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Abstract

Automatic recognition and understanding of speech are crucial steps towards natural human–machine interaction.

Apart from the recognition of the word sequence, the recognition of properties such as prosody, emotion tags or stress

tags may be of particular importance in this communication process. This paper discusses the possibilities to recognize

emotion from the speech signal, primarily from the viewpoint of automatic speech recognition (ASR). The general focus

is on the extraction of acoustic features from the speech signal that can be used for the detection of the emotional state

or stress state of the speaker.

After the introduction, a short overview of the ASR framework is presented. Next, we discuss the relation between

recognition of emotion and ASR, and the different approaches found in the literature that deal with the correspondence

between emotions and acoustic features. The conclusion is that automatic emotional tagging of the speech signal is

difficult to perform with high accuracy, but prosodic information is nevertheless potentially useful to improve the di-

alogue handling in ASR tasks on a limited domain.
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1. Introduction

�Emotion in speech� is a topic that has received
much attention during the last few years, in the

context of speech synthesis as well as in automatic

speech recognition (ASR). Speech is the most

convenient means of communication between

people. Although we are still far from having a
machine able to communicate with a human in a

natural way, scientific and technical improvements

show a direction towards a more natural man–

machine speech interface and natural language

processing (NLP). The use of emotion in speech

synthesis, and the recognition of emotion in speech

recognition can substantially contribute to the

naturalness of man–machine communication.

For text-to-speech (TTS) systems, the advantage

of �emotionally rich� speech synthesis is evident

(also see Murray and Arnott, 1993). The pragmatic

value of TTS systems is mainly determined by two

factors: the intelligibility of the speech that is pro-

duced, and the naturalness of the speech output.
In the last decades, the improvement of segment

intelligibility, and the smooth concatenation of

the synthetis units have been a driving force in

the design of TTS systems; as a result, the TTS

word intelligibility has substantially improved

during recent years. However, less success has been

achieved in making the synthetic speech more

natural. Even in modern TTS systems, there is
quite a long way to go, in order to improve theE-mail address: l.tenbosch@let.kun.nl (L. ten Bosch).
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prosody and naturalness of the synthetic signal

(Juang and Furui, 2000; e.g. Chu and Peng, 2001).

The approach to simulate the effect of emotion in

synthetic speech is usually based on acoustic ana-
lyses of databases of (human) �emotional� speech.
These databases contain utterances spoken by ac-

tors or students who have been asked to read the

same utterance simulating different emotions (see

e.g. Zhao et al., 2000), or on simulated dialogues

(Hirose et al., 2000), or using a Wizard-of-Oz set-

ting (Huber et al., 2000). A large number of studies

investigate the relation between acoustic features of
utterances and the emotion tags given to these ut-

terances by humans in a perceptual labeling task. It

appears that a number of �basic� emotions such as
anger, sadness and happiness can quite well be de-

scribed in terms of changes in prosodic factors:

pitch, 1 duration and energy (e.g. Scherer, 1981;

Van Bezooijen, 1984; Frick, 1985; Mozziconacci

and Hermes, 1998; Whiteside, 1998; Cowie and
Douglas-Cowie, 1996; Mozziconacci, 2000), of

which pitch is in many cases the most important

(e.g. Li and Zhao, 1998; Yang, 2000). Modification

of the relevant TTS parameters also shows good

emotion simulation results for different languages

(see e.g. Montero et al., 1998; Koike et al., 1998).

Also for ASR, the recognition of emotion in

speech can be useful, e.g. for proper handling of a
man–machine dialogue. However, the automatic

detection of the emotion state from the speech

signal is not straightforward. For example, recent

studies show that the triplet happiness, sadness/

neutral and anger can be distinguished only with an

accuracy of 60–80% (Whiteside, 1998; Li and Zhao,

1998). When more emotion tags are to be recog-

nized (some studies distinguish eight or more dif-
ferent emotions), the detection results decrease

substantially; depending on the task, the perfor-

mances range from 25% to about 50%. These

results are largely dependent on the size of the

acoustic datasets, and on the way the emotion

classifier is trained. Kang et al. (2000) obtain a high

performance (higher than 80%) using 6 emotions,

but this study is based on a very limited word set (8

speakers, 5 different words). Their study further-

more shows substantial differences in performance
between three different classification algorithms

(Gaussian modeling and maximum likelihood,

nearest neighbour, and hidden Markov modeling).

A number of studies narrow down �emotion� to
�stressed�, in the sense of stressful (e.g. Zhou et al.,
1998). In that case, the task is not to recognize the

emotion itself, but to binary classify utterances as

stressed or �not stressed�. With an optimal choice
of the features used for classification, such a stress

detection may result in a recognition score of

about 90% under non-adverse recording condi-

tions (the test set consisted of 30 words). (Another

study relating emotion and stress is Fernandez and

Picard, 2000.) Other studies limit the rather broad

concept of emotion to a number of more prag-

matic classes: for example approval, attention, and
prohibition in parent–child interactions (Slaney and

McRoberts, 1998). This study shows a speaker-

independent recognition score of about 55%,

and, interestingly, a large speaker dependency

of the accuracy ranging from 60% to 90% (after

a speaker-dependent training of the classifier).

Huber et al. (2000) simplify the classification of

emotion to the binary question whether one par-
ticular emotion (anger) is present or absent. They

report the highest classification (so, anger versus

neutral) result of 86% for acted speech, but a more

realistic test using non-acted speech (in a Wizard-

of-Oz setting) yielded a classification rate of 66%

correct, which shows the sensitivity of perfor-

mance results on the paradigm of the test (for

more details see Huber et al., 2000).
A very pragmatic issue is the usefulness of

emotions to ease the human–machine communi-

cation. For example, in dialogue systems it may be

very fruitful to be able to detect �moods� such as
frustration, irritation or impatience, such that a

more appropriate dialogue handling can be chosen

or the call be redirected to a human attendant.

From this perspective, the emotions happiness,
fear, anger themselves are much less relevant than

the �ease of communication� qualifiers such as ir-
ritation and impatience. Klein (1999) shows that a

strategy focusing on ease of communication might

1 Throughout this paper, we will use the terms pitch and

fundamental frequency (F 0) interchangeably. A number of

studies reserve the term pitch for the percept related to the

physical parameter fundamental frequency.

214 L. ten Bosch / Speech Communication 40 (2003) 213–225



work in real life. At the MIT Media Lab, he

designed a human–computer interaction agent

that was built to support users in their ability to

recover from negative emotion states, particularly
frustration. The agent used social-affective feed-

back strategies, and its effectiveness was evaluated

against two control conditions in a 72-subject

study. Behavioral results showed the emotional

agent was significantly more effective than a �neu-
tral� agent in helping relieve frustration levels.
The recognition of emotion is partly based on

�paralinguistic decoding�. Although the emotion
may manifest itself on the semantic level, the

emotion content is to an important extent carried

by prosodic features. So, while ASR focuses on the

correct recognition (in terms of a sequence of

words) for a given acoustic input, the emotion in

an utterance is mainly encoded in prosody and

semantics, which are areas that are not directly

focused on in the mainstream ASR approaches.
Broadly speaking, the process of speech perception

includes: the detection of acoustic–phonetic cues

to form/activate words, a grammatical analysis to

form well-formed sentences, semantic determina-

tion and disambiguation, and, on top of this, the

pragmatic use of prosodic cues. ASR mainly deals

with the first two stages, while emotion is mainly

encoded in the second, third and forth stage,
where techniques from natural language process-

ing apply. For classical ASR systems, the most

important quality measure is still the word error

rate (or recognition token error rate), and the

emotion in the utterance does not play a central

role. For natural language understanding (NLU),

or dialogue systems, a proper response needs un-

derstanding of the context of the utterance, and it
is in this setting that prosody and emotion tags

may play a more important role.

In the following section, we will discuss in more

detail how emotion can be used in the ASR

framework, and how a separate classification of

emotion might be fruitfully used in this framework.

2. The ASR framework

In this section we briefly discuss the mostly used
paradigm for ASR. By ASR we mean the set

of algorithms that hypothesize a word sequence

given an incoming acoustic speech signal. Most of

today�s ASR systems treat the speech signal as an

example of a stochastic pattern and use statistical
pattern recognition techniques to produce this

word sequence hypothesis.

ASR is mostly defined as solving a maximum

a posteriori problem, in which, for a incoming

sequence of acoustic vectors A, a sequence of

words W must be found such that

PðW jAÞ ð1Þ

is optimized, usually under additional constraints

imposed by a grammar. Under the general as-

sumption that the Bayesian rule applies, we obtain

PðW jAÞ ¼ P ðAjW ÞP ðW Þ=P ðAÞ, and so (P ðAÞ being
fixed), the word sequence we are looking for is
given by

arg maxW P ðAjW ÞP ðW Þ: ð2Þ

The first factor P ðAjW Þ denotes the probability of
observing a sequence of acoustic vectors given the

word sequence (referred to as acoustic model
(AM)), while the second factor P ðW Þ denotes the
probability of the word sequence itself (language

model (LM)). For a commercial dictation system,

the AM is usually trained using an acoustic

training database of 50–150 h of speech, while the

LM may require a text corpus containing 100–

1000 million words. The algorithm that actually

performs the optimization of P ðW jAÞ is based on a
pattern recognition approach, and is often imple-

mented by using dynamic programming tech-

niques.

The sequence of acoustic vectors A is the result

of a properly chosen feature extraction (FE) al-

gorithm. Two properties of the FE are relevant for

the discussion here. Firstly, the FE produces a

sequence of acoustic feature vectors or �frames�,
typically 100 a second. Due to the applied win-

dowing, and the use of delta and delta–delta fea-

tures, the feature vector represents a sort of

fingerprint of the speech spectrum over about 60–

70 ms.

Secondly, for regular speech recognition tasks,

the FE is designed to normalize for a number of

effects that are irrelevant for the decoding into
words. These effects include noise, certain channel
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effects, line echoes, microphone characteristics, but

also speaker-dependent characteristics such as the

vocal tract length, and the specific embedding in

the entire acoustic space. Speech features that are
commonly left out or at least neglected by the FE

are the pitch and speaking rate. (Evidently, the

pitch is not left out in a number of ASR systems

designed to recognize tonal languages such as

Chinese, but even in such systems, the pitch is

dealt with locally and often not as part of an in-

dependent prosodic component on or beyond

word level.) The general focus of the FE is to
produce short-time spectral features that are

normalized for a number of factors that are con-

sidered irrelevant for the �text� content of an

utterance. The way in which an utterance is pro-

duced, with high or low pitch, fast or slow, angry

or sad, these are all irrelevant factors as seen from

the �ASR as a typewriter� point of view.
Another aspect of the most common ASR rec-

ognizers, which is of ultimate importance for its

modeling power, is the use of hidden Markov

models (HMMs). HMMs are used to model the

acoustic properties of the recognition tokens, which

may be entire words, sub-word units or combina-

tions of words. In the HMM framework, speech is

modeled as a two-step probabilistic process (Ra-

biner and Huang, 1993; Makhoul and Schartz,
1994). In the first step, speech is modeled as a se-

quence of acoustic states. In the second stage, the

acoustic events associated with these states are

modeled as probability density functions on the

feature space (the precise implementation not

being of importance for this paper). Together,

these two steps represent the probabilistic model-

ing of speech in most ASR systems. The output of
the ASR system, a list of N-best hypotheses or a

word lattice is the result of competition between

the AM and the LM. The issue here is, that in the

standard HMM training, all HMM states will be

aligned with a small number of acoustic frames,

thereby modeling a short acoustic event. So, al-

though the HMM models themselves can be used

to model speech units of various lengths, the
HMM states usually correspond to small time

scale events, on segmental or maybe syllable level.

The modeling of prosodic patterns associated with

emotion, however, only makes sense on a larger

time scale spanning a time domain of at least a

word. This implies that, in a conventional recog-

nizer, it is feasible to train separate �variants� for
words spoken with different emotions. These
variants are considered as �pronunciation variants�
of that particular word. The price to pay is a larger

lexicon. It is less likely that such a prosodic/

emotion tagging can be performed using speech

segments on sub-word level (which would assume

something like anger-specific or joy-specific pro-

nunciation of individual sub-word units). The

underlying assumption is that the set of acoustic
tokens of a particular word spoken with a partic-

ular emotion is coherent enough to be described by

probability density functions related to a particu-

lar sequence of HMM states. Since the acoustic

realization of the emotion itself is not directly

anchored to the word structure, this coherence will

in general be not very strong.

These arguments show that the recognition of
emotional speech cannot easily be dealt with in the

same way as is usually done in the case of vocal

tract length normalization (sometimes called

�gender normalization�), where the optimal choice
for the vocal tract length parameter is based on

optimization of the likelihood of the utterance

given different alignments between the utterance

and the AMs. One has been looking for methods
to deal with emotions by other means, not using

the ASR paradigm (i.e. recognizing tokens on the

basis of a frame-by-frame input of spectral pa-

rameters), but based on a more direct classification

approach with purely prosodic information of the

entire utterance as input. This classifier is often

modeled as a neural net or as a separate HMM.

The next step is to combine information from the
prosodic classifier with the word graph from

the regular ASR system. A number of studies show

the effective combination of prosody and ASR,

particularly in small recognition tasks (dialogues).

In the next section these will be discussed briefly.

3. Prosodic features and ASR

The attempts done so far to integrate prosodic

information and speech recognition have been
unsuccessful for improving transcription accuracy.
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However, more recently, prosodic information has

been incorporated into a variety of ASR-related

tasks, such as identifying speech acts, locating

focus, improving rejection accuracy (confidence
modeling), locating disfluencies, identifying user

corrections in dialogue, topic segmentation, and

labeling emotions. All these research areas are

critically dependent on the collection of appro-

priate corpora and the development of appropriate

prosodic annotation systems.

Evidently, the �linguistic content� of an utter-

ance goes beyond its �text� content. The use of
pitch to mark prominence, or to disambiguate

meaning, or to put emphasis on parts of speech in

focus, or the use of volume to attract attention are

examples of this.

For the integration of supra-segmental infor-

mation (e.g. pitch) into the ASR/HMM paradigm,

there are principally two methods, one related to

the �front end� of the recognizer, the second one to
the �back end�.
In the front end method, the FE includes a pitch

detection algorithm. The pitch feature is regarded

as a separate stream and used to create separate

�acoustic models� (using e.g. a pitch/delta-pitch

codebook of Gaussians). The AM used in the tests

is a combination of the gross-spectral model and

the pitch model. In this way, one can improve the
performance of a recognition system for a tone

language such as Chinese with about 10–30% re-

duction in syllable error rate. In such an approach,

the �tones� are to be transcribed in the lexicon on
the syllable level.

The second, back end method is to include the

pitch determination in the FE, but to use the

pitch information only for rescoring the N-best
list or word lattice. In this way, one may use

pitch, word stress or other supra-segmental or

lexical information to improve the recognition

score (see e.g. Streefkerk et al., 1998). Since the

back end method can also be used when pitch

contour encodes focus, this method is particularly

useful for improvement of recognition results in

dialogues.
As an illustration of focus in a dialogue system,

the negation

No, I�ll take the train to London at 5 p.m.

has a number of very different semantic interpre-

tations, depending on the pitch contour. The use

of prosodic information can also be of ultimate

importance for studying the dialogues of players
talking within a limited discourse domain. In a

man–machine dialogue in an information retrieval

system, the prosody of the sentence facilitates to

implicitly or explicitly fill in the empty or low-

confidence slots in the query that is used to retrieve

the information. This might be quite complicated:

also for a relatively simple task as DARPA�s Air
Travel Information System (ATIS Technical Re-
port, 1995), the dialogue system needs to go be-

yond a simple utterance-based keyword spotting

scheme to get the meaning of a particular utter-

ance and to react appropriately. In most cases, a

correct interpretation of query slots requires

knowledge of the dialogue history.

There is an interaction between ASR perfor-

mance and prosodic properties of the utterance.
ASR errors can sometimes, but not always, be

associated with prosodic effects in the speech

signal, mainly with speaking rate, and phrasing.

Although ASR systems are designed not to be

sensitive to pitch and loudness variations, these

variations can still percolate through the FE and

affect the acoustic modeling and the test. It is well

known that the ASR performance depends on the
level of formality and speaking style (Weintraub

et al., 1996; Oviatt, 1998). To obtain an optimal

ASR result, the ASR test conditions should be

�statistically similar� to the ASR training condi-

tions, and so variations in speaking style and

speaking rate a priori have a negative impact on

the ASR performance. To speak slower than nor-

mal is usually less worse than speaking faster than
normal. It is a common effect that customers of a

voice operated information system or IVR system

tend to hyper-articulate when they cannot get

through the dialogue, which is usually a bad

strategy to get better recognized (see e.g. Soltau

and Waibel, 1998). But prosody can be also used

in a positive way. Recently more progress has been

claimed in the relation between ASR performance
and prosodic properties of utterances (e.g. Hir-

schberg et al., 2000; Litman et al., 2000; Hirsch-

berg, 1999; Ostendorf et al., 1993; Shriberg et al.,

1998). N€ooth et al. (1999) show that the integration
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of prosodic information might greatly improve the

processing speed of the word search. Prosody is

capable of reranking the ASR hypothesis such as

to distinguish the correctly recognized utterances
from incorrectly recognized ones (Veilleux, 1994;

Hirose, 1997; Hirschberg et al., 2000). Litman et al.

(2000) claim that some prosodic features can more

accurately predict when an ASR hypothesis con-

tains a word error than acoustic confidence scores

do. That means that some prosodic features pro-

vide useful information to explain ASR recogni-

tion failure. It is not clear whether these prosodic
features directly hamper the ASR search (and

therefore trivially correlate with word recognition

errors) or whether they are more indirectly asso-

ciated with properties in the speech signal that

deteriorate ASR performance.

4. Emotion and ASR, affective computing

Human emotions include love, sadness, fear,

anger, and joy/happiness as basic ones, and some
people add hate, surprise, and disgust, and dis-

tinguish �hot� and �cold� anger. Some authors

distinguish emotion from �mood�: an emotion is

always referring to an object: one grieves over

something, one loves somebody, etc. In this more

precise sense, we here deal with the reflection of

mood, rather than of emotion, in the speech signal.

(Throughout the remainder of this paper, we will
stick to the word emotion, though.)

Quite some research effort is now being put into

a field that is called �affective computing� (Picard,
1997; Affective Computing, 2000). The goal in af-

fective computing is to design ASR and TTS re-

lated algorithms (e.g. agents) that understand and

respond to human emotions. The commonly ap-

plied approach is to start with a database with
�emotional speech� (mostly produced by actors, but
recently one attempts to collect corpora with

genuine emotional speech, Campbell, 2000). These

databases are annotated with emotion tags by a

panel of listeners (see e.g. Kienast et al., 1999;

Slaney and McRoberts, 1998; Amir and Ron,

1998; Koike et al., 1998). The next step is to

perform an acoustic analysis on these data, and
to correlate statistics of certain acoustic features

(pitch, pitch range, etc.) with the emotion tags.

This classification step often involves classical

techniques closely related to ASR: Gaussian mod-

eling, vector quantization (VQ), artificial neural
networks (ANN), and expert networks (cf. Li and

Zhao, 1998). In the third step, the resulting para-

meter estimates are verified and adapted by using a

speech synthesis tool, followed by a formal human

classification test of the synthesized emotional

speech, or by direct integration of the outcome of

the emotion classifier into ASR.

In the context of ASR/NLP, an appropriate
way to deal with emotion is to deal with an ut-

terance on the following levels:

1. text (segmental) level; this level is accessed by

the classical ASR;

2. �semantic� level, in which the word hypothesis is
linked to a �meaning� (and appropriate action)
(NLU, as a part of NLP);

3. prosodic (supra-segmental) level: pitch, volume,

pausing, phrasing, speaking rate;

4. emotion level: neutral, sadness, happiness,

anger, etc.;

5. �functional� level: directive, question, approval,
attention, prohibition, impatience, frustration,

etc.

Paraphrasing Manning (2000), the study of

spoken language use deals with the probability

distribution

P ðA;W ; T ;MÞ;

in which A, W, T and M denote the acoustic sig-

nals, the word sequences, the syntactic tree struc-

tures, and the meanings, respectively. In classical

ASR, people look at P ðA;W Þ, with the rest of the
structure ignored. NLP deals primarily with rela-

tions between W, T and M. Language generation
is related to P ðW ;MÞ. Prosody (and certainly

emotion) in the speech signal involves A, W and

M.

The combination of prosody/emotion and ASR

is of particular interest when it comes to under-

standing and dialogue aspects. Having decoded

the speech signal into a (hypothesized) sequence

of words, a traditional speech understanding sys-
tem employs a sentence parser to cast the word
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sequence into a syntax structure to allow inference

of meaning. Most parsing algorithms focus on

syntactic structure first, rather than meaning (un-

derstanding), so the coupling is not very tight. At
the present time, automatic understanding of

speech is limited to determining a specific action

based on the speech input. So, in order to use

emotion in a dialogue system, it is of interest to see

how emotion can help to interpret specific terms,

spoken in isolation or embedded in natural sen-

tences, to specify an intended action. We have seen

that prosodic information can help in disambigu-
ating utterances and reranking hypotheses; the use

of an emotional component in the prosody might

further complicate the correct interpretation of the

utterance and thereby the generation of an ap-

propriate response.

According to many studies (e.g. Picard, 1997;

Mozziconacci and Hermes, 1998; Juang and Furui,

2000; Petrushin, 2000; Kang et al., 2000), pitch is
the most relevant acoustic parameter for the de-

tection of emotion, followed by energy, duration

and speaking rate. In Kienast et al. (1999), the

emotions anger, fear, sadness, anxiety and hap-

piness were studied in terms of their prosodic

acoustic (and articulatory) correlates. It was found

that in a number of cases speaking rate, segment

duration and accuracy of articulation are useful
parameters to determine the emotion state of the

speaker. For example, sadness was clearly shown

to correlate with slow speech, while fear was found

to correlate with a higher speaking rate than av-

erage. �Anxious� utterances show segments that are
shorter than average, with exception of voiceless

plosives. Also in (Murray and Arnott, 1993), re-

lations were shown between the emotion state and
the duration of vowels and consonants. But in

nearly all studies pitch and energy are the most

commonly applied features to distinguish and

classify emotion state (Murray and Arnott, 1993),

or anyway to convey supra-textual information. In

Slaney and McRoberts, 1998, a study was con-

ducted to automatically classify an utterance (spo-

ken by a parent to a young infant) into three
classes: approval, attention and prohibition. Com-

pared to a system that is to detect emotion states,

this classification looks like an easy task, but it

appears far from trivial to obtain a reasonable

performance. Based on pitch slope, mean pitch

and mean delta pitch, measured globally on the

entire utterance, the results were close to 55%

correct on average. To define percentage correct,
the automatic classification has been compared

with some human consensus classification. One of

the key observations in this study is that emotional

�production� �varies wildly� among individuals.

Classifiers that have been based on speaker-

dependent features showed correctness scores

ranging from 60% up to 92% (based on 30–50

utterances per parent–infant pair).
Apart from the relation between emotion and

pitch, pitch range, tilt, pronunciation accuracy,

also a relation between emotion and vocal quality

has been claimed (Zetterholm, 1998).

In an interesting study, Petrushin (2000) com-

pares four different classification strategies to rec-

ognize emotion states from the speech input. The

study aims at the distinction of five emotions hap-
piness, anger, sadness, fear, and a default �normal�
state. A corpus of emotion data (telephone qual-

ity) has been made using utterances from non-

professional actors. The FE produced parameter

vectors containing F 0, vocal energy, speaking rate,
the first three formants and corresponding band-

widths. Of all these parameters the mean, standard

deviation, minimum, maximum and range were
evaluated; furthermore, the augmented para-

meter vector contained the slope of the pitch. The

features with highest discriminative power were

selected for further processing. The used classifiers

were a K-nearest neighbor classifier, neural net-

works, ensembles of neural networks, and expert

networks. Across all classification methods, fear

was one of the emotions that were poorly recog-
nized (below 50%); sadness and anger however

were recognized with a performance of 70–80%,

which, compared to other studies, is a good result.

Nogueiras et al. (2001) report on recognition

results using standard HMM techniques. The

database they used was taken from the Spanish

part of the INTERFACE Emotional Speech Syn-

thesis Database. The speech corpus, produced by a
female and a male professional actor, contained an

equal number of examples of six emotional styles:

anger, disgust, fear, joy, sadness, surprise, and a

neutral style. The classifier training was based on
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consensus labelling. The confusion matrix of a

subjective evaluation showed that the six emotions

perceptually felt apart in two major groups: fear,

disgust and sadness on one hand, and surprise, joy
and anger on the other. The authors use a measure

of �harshness� based on peaks in the autocorrela-
tion function. Single state HMMs were used to

represent the probability distribution of all acoustic

features (based on pitch, the logarithm of the

pitch, the harshness, the energy, the derivatives,

and syllabic versions of these), and the emotion tag

was hypothesized by an utterance-based maximum
likelihood criterion after aligning the input utter-

ance with the emotion-specific HMM model. In an

unbiased test set containing 555 utterances, the

emotions (including neutral) were recognized with

an accuracy of 70% or more in the speaker-inde-

pendent mode; in the speaker-dependent mode, the

accuracy was about 10% higher. It was further

shown that about one-sixth of the �joy� utterances
were actually classified as �surprise�, and anger and
joy appear less well distinguishable than other

emotion pairs, findings which are in line with the

human confusion results.

4.1. Synthesis

As already observed earlier, speech synthesis is

a technique often used to study the relation be-

tween acoustic features and emotion percepts (see

e.g. Part 3 on synthesis in Cowie et al., 2000,
Proceedings of the ISCA Workshop on Speech

and Emotion). Many of the emotion studies use in

fact speech synthesis (e.g. Montero et al., 1998;

Rank and Pirker, 1998; Whiteside, 1998; Iida et al.,

1998; Mizuno and Nakajima, 1998). To simulate

emotion states in synthesis, one usually modifies

pitch, segment duration and phrasing parameters

to create the desired emotion effect. Speech syn-
thesis modules have shown to be a useful tool to

study the impact of supra-segmental features on

the perception of emotion. The drawback is that

the test paradigm in such a setting is quite limited,

and it does not cover real-life situations. From an

acoustic recording, however, not all interesting

acoustic features can easily be accessed; speaking

rate is an example of such a feature. Moreover, the
recordings will show a larger variation due to the

less controlled speech production. For example,

the speaking rate correlates with many more

speech and speaker characteristics, e.g. with ar-

ticulatory sloppiness and non-nativeness of the
speaker.

Some studies use synthesized emotional speech

with a speech synthesizer using parameters such

as F 0, duration and amplitude, but also voice quality
parameters, spectral energy distribution, harmonics-

to-noise ratio, and articulatory precision. An ex-

ample of such a study is presented by Rank and

Pirker (1998). They focus at the four emotions
anger, sadness, fear and disgust. They conclude

that sadness is the most �distinctive� emotion, i.e.
the easiest to distinguish from the other three,

compared to the other emotions. Whiteside (1998)

aims at recognition of seven emotions: neutral,

cold anger, hot anger, happiness, sadness, interest

and �elation�. The acoustic parameters used were
fundamental frequency, energy, standard devia-
tion of energy, jitter, and shimmer; all parameters

measured globally across utterances, and appro-

priately averaged. In this study, anger and sadness

could quite clearly be distinguished from each

other, but other emotions show quite a large conf-

usability. Their database contained two speakers

only—which is too small to draw conclusions

about generalization across speakers.
In a number of cases, synthesis model parame-

ters are also based on rules derived from a data-

base with speech with �emotional prosody�. For
Spanish, Montero et al. (1998) implemented a rule-

based simulation of three primary emotions into a

TTS system. It was attempted to simulate the three

emotions happiness, sadness and anger using ma-

nipulation of pitch (range, level, slope), and a
number of additional parameters (spectral tilt, and

noise that is added to the voice source). The re-

sulting success rate was about 60–70%. The same

technique was applied for Japanese (Iida et al.,

1998), in an attempt to improve the expression of

the three emotions joy, anger and sadness by using

CHATR, the concatenative speech synthesis sys-

tem developed at ATR. A perceptual experiment
was conducted using stimuli synthesized on the

basis of analyses on each emotion corpus. F 0 and
duration showed significant differences among

emotion types. They showed that mean funda-
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mental frequency was lowest for sadness and

highest for happiness/joy. Duration per phone for

sadness was longest and for anger was shortest.

The authors also looked at pauses, but the only
significant finding was that pauses were longer in

the �sad� corpus than they were in the other cor-
pora.

4.2. Influence of culture

It may be difficult to identify the emotion of a

speaker from a different culture (Shigeno, 1998;

Koike et al., 1998; Scherer, 2000). Shigeno (1998)

additionally found that listeners will predomi-

nantly use the visual mode to identify emotion if

they have the chance to do so. Cultural similarities
and differences between 7 Japanese and 5 North

American subjects have been compared in the

recognition of emotion. Japanese and American

actors made vocal and facial expression (short

utterances) to transmit six basic emotions: happi-

ness, surprise, anger, disgust, fear and sadness.

There were three presentation conditions: audi-

tory, visual and audio-visual. It was shown that
subjects using the auditory mode can more easily

recognize the vocal expression of a speaker who

belongs to their own culture (the subjects were not

bilingual). Both Japanese and American subjects

identify the audio-visually incongruent stimuli

more often by the visual mode rather than by the

auditory mode.

4.3. Language dependencies

Emotion patterns may be language dependent
(Koike et al., 1998). This study examines how

prosody contributes to the percept of emotions in

Japanese and French synthesized speech. They

find the major features determining the emotion to

be pitch, speaking rate, duration and the energy of

syllables. They found prosodic parameters for five

emotions: anger, surprise, sorrow, hate and joy.

Responses to the synthesized speech showed that
the parameters of anger, sorrow and hate are

confirmed over 85%. Their experimental results

suggest that surprise and joy may depend more on

semantics, rather than on prosody.

4.4. Linear–non-linear features

Zhou et al. (1998) take another position. Rather

than studying the effect of emotion in general, they
investigate the effect of a stressful situation on the

acoustic speech characteristics. Stressful or highly

emotional modes usually deteriorate the perfor-

mance of a speech recognition system. To address

this effect, they study a number of linear and non-

linear features and processing methods for the

classification of what the authors call stressed

speech. The linear features include properties of
pitch, duration, energy, and parameters related to

the glottal source. The non-linear part of the

processing is based on the �Teager Energy Opera-
tor�, incorporation of frequency domain critical

band filters and properties of the resulting TEO

auto-correlation envelope. The TEO in discrete

form reads

TEOðx½n�Þ ¼ x½n�x½n� � x½nþ 1�x½n� 1�;

which acts like a non-linear �energy�. The classifi-
cation algorithm is based on the Bayesian hy-
pothesis testing and hidden Markov modeling.

For each stress condition, a Gaussian probability

density function has been modeled to match the

training vectors—these training vectors were se-

quences of measurements of the individual features

over time. The tests focus on utterances under

adverse conditions such as �loud�, �angry�, and the
Lombard effect from the database SUSAS (�speech
under simulated and actual stress�). This database
had been exploited earlier by one of the co-authors.

Results using ROC curves and equal-error rate

based detection clearly indicate that pitch is the

best of the five �linear� features for stress classifi-
cation (result about 88%); the non-linear TEO-

based feature, however, outperforms pitch by

about 5%. The authors observe that stressed speech
seems to be affected differently across frequency

bands. (In phonetic studies, similar effects are ob-

served. It is well known that there is a relation

between spectral tilt of a vowel sound and the

presence of word stress on the corresponding syl-

lable. This relation is based on the correlation be-

tween word stress, vocal energy and mouth

aperture. Unfortunately, the quantification of this
effect is vowel dependent to a large extent.)
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The speech material used by Pereira and Wat-

son (1998) consisted of two semantically neutral

utterances spoken by two actors (one male, one

female) mimicking a neutral tone and three moods:
anger, happiness and sadness. The duration, fun-

damental frequency (F 0) and the sound intensity
(RMS) were used as features. Also this method

showed that the fundamental frequency parameter

was the most distinctive, showing differences be-

tween anger and happiness according to the shape

of the contour, and between �cold� anger and �hot�
anger on F 0 mean. The study confirms findings
showing hot anger and happiness having an large

F 0 range and high mean in contrast to the emotion
of sadness, and the neutral voice.

4.5. Short-term–long-term features

As we could expect, long-term features seem to

outperform short-term features (Li and Zhao,

1998). It was attempted to recognize the emotional

status of individual speakers by using speech fea-

tures extracted from short time as well as long-
time analysis frames. The classification task was to

distinguish 6 emotions: neutral, happiness, anger,

fear, surprise and sadness. A principal component

analysis was used to analyze the importance of

individual features in representing emotional cat-

egories, and to reduce the dimensionality (the

number of features used in the recognition system

is reduced from 22 to 12, per utterance). Three
classification methods (VQ, ANN and Gaussian

mixture density model) were used; and classifica-

tions were carried out using short-term features

only, long-term features only and both short-term

and long-term features. The Gaussian mixture

density method with both short-term and long-

term features showed the best recognition perfor-

mance (62%, based on 5 speakers, 15 sentences/
speaker in training, 5 in test, so also in this study

the test is quite small). The analyses show that

of the six emotions, there are three groups that

stand out with respect to distinctiveness: neutral–

sadness, anger–fear and happiness–surprise. Within

these groups, the separation is much more difficult.

Amir and Ron (1998) discusses a method in

which an �emotion index� is evaluated over time,
thereby avoiding the choice between short- and

long-term features. A set of basic emotions is de-

fined, and for each such emotion a reference point

is computed. At each instant the distance of the

measured parameter set from the reference points
is calculated and used to compute a �membership
index� for each emotion, the emotion index. In this
preliminary study, the authors report success rates

of about 50% for 5 emotions (acoustic measure-

ments based on 24 speakers).

5. Discussion and conclusion

In general, the recognition of emotion is not

straightforward. Acoustically, emotions overlap
and appear in various degrees. Many studies, but

not all, support a quite clear distinction between

the three �emotion groups� neutral–sadness, anger–
fear and happiness–surprise. Within these emotion

groups, the separation appears much more diffi-

cult. Without reference to the text content of an

utterance, a score of 60–70% is about the best one

can get in a speaker independent, limited happi-
ness/joy, anger, sadness/grief discrimination task.

The acoustic realization of specific emotions seems

to be speaker dependent to a large extent, and

some cross-language studies indicate that the

acoustic realizations of emotions are language

dependent.

In general, the most useful phonetic feature for

utterance-based emotion decoding is pitch (in-
cluding derivatives, etc.) followed by energy. One

study (Oviatt, 1998) defines a non-linear energy-

related feature outperforming pitch in a down-

scaled stress detection task. Straightforward

Gaussian modeling was shown to be an adequate

method to distinguish emotion classes in a space

spanned by the following phonetic parameters:

pitch, pitch range, average pitch, all measured on
the speech part of the utterance (i.e. after removing

pauses from the utterances). Almost all studies

show that, given a particular speaker, the pitch

mean is lowest for sad speech and highest for joy/

happiness, and that speaking rate is lowest for sad

speech.

The validation of an automatic emotion recog-

nition system is based on subjective judgments
from a panel. A number of studies discuss the
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difficulty to define an objective scale for subjective

phenomena, especially across speakers. That is one

reason why an analysis may perform well in a

speaker-dependent mode, and worse for all speak-
ers simultaneously (irrespective of the positive ef-

fect of speaker adaptive training). This effect seems

to have played a role in many studies cited here:

automatic classifications can only be as good as

the reference data. In the best case, a form of

consensus labeling has been used during training.

Prosodic information is of limited interest for

improving the ASR (word) accuracy, but has
proven to be very useful in a limited discourse

domain. Prosody, and to a smaller extent emotion,

is of importance for the semantic and pragmatic

disambiguation of certain utterances in dialogues

(see e.g. Hirose, 1997; Alter et al., 2000 and this

issue). The classification of moods such as frus-

tration and impatience can improve the adequacy

of the dialogue. The role of these �pragmatic fac-
tors� or �assisting factors� is recognized in a number
of recent studies (see e.g. Cowie, 2000; Campbell,

2000; Iida et al., 2000).

In most emotion studies, the training and test

sets are quite small—several orders smaller than

the acoustic databases used in regular ASR train-

ing and test. Given the possibility of speaker de-

pendency and the dependency of semantics,
conclusions on the possibility of automatic detec-

tion of emotion tags could be stronger. As Huber

et al. (2000) point out, the main problem in the

task of classification of emotion in speech is the

need of realistic speech data, such as �angry people
in real situations�.
We conclude with two examples of emotion

research in which the recognition of emotion is
studied in a larger context. Vyzas et al. (1999)

worked on emotion recognition by studying the

physiological changes that occurred in an actor

who intentionally induced eight different emotion

states. These changes were detected with a number

of sensors measuring blood volume pressure, skin

conductivity (GSR), respiration and a few more

activities. The study included extracting and ana-
lyzing useful features from the physiological sig-

nals of each emotion state, with the intention of

developing algorithms that can discriminate be-

tween these emotion states. The different states

studied in this experiment were: �no emotion�,
�anger�, �hate�, �grief�, �platonic love�, �romantic
love�, �joy� and �reverence�, recorded over 3-minute
periods each. Several features were extracted from
each signal, including the mean and variance. Each

emotion was therefore characterized by a set of

values-features ranging from 24 to 40, depending

on the features included in the analysis. The au-

thors carried out a classification in this space, on a

subspace of it, and in one of reduced dimensio-

nality, produced by the Fisher Projection algo-

rithm. Gaussian probability distributions were
then fitted to the data. Using these features, clas-

sifiers reached an 80% success rate when discrim-

inating among all eight emotions (for one actor).

Our second and final example is a multimodal

study presented by Kitazoe et al. (2000). They at-

tempt to integrate both voice and facial expres-

sions. For the speech input, the pitch, energy, and

the derivatives were input for an HMM. The facial
expressions were represented by black and white

pictures of the face and by thermal images which

were input for a separate neural network. Al-

though the stimulus material was limited, the au-

thors claim that a combination of modes yields

a performance of the emotion state that was sig-

nificantly higher than the performance obtained

without the facial input. From this perspective, the
speech signal itself—especially without the text

tier—is just a poor channel to detect emotions.

The site http://emotion.salk.edu/Emotion/Emo-

Res/CompAI/CompAI.html presents an interest-

ing overview of several other studies on (the

recognition of) emotion, mostly in the context of

artificial intelligence and computational models.
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