is always the initial statey = (xo, N, NA,0) that
we suppose without loss of generality be the first transistayé
which corresponds to the first row 8f and B.
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represents one strongly connected component. In the daraesaa
Markov chain is reducible and its representative graphainatmore
than one strongly connected component. This is the case diokdv
chains associated with the estimators described in thik.wor

Proposition 3 Under the assumption that there is at least one oc-
currence of a fault in the system, the Markov chfiv; } associated
with the estimator\ is reduciblé.

Let {na (resp.(r) be the subset of persistent classes containing
3.3.2 The asymptotic behavior only ambiguous states (resp. states with the fault label),states
z = (wz,1, Att,1) where Att = A (resp.l = F) and let{narr
be the subset of persistent classes containing only amigstates
with the fault label:{xirr = (na N ¢r. Then we can define the
probabilitiesp%; 4, p% andp§, v, as follows:

In addition to the information about the binary diagnosabjprop-

erty of a system, the transition probabilities provideliertuseful in-

formation especially when the system is not diagnosablestBgy-

ing the asymptotical behavior of the Markov chain assodiatéh

the estimator, we can compute relevant probability measooa- o ,¢ s the probability to be absorbed in one of the classesvaf

cerning the possible infinite observable traces of the syside fact starting fromzo. Itis given by:p$, = S° - S b

that we consider infinite traces is not disadvantageousaictize be- G . “0€CNa fzCe
. ) e py is the probability to be absorbed in one of the classegrof

cause this study allows also one to estimate the averagearushb starting fromzo. It is given by:pG = > S b

steps after which the system converges to a stage whereritisto a ] ' - o c€Cp Lz€c " E!

diagnosable. After an arbitrary infinite execution@fwe focus on ~ ® PNaar iS the probability to be absorbed in one of the classes of

three probability measures that we think important in thistext: (nanr starting fromzo. Using the Bayes formulae, we obtain:

the probabilityp§,; that the observed infinite trace (projection of the G _ £oc€lngnp fezec b1z

execution onto the set of observable events) is non-diadpesi.e., Pr/Na cecny 2uzectt® '

we cannot decide if the fault occurred or not; the probabilff thata e In addition to these probability measures, we can obtairathe

erage number of steps before absorption starting from setg

3 Supposing that there is at least one fault occurrence inytsters, the esti- . =G r
mator must contain at least one state whose fault lab€lasd it is easy to the relation:Nb 455 = Zj:l (V)1
prove that from such a state we can never come back to thal isititezo
whose fault label isV. 4 20 is always transitory. See the explanation given in the presfootnote.




Let us now come back to our example (see the transition matrix G andG. are examples where the probability of non diagnosabil-

in the previous section and the representative graph indigir
We have one persistent clags = {z4,25} and two transitory
classes: the first one contains the stateandz; and the other one
contains the states, andzs. After putting the transition matrix in
the canonical form we compute the matrices N and B. The firgsro
(corresponding tao) of these matrices are:

20 21 z2 z3 Z4 zZ5

Ni= (3/2 3/4 5/12 1/2)andBi= (1/3 2/3)

From Ny we obtain thatNb 4y, = 3/2 + 3/4 + 5/12 +1/2 =
3.16 steps. Moreover, we have{nys = Cr = (nanr = C. Thus,
we obtain :p%, = p% = pg yq4 = 1. This means that, in average,

after the observation df to 4 events, we are almost sure that the

trace observed corresponds to a non-diagnosable traceticady,
but we are also almost sure that a fault has occurred.

4 EXAMPLES

ity tends to a strictly positive value when the length of thserved
trace tends tao. But, even in this case, the knowledge about the
fault probability in an arbitrary infinite trace can be sifggant for
taking decisions: irG; even if we are sure that all infinite traces are
"theoretically” not diagnosable, we know that the probipithat a
fault occurs tends to. The situation is completely different @ in
which the non diagnosability of the system is more "effegtivG’s

is an example of a system which can be kept unchanged even if no
diagnosable unless the average time before absorptioddejlvery
long, because the probability to stay in a non-diagnosaatetends

to 0 when the length of the observed trace tendsto

Table 1. Results for the PDESS; to G4.

#pers.classes pna  PF Pr/Nd miés
G1 1 1 1 1 150.5
Go 4 6/13 6/13 1/2  2.38
Gs 2 0 12 no 3
Gy 2 0 8/15 no 3.2

The figures 5 shows four examples of PDES. The lack of spaee pre

vents us to examine in detail, for these examples, the whiolleo
analysis procedure described in this paper. So, we only arhm
briefly the final results that are summed up in table 1.

Gy

Figure 5. Examples

G1 has exactly the same structure that the system discusdeid in t 2]

paper but with different probability transitions: we putery small
probability in the transition containing the fault. We dbtthe same
probabilities:;pya = pr = pr/na = 1 but the average number of
steps before being absorbed passes fsotf to 150.5. In G2, we

have the probability 06/13 that an arbitrary infinite trace observed (4l

in the system be non-diagnosable and the same probabitityitth
contains a fault (the probability to be in a diagnosabledr@esp. in
a trace without fault) is thefh — 6/13 = 7/13). We have the prob-

ability of 1/2 that a non-diagnosable trace contains a fault. Even ifél

G5 is theoretically non-diagnosable, the probability to alsse non-
diagnosable trace tends@avhen the length of this trace tendsdo.
In addition, in average, we must not wait for a long time befob-
taining a diagnosable tra¢@b .5, = 3) in which the probabilities
of having or not a fault are here equal. Finally is diagnosable, it
is then obvious to obtain thatv, = 0 as inGs. However, the dif-
ference between the two cases is that the estimat6éisofontains
at least one ambiguous state (witlit = A) but that is transitory,
whereas all states i¥4 are unambiguous (witdtt = N A).

5 CONCLUSION

We have shown that using probabilistic information aboatttAnsi-
tions of a DES, when available, can provide useful refineroétite
binary decision about the diagnosability of the system.eEwly,
this refinement can lead in practice to tolerate non-diagpiity in
cases where itis not persistent, i.e., in cases where itesffo let the
system run for enough long time to be almost sure that therabde
trace will allow one to decide if a fault occurred or not.

Different perspectives are open from this first investigatiWe
want to generalize this work to other DES formalisms likerPretts
and symbolic transition systems, to the distributed casd,ta the
case where reparability actions are also available, inraaetudy
global self-healability in a probabilistic framework.
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