N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

Albert Cohent
Albert.Cohen@inria.fr

Claire Pagettt*
Claire.Pagetti@cert.fr

Marc Durantor?
Marc.Duranton@philips.com

Florence Plateati
Florence.Plateau@Iri.fr

Christine Eisenbeis
Christine.Eisenbeis@inria.fr

Marc Pouzet
Marc.Pouzet@lri.fr

1 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud 11 UnivessiErance
2| RI, Paris-Sud 11 University, France
3 Philips Research Laboratories, Eindhoven, The Nethesland
4 CERT, ONERA, Toulouse, France

Abstract

The design of high-performance stream-processing systeras
fast growing domain, driven by markets such like high-end TV
gaming, 3D animation and medical imaging. Itis also a sanpgly
demanding task, with respect to the algorithmic and conzgpt
simplicity of streaming applications. It needs the closepmration
between numerical analysts, parallel programming expeets-
time control experts and computer architects, and incuesyahigh
level of quality insurance and optimization.

In search for improved productivity, we propose a programgni
model and language dedicated to high-performance streace §s-
ing. This language builds on the synchronous programmindeino
and on domain knowledge — the periodic evolution of streams
— to allow correct-by-construction properties to be prowsrthe
compiler. These properties include resource requiremamtisde-
lays between input and output streams. Automating thisaesids
tedious and error-prone engineering, due to the combiitataf
the composition of filters with multiple data rates and fotsn&or-
rectness of the implementation is also difficult to assed#ls tradi-
tional (asynchronous, simulation-based) approaches.l&hguage
is thus provided with a relaxed notion of synchronous coritipos
called n-synchrony two processes are-synchronous if they can
communicate in the ordinary (0-)synchronous model with RGFI
buffer of sizen.

Technically, we extend a core synchronous data-flow languag
with a notion of periodic clocks, and design a relaxed cloak c
culus (a type system for clocks) to allow non strictly syrmious
processes to be composed or correlated. This relaxatiossca
ated with two sub-typing rules in the clock calculus. Delayffer
insertion and control code for these buffers are automlatida
ferred from the clock types through a systematic transfdiona
into a standard synchronous program. We formally define ¢he s
mantics of the language and prove the soundness and congsste

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11-13, 2006, Charleston, South Carolina, USA.
Copyright(© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

of its clock calculus and synchronization transformatibmally,
the language is compared with existing formalisms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage§ Formal Definitions and Theory

General Terms Algorithms, Languages, Security, Theory

Keywords Correctness by Construction, Resource Constraints,
Streaming Applications, Subtyping, Synchronous Langsage

1. Introduction

The rapid evolution of embedded system technology, favamed
Moore’s law and standards, is increasingly blurring theibes be-
tween the design of safety-critical, real-time and highfguenance
systems. A good example is the domain of high-end video appli
cations, where tera-operations per second (on pixel coemehin
hard real-time will soon be common in low-power devices.

Unfortunately, general-purpose architectures and cargpire
not suitable for the design of real-tinraad high-performance (mas-
sively parallel)and low-powerand programmableystem-on-chip
[9]. Achieving a high compute density and still preserving-p
grammability is a challenge for the choice of an appropréaatghi-
tecture, programming language and compiler. Typicallgugands
of operations per cycle must be sustained on chip, exptpitinl-
tiple levels of parallelism in the compute kernel while ewfog
strong real-time properties.

SynchronousLanguages Can Help To address these challenges,
we studied the synchronous model of computation [2] which al
lows for the generation of custom, parallel hardware antixsok
systems witltorrect-by-construction structural propertigisclud-
ing real-time and resource constraints. This model metstréal
success for safety-critical, reactive systems, througguages like
SIGNAL [3], LUSTRE(SCADE) [17] and ESTEREL[4].

To enforce real-time and resources properties, synchiobaou
guages assume a common clock for all registers, and an bpezral
dictable execution layer where communications and contipats
can be proven to take less than a (physical or logical) clgckec
Due to wire delays, a massively parallel system-on-chiptbdse
divided into multiple, asynchronous clock domains: the atbed
Globally Asynchronous Locally Synchrong@ALS) model [10].
This has a strong impact on the formalization of synchrorexes
cution itself and on the associated compilation strateldi@k

Due to the complexity of high-performance applications tnd
the intrinsic combinatorics of synchronous execution, earlier
work [11] showed thamultiple clock domainfave to be consid-
ered at the application level as wellThis is the case for mod-
ular designs with separate compilation phases, and for glesin
system with multiple input/output associated with differeeal-
time clocks (e.g., video streaming). It is thus necessargotm-
pose independently scheduled procesEedin Process Networks
(KPN) [18] can accommodate for such a composition, compen-
sating for the local asynchrony through unbounded blockteO
buffers. But allowing a global synchronous execution ingsoad-
ditional constraints on the composition. We introduce tloa-c
cept ofn-synchronouslocks to formalize these concepts and con-
straints. This concept describes naturally the semanfidsRiN
with bounded, statically computable buffer sizes. Thissegion
allows the modular composition of independently schedatad-
ponents with multiple periodic clocks satisfying a flow mea-
tion equation, through the automatic inference of boundeldys
and FIFO buffers.

Main Contributions More technically, we define a relaxed clock-
equivalence principle, calleatsynchrony. A given cloclck; is n-
synchronizablewith another clockck; if there exists a data-flow
(causality) preserving way of making synchronous withcky
applying a constant delay tk, and inserting an intermediate size-
n FIFO buffer. This principle is currently restricted to pedic
clocks defined as periodic infinite binary words. This is eliént
and independent from retiming [20], since neitleg nor cky
are modified (besides the optional insertion of a constalayjie
schedule choices associated with andck, are not impacted by
the synchronization process.

We also define a relaxed synchronous functional programming
language whose clock calculus accapts/nchronous composition
of operators. To this end, a type system underlying a sfrith-
chronous clock calculus is extended with two subtypinggulgpe
inference follows an ad-hoc but complete procedure.

We show that everg-synchronous program can be transformed
into a synchronous one (0-synchronous), replacing bouhdtters
by some synchronous code.

Paper Outline The structure of the paper is the following. In Sec-
tion 2, we motivate the@-synchronous model through the presenta-
tion of a simple high-performance video application. Sat8 for-
malizes the concepts of periodic clocks and synchroniitgb8ec-
tion 4 is our main contribution: starting from a core syncioas
languagea la LUSTRE, it presents an associated calculus on pe-
riodic clocks and extends this calculus to combine streaiitis w
n-synchronizable clocks. Section 5 describes the semaotios
synchronous process composition through translation toictlg
synchronous program, by automatically inserting buffeitswin-
imal size. Section 6 discusses related work at the frongéween
synchronous and asynchronous systems. We conclude imSe&cti

2. Motivation

Although this work may contribute to the design of a wide g
embedded systems, we are primarily driven by video stream pr
cessing for high-definition TV [16]. The main algorithms tedth
picture scaling, picture composition (picture-in-piayjand quality
enhancement (including picture rate up-conversions; edimg the
frame rate of the displayed video, de-interlacing flat palisgblays,
sharpness improvement, color enhancement, etc.). Pingess
quires considerable resources and involves a variety dalipipd
algorithms on multidimensional streams.

These applications involve a set of scalers that resize ésag
in real-time. Our running example is a classical downscfé&r
depicted in Figure 1. It converts a high definition (HD) vidggnal,

HD input reorder SD output

C-0-C-O-IFO

Figure 1. The downscaler

hf working set

vf working set

1920x 1080 pixels per frame, into a standard definition (SD) output
for TV screen, that is 720 4801

1. A horizontal filter,hf, reduces the number of pixels in a line
from 1920 down to 720 by interpolating packets of 6 pixels.

2. Areordering moduleeorder, stores 6 lines of 720 pixels.

3. A vertical filter,vf, reduces the number of lines in a frame from
1080 down to 480 by interpolating packets of 6 pixels.

The processing of a given frame involves a constant number of
operations on this frame only. A design tool is thus expedted
automatically produce an efficient code for an embeddedtarch
ture, to check that real-time constraints are met, and tionigpe the
memory footprint of intermediate data and of the controleedthe
embedded system designer is looking for a programming &geu
that offers precisely these features, and more preciséiighvetat-
ically guarantees four important properties:

1. aproof that, according to worst-case execution time thgses,
the frame and pixel rate will be sustained;

an evaluation of the delay introduced by the downscalénén
video processing chain, i.e., the delay before the outmdgss
starts receiving pixels;

2.

3. a proof that the system has bounded memaory requirements;

4. an evaluation of memory requirements, to store data witie
processes, and to buffer the stream produced by the vertical
filter in front of the output process.

In theory, synchronous languages are well suited to theemph-
tation of the downscaler, enforcing bounded resource rements
and real-time execution. Yet, we show that existing syncbus
languages make such an implementation tedious and ewoepr

2.1 The Need to Capture Periodic Execution

Technically, the scaling algorithm producestitgh output €;) by
interpolating 6 consecutive pixelpj) weighted by coefficients
given in a predetermined matrix (example of a 64 phasesp$-ta
polyphase filter [9]):

5
O = z Ptx1920/720+k x COefk,t mod 64.
K=o

Such filtering functions can easily be programmed in a $yrict
synchronous data-flow language such asstReEor LucID SYN-
CHRONE Figure 2 shows a first version of the horizontal filter im-
plemented in lUCID SYNCHRONE.

At every clock tick, thehf function computes the interpolation
of six consecutive pixels of the inppt (0 fby p stands for the
previous value of initialised with value0). The implementation
of f is out of the scope of this paper; we will assume it sums its
6 arguments. The horizontal filter must match the productib®
pixels for 8 input pixels. Moreover, the signal processitgpeathm
defines precisely the time when every pixel is emitted: ttie
output appears at thex 1920/720-th input. It can be factored
in a periodic behavior of size 8, introducing an auxiliaryolEan

1Here we only consider the active pixels for the ATSC or BSifaigHigh
Definition standards.

et clock ¢ = ok where rec
cnt =1 fhy (if (cnt =8) then 1 else cnt + 1)
and ok = (cnt = 1) or (cnt = 3) or (cnt = 6)

et node hf p = o where rec
02 =0 fby p and 03 = 0 fhy 02 and 04 = 0 fhy 03
and 05 = 0 fby o4 and 06 = 0 fbhy 05
and o = f (p, 02,03, 04,05, 06) when c

hf
hf

int => int
'a->'aonc

val
val

Figure 2. Synchronous implementation bf

streamc used as a clock to sample the output of the horizontal
filter. Thel et clock construction identifies syntactically these
particular boolean streams. Here is a possible executegraiin.

c true false true false false true false...
p 3 4 7 5 6 10 12

02 0 3 4 7 5 6 10

03 0 0 3 4 7 5 6

04 0 0 0 3 4 7 5

05 0 0 0 0 3 4 7

06 0 0 0 0 0 3 4

0 3 14 35

In the synchronous data-flow model, each variable/expassi
is characterized both by its stream of values and bycitgek
relative to a global clock, called the base clock of the syste
The clock of any expressioais an infinite boolean stream where
false stands for the absence amdie for the presence. E.g., if
X is an integer stream variable, therl and x have the same
clock. A synchronous process transforms an input clock aro
output clock. This transformation is encoded in the proatssk
signatureor clock type Clocks signatures are relative to some clock
variables. E.qg., the clock signaturetdfis Va.a — a on c (printed
"a -> "a on c¢) meaning that for any cloc, if input p has clock
a, then the output is on a subclockon ¢ defined by the instant
where the boolean conditianis true.

In synchronous languages, clock conditions sucle aan be
arbitrarily complex boolean expressions, meaning thatpilars
make no hypothesis on them. Yet the applications we conkaler
a periodic behavior; thus a first simplification consistsrihancing
the syntax and semantics with the notiorpefiodic clocks

2.2 The Need for a Relaxed Approach

Real-time constraints on the filters are deduced from thradreate:

the input and output processes enforce that frames are sdnt a
received at 30Hz. This means that HD pixels arrive ak3@20x
1080= 62,208 000Hz — called the HD pixel clock — and SD
pixels at 30x 720x 480 = 10,368 000Hz — called the SD pixel
clock — i.e., 6 times slower. From these numbers, the designe
would like to know that the delay before seeing the first oufixel

is actually12000 cycle®of the HD pixel clock, i.e., 19315us and
that the minimal size of the buffer between the vertical ffikad
output process i880 pixels

Synchronous languages typically offer such guarantees and

static evaluations by forcing the programmer to make eipie
synchronous execution of the application. Nevertheldmspuse of
any synchronous language requires the designexpécitly imple-
menta synchronous code to buffer the outgoing pixels at the prope
output rate and nothing helps him/her aatomaticallycompute
the valuesl2000and 880. Unfortunately, pixels are produced by
the downscaler following a periodic but complex event clotke

synchronous code for the buffer handles the storage of eaoti-p
ing write from the vertical filter into a dedicated registentil the
time for the output process to fetch this pixel is reachedcifg
the programmer to provide the synchronous buffer code is thu
dious and breaks modular composition. This scheme is evea mo
complex if we include blanking periods [16].

In the following, we design a language that makes the computa
tion of process latencies and buffer sizes automatic, uskpdjcit
periodic clocks.

3. Ultimately Periodic Clocks

This section introduces the formalism for reasoning abeuioglic
clocks of infinite data streams.

3.1 Definitions and Notations

Infinite binary wordsare words of 0+ 1)®. For the sake of simplic-
ity, we will assume thereafter that every infinite binary aéas an
infinite number of 1s.

We are mostly interested in a subset of these words, called
infinite ultimately periodic binary wordsr simplyinfinite periodic
binary words defined by the following grammar:

wo o= u(v)
u == €/0[1|0u|lu
v = 0|1|0v|1lv

where (v) = lim,v" denotes the infinite repetition gferiod v
andu is a prefix ofw. Let Q2 denote the set of infinite periodic
binary words; it coincides with the set of rational diadiawhers
[25]. Since we always consider infinite periodic binary wowdth
an infinite number of 1s, the period contains at least one 1.
This corresponds to removing the integer numbers fi@gand
considering onlyQ» — N.

Let |w| denote the length of. Let |w|; denote the number of 1s
in w and|w|p the number of Os inv. Letw[n] denote then-th letter
of wfor n € N andwl[1..n| the prefix of lengt of w.

There are an infinite number of representations for an ifinit
periodic binary word. IndeedP101) is equal ta/01) and to 0101).
Fortunately, there exists a normal representation: it étthique
representation of the forra(v) with the shortest prefiland with
the shortest period.

Let [w]p denote the position of the-th 1 inw. We have[l.w], =
1, [lw]p = [Wp_1+1if p> 1, and[0.w]p = [W]p+ 1. Finally, let
us define thearecedenceelation=< by

Wy =Wy = Vp>1 [wyp < [Wolp.

E.g.,(10) < (01) < 0(01) < (001). This relation is gartial order
on infinite binary words. It abstracts the causality relatm stream
computations, e.g., to check that outputs are producedéetm-
sumers request them as inputs.

We can also define the upper bouwdJw' and lower bound
wrw of two infinite binary words with

Vp > 1, [wUw]p = max([w]p, (W]p)
Vp > 1, [Wrw]p = min((w]p, [W]p).
E.g., 110) L (01) = (01) and ¥10) 1 (01) = 1(10); (1001 L
(0110 — (01) and (10011 (0110 — (10).

PROPOSITIONL. The set((0+1)®,<,L,M, L = (1), T =
a complete lattice.

(0) is

Notice T is indeed(0) since[(0)]p = « for all p> 0.2

2 Yet the restriction of this lattice t@, is not complete, neither upwards
nor downwards, even withif, — N.

Eventually, the following remark allows most operations on
infinite periodic binary words to be computed on finite words.

REMARK 1. Considering two infinite periodic binary words,
u(v) and w = U (V'), one may transform these expressions into
equivalent representatives(lg and d(b') satisfying one of the
following conditions.

1. One may choose a},&, and B with |a| = |&'| = max|ul,|U])
and |b| = |b'| = Icm(|v|,|V|) where Icm stands foleast com-
mon multiple Indeed, assumingl| < ||, p= |U| — |u] and n=
lem(vi, [V): w = uv{1]..v{p|-((v[p + 1]...v[p + V[)"V)
and w = u'(v"VV). E.g., words010(00110Q and 1000110)
can be rewritten int®100Q 110000 and 10001101010.

PrRoPOSITION4 (on-distributivity).the on operator is distribu-
tive with respect to the lattice operationsandLl.

PROPOSITIONS (on-monotonicity).For any given infinite binary
word w, functions x- xon w and x— w on x are monotone. The
latter is also injective buhotthe former

Using infinite binary words, we can exhibit an interesting se
of clocks that we callltimately periodic clocksr simply periodic
clocks A periodic clock is a clock whose stream is periodic. Peri-
odic clocks are defined as follows:

ci=w|conw, we Qy.

In the case of these periodic clocks, proposition 2 becomes a

2. Likewise, one may obtain prefixes and suffixes with the samealgorithm, allowing to effectively compute the result obn w.

number of 1s: w= a(b) and w = & (') with |a; = |&/]1 =
max([u[,|u'[1) and |bly = [b/|1 = lem(|v[, |V'|1). Indeed, sup-
pose|ul1 < U1, |V]1 < V|1, p=|U|1—|u|1, T =[V]p, and n=
lem(|v, [V]1): W = uv{d]...V[r].((V[r +2]...v]r + |v]])"V/M2)
and W = u.(v"VIVlt), E.g., the pair of word910(00110Q and
10001 10) becomed10001100007) and 100011010.

3. Finally, one may write w= a(b) and w = & (1) with |aj; =
@] and [bly = [b/|. Indeed, supposul; < |u/[, vy < V],
p=|U[r—ul, r = [Vp, and n=lem(|vly, [V]): w = uv[1]....
VPl (v +1]...v[r + V)V M) and W = o (v IV1). E.g., the
pair of words010(001100 and1000110) can be rewritten into
010001100001(D00013) and 1000%10).

3.2 Clock Sampling and Periodic Clocks

A clock for infinite streams can be an infinite binary word or a
composition of those, as defined by the following grammar:

ci=w|conw, we{0,1}°.

If cis a clock andw is an infinite binary word, them on w
denotes aubsampled clocf ¢, wherew is itself set on clock. In
other wordsc on w is the clock obtained in advancing in cloek
at the pace of clock. E.g.,(01) on (101) = (010101 on (101) =
(010001.

c 0 1 0 1 0 1 0 1 0 1 _.] (0D
w il 0 1 1 0 .. | (100
conw|0 1 0 0 0 1 0 1 0 0 (010007

Formally,on is inductively defined as follows:

Owonw = O.(wonw)
lwonOw = 0. (wonw)
lwonlw = 1(wonw)

Clearly, theon operator isnot commutative.

PROPOSITION2. Given two infinite binary words w and’wthe
infinite binary word won w’ satisfies the equatiofw on w'], =
(W), forall p>1.

Proof. This is proven by induction, observing that i& traversed

at the rate of 1s in wjw on w/|; is associated with the g-th 1

of w such that q is the rank of the first 1 ir,w.e., q= [W];.

Assuming the equation is true for p, the same argument ptbages

[wonw]p1 = W]y, +qWhere gis the distance to the next 1 i) w

i.e., = [W]ps1 — [W]p, which concludes the proof. O
There is an important corollary:

PrROPOSITION3 (on-associativity)Let wy, wo and ws be three
infinite binary words.
Then w on (wp on wg) = (W1 0N Wy) on wa.

Indeed]w on Wa), = Wil jw,, = [Waljw, on s,
The following properties also derive from Proposition 2:

Let us consider two infinite periodic binary wordg = uj(vq)
andwy = up(v2) with |uz|1 = |up| and|vy|1 = |Vv2|, this is possible
because of Remark 1. Thew = w1 on wp = ug(v3) is computed
by ug| = [ua], [us|1 = |uzl1, [us]p = [u1]}y,), and|vs| = [va], V3|1 =
IV2[1, [Valp = [Va]), -

Likewise, periodic clocks are closed for the pointwise axte
sions of boolean operatoes, not , andé&.

3.3 Synchronizability

Motivated by the downscaler example, we introduce an etprice
relation to characterize the concept of resynchronizationfinite
binary words (not necessarily periodic).

DEFINITION 1 (synchronizable words)Ve say that infinite bi-
nary words w and fvare synchronizableand we write w< W/,
iff there exists dd’ € N such that w= 09w and w < 0%'w. It
means that we can delay w by ticks so that the 1s of Woccur
before the 1s of w, and reciprocally.

It means that the-th 1 of w is at a bounded distance from the
n-th 1 ofw. E.g., 110) and (01) are synchronizable; 1@) and
(0) are not synchronizabléP10) and(10) are not synchronizable
since there are asymptotically too many reads or writes.

In the case of periodic clocks, the notion of synchronizgbi$
computable.

PROPOSITIONG6. Two infinite periodic binary words w u(v) and
w = U (V) are synchronizabledenoted by w w/, iff they have the
samerate(a.k.a.throughpuy

M/ =V [1/IV]-

In other words, w< W means w and have the same fraction of
1s in(v) and (V'), hence the same asymptotic production rate. It
also means the n-th 1 of w is at a bounded distance from theln-th
of w.

Proof. From Remark 1, consider = u(v) and w, = U'(V') with
[u = |U| and |v] = [V|. wy = u(v) 1wy, = U (V) iff there exists
d,d’ s.t.vw < wa[L..|u[+ [v| +d], W < 09.wa[L..|u] + [V[] A |w| =
W[= w1 > w1 andvw < 09wy [1..|u[+ V], W < Wso[1..]u|+
V| +d]Aw = W| = |w|; > |W|;. Itis sufficient to cover the
prefixes of finite lengtkt [u| + |v| +maxd +d’).

CaselV' |1 = 0is straightforward. Let us assume thet; / |V |1 >
[v|/[V] (the case|v|1/|V'|1 < |V|/|V| is symmetric). Because of
Remark 1, it means$v|1/|V|1 > 1. Then it entails thatlv) and
(V') are not synchronizable so asjveand w. Let us denote &
IV|1 — [V|1, then ¥ has nal more than (. Thus ¥ < 0f(My"n
where V| > f(n) > na and f(n) is minimal in the sense that
V1 £ 0f(M=1y/" |t entails that(v) < 0" (W (/) and thus there are
not synchronizable.

3E.g.,(1001) on (10) = (1100 on (10).

Conversely, assume|y/|V'|1 = |v|/|V|. Since u and uare fi-
nite, we havel'u < OPU and 1% < 0%u with r = max0, |u'|1 —
|ulp), k=maxO,[uly - [U1). (v), p=min{l || <|u[+rALlTu=
0'v'} and g=min{l |1 < ||+ A1k < 0'u}. (V) are also synchro-
nizable, thugv) < 0™(V) and (V') < O"(v). Thenw < OP+™ M,
and wy < 0% KVIw, . There is an additional delay ofvj since
each period v holds at least one 1. O

4. The Programming Language
This section introduces a simple data-flow functional |t

on infinite data streams. The semantics of this language has a

strictly synchronous core, enforced by a so-caktéatk calculus

a type system to reject non synchronous programs, folloing
13]. Our main contribution is to extend this core withredaxed
interpretation of synchronyr his is obtained by extending the clock
calculus so as to accept the composition of streams whosksclo
are “almost equal”. These program can in turn be automatical
transformed into conventional synchronous programs bgrtirsy
buffer code at proper places.

4.1 A Synchronous Data-Flow Kernel

We introduce a core data-flow language on infinite strearmsyit-

tax derives from [12]. Expressions)(are made of constant streams
(i), variables X), pairs € €), local definitions of functions or stream
variables € where x = €),* applications é(e)), initialized delays
(efby €) and the following sampling functiongwhen pe is the
sampled stream afon the periodic clock given by the value pé,
andner ge is the combination operator of complementary streams
(with opposite periodic clocks) in order to form a longerestm;

f st andsnd are the classical access functions. As a syntactic sugar,

ewhenot peis the sampled stream efon the negation of the peri-
odic clockpe

A program is made of a sequence of declarations of stream

functions (et node f x =€) and periodic clocksperiod p =
pe). E.g.,peri od half = (01) defines the half periodic clock (the
alternating bit sequence) and this clock can be used agdinilh
an other one likeperi od quarter = half on half. Periodic clocks
can be combined with boolean operators. Note that clockstatie
expressions which can be simplified at compile time into threal
form u(v) of infinite periodic binary words.

e 1= X|i|(ee)|ewherex=e|e(e)|op(ee)
| ef by e| ewhen pe|nerge peee
|fst elsnde|eat e

d ;= let node f x=e|d;d
dp = periodp=pe|dpdp
pe := p|w]|peon pe|not pe| peor pe| pe& pe

We can easily program the downscaler in this language, as

shown in Figure 3. Theai n function consists in composing the
various filtering functions. Notation at (i when (100000)) is
a constraint given by the programmer; it states that theudytixel

0 must be produced at some cloakon (100000, thus 6 times
slower than the input cloct.

4.2 Synchronous Semantics

The (synchronous) denotational semantics of our core fitata-
language is built on classical theory of synchronous lagge§l12].
Up to syntactic details, this is essentially the corestirRE lan-
guage. Nonetheless, to ease the presentation, we havietesbstr
sampling operations to apply to periodic clocks only (wlasrany

boolean sequence can be used to sample a stream in existing sy

chronous languages). Moreover, these periodic clocks efiaet!

4Corresponds tbet x = e in ein ML.

et period ¢ = (10100100)
et node hf p = o where rec (...)
and o = f (p,02,03,04,05, 06) when c

let node main i = o at (i when (100000)) where rec
t = hf i
and (i1,i2,i3,i4,i5,i6) = reorder t
and o = vf (i1,i2,i3,i4,i5,i6)

Figure 3. Synchronous code using periodic clock

globally as constant values. These period expressionsidami be
automatically transformed into plain synchronous codeimuis
(i.e., expressions frorg) [25].

This kernel can be statically typed with straightforwarging
rules [12]; we will only consider clock types in the follovgn
In the same way, we do not consider causality and initiabpat
problems nor the rejection of recursive stream functionsese
classical analyses apply directly to our core language heg are
orthogonal to synchrony.

The compilation process takes two steps.

1. A clock calculuscomputes all constraints satisfied by every
clock, as generated by a specifype systeniThese constraints
are resolved throughanificationprocedure, tanfer a periodic
clock for each expression in the program. If there is no sofit
we prove that some expressions do not have a periodic execu-
tion consistent with the rest of the program: the progranois n
synchronous, and therefore is rejected.

2. If a solution is found, theode generatiorstep transforms the
data-flow program into an imperative one (executable, OCami
etc.) where all processes are synchronously executeddingor
to their actual clock.

4.2.1 Clock Calculus

We propose a type system to generate the clock constraihes. T
goal of the clock calculus is to produce judgments of the form
P,H F e: ct meaning that “the expressiamhasclock type ctin

the environments of period®and the environmerti”.

Clock type$ are split into two categories, clock schemes (
quantified over a set of clock variables)(and unquantified clock
types €t). A clock may be a functional cloclc{ — ct), a product
(ct x ct) or a stream clockdK). A stream clock may be a sampled
clock (ckon pe) or a clock variabled).

a = Vay,...,0m.Ct

ct = ct—ct|ctxct|ck
ck 1= ckonpe|a

H = [X1:01,...,Xm:Om|

P = [p1:pey,..,Pn: pen

The distinction between clock typest) and stream clock types
(cK) should not surprise the reader. Indeed, whereas Kahn rietwo
do not have clock types [18], there is a clear distinctionveen
a channel (which receives some clock tyg, a stream function
(which receives some functional clock type— ct’) and a pair
expression (which receives some clock tygpex ct’ meaning that
the two expressions do not necessarily have synchronidaedsja

Clocks may be instantiated and generalized. This is a key fea
ture, to achieve modularity of the analysis. E.g, the hariabfil-
ter of the downscaler has clock schexwea — o on (10100100;
this means that, if the input has any clogkthen the output has
some clocla on (10100100. This clock type can in turn be instan-

5We shall sometimes saglock instead ofclock typewhen clear from
context.

tiated in several ways, replacirg by more precise stream clock
type (e.g., some sampled cloakon (01)).

The rules for instantiating and generalizing a clock type ar
given below.FV(ct) denotes the set of free clock variablesin

ct’[ck/dl] va.ct
fgen(ct) Yagq,...,am.ct whereay, ...,am = FV(ct)

It states that a clock scheme can be instantiated by replacin
variables with clock expressionfgen(ct) returns a fully general-
ized clock type where every variable éhis quantified universally.

When defining periods, we must take care that identifiers are
already defined. IP is a period environment (i.e., a function from
period names to periods), we shall simply wite- pewhen every
free name appearing ipeis defined inP.

The clocking rules defining the predica®eH - e: ct are now
given in Figure 4 and are discussed below.

<

vy PHEi:ck
insy L=HE)
PHEX:ct

PHFe :ck PHFe&:ck
P.H+ op(er,e) : ck
PHFe :ck PHFe&:ck
PHFe fbye :ck
PHFe:ck Pk pe
P,H - ewhen pe: ckon pe
P+ pe HEe :ckonpe PHF e :ckon not pe

(OP)

(FBY)

(WHEN)

(MERGE)
P,H I merge pe g e : ck
(APP) PHFe :cth -cty PHFe:cCh
PHFel(e): cty
(WHERE) PH,x:ctke;:cy P H,X:cthex:ch
PHEewherex=ey:ct
Pary PHEeich PHEe:ch
PHF (e,e):cty xcty
(Fsm) PHIE€e:ch xch
PHEfst e:chy
(snpy) PH P erctixc
PHFEsnde:ct
(CTR) PHFe :ck RHFe:ck
PHFeat e :ck
(NODE) P, H,x:cty -e:ch
Hilet node f x=e:[f:fgencty — ct)]
(PERIOD) P pe
P period p=pe:[p: pg
oerny HEdm:H H.HiEdhp:Hp
dehl;dhz:H]_?Hz
oerpy PEdPLiPL PPiEdp P

PEdpydp: PP

Figure 4. The core clock calculus

¢ A constant stream may have any clad¥(rule (im)).
¢ The clock of an identifier can be instantiated (ruiesT)).

¢ The inputs of imported primitives must all be on the samelcloc
(rule (oP)).

¢ Rule(FBY) states that the clock @& f by e; is the one of; and
& (they must be identical).

¢ Rule(WHEN) states that the clock @when peis a sub-clock of
the clock ofe and we write itckon pe In doing so, we must
check thatpeis a valid periodic clock.

¢ Rule (MERGE) states an expressiomer ge pe g e is well
clocked and on clockk if e; is on clockckon peande; is
on clock the complementary clockon not pe

¢ Rule(app)is the classical typing rule of ML type systems.
e Rule(wWHERE)is the rule for recursive definitions.
¢ Rules(PAIR), (FST)and(SND) are the rules for pairs.

¢ Rule(cTr)for the syntae; at e, states that the clock associated
to e; is imposed by the clock ab; it is the type constraint for
clocks.

¢ Node declarations (rulgiope)) are clocked as regular function
definitions. We writeH , x : ct; as the clock environmenrd ex-
tended with the associatiox: ct;. Because node definitions
only apply at top-level (and cannot be nested), we can gener-
alize every variable appearing in the clock type.

¢ Rules (PERIOD) (DEFH) and (DEFP) check that period and str-
eam variables are well formed, i.e., names in period andstre
expressions are first defined before being used.

4.2.2 Structural Clock Unification

In synchronous data-flow languages such astrRE or LuciD
SYNCHRONE, clocks can be made of arbitrarily complex boolean
expressions. In practice, the compiler makes no hypotloesthe
conditionc in the clock type ¢k on c). This expressiveness is an
essential feature of synchronous languages but forcesthpiter
to use a syntactical criteria during the unification process clock
types €k on ¢1) and €ke on c) can be unified itk andcky can
be unified and it; andc; are syntactically equal.

This approach can also be applied in the case of periodi&gloc
Two clock types ¢k on wq) and €k, on wp) can be unified ifcky
andck, can be unified and ifv; = w, (for the equality between
infinite binary words). As a result, this structural clockification
is unable to comparéx on (01)) on (01) anda on (0001 though
two stream on these clocks are present and absent at thearagy s
instants. A more clever unification mechanism will be thepose
of section 4.3.4.

4.2.3 Semantics over Clocked Streams

We provide our language with a data-flow semantics over famte
infinite sequences following Kahn formulation [18]. Nonel#ss,
we restrict the Kahn semantics by making the absence of & valu
explicit. The set of instantaneous values is enriched wipexial
value L representing the absence of a value.

We need a few preliminary notations.Tfis a set,T® denotes
the set of finite or infinite sequences of elements over thel set
(T® =T*+T%®). The empty sequence is notec@ndx.s denotes
the sequence whose headxiand tail iss. Let < be the prefix
order over sequences, i.&.< y if x is a prefix ofy. The ordered
setD = (T®,<) is a complete partial order (CPO). If; andD»
are CPOs, thed; x Dy is a CPO with the coordinate-wise order.
[D1 — Dy] as the set of continuous functions froth to Dy is
also a CPO by taking the pointwise order. flfis a continuous

6 This is slightly simpler than the classical generalizatiole of ML which
must restrict the generalization to variables which do mppiear free in the
environment.

mapping fromD; to D, we shall writefix(f) = lim_.. f"(€) for
the smallest fix point off (Kleene theorem). We define the set
ClockedStrearfT) of clocked sequenceas the set of finite and
infinite sequences of elements over theet=TU{L}.

T, TU{l}
ClockedStrearfT) (T)®

A clocked sequence is made of present or absent values. We
define the clock of a sequenseas a boolean sequence (without
absent values) indicating when a value is present. For thizgse,
we define the functiorclock from clocked sequences to boolean
sequences:

clock(e) = €
clock L.s) = 0.clocks)
clockx.s) = 1l.clock(s)

We shall use the letterfor present values. Thus.s denotes a
stream whose first element is present and whose resivisereas
1 .sdenotes a stream whose first element is absent. The int@rpret
tion of basic primitives of the core language over clockegleaces
is given in figure 5. We use the mark # to distinguish the sytitac
construct (e.gf by) from its interpretation as a stream transformer.

const®il.c = j.comst?ic
const?i0.c = l.const¥ic
op’(s1,%) = ¢gifsy=corsy=¢
op(L.sy, L.sp) = Lop'(s1,®)
op*(v1.51,V2.5) = (v10pw).0p*(sy,s)
fby*(e,9) =

€

L.£by"(s1,%)
v1.£by1%(vo, 51, %)
€

L. fby1*(v,51, %)
V.£by1%(vp, 51, %)

fby*(L.s1, L.Sp)
£by™(V1.51,V0.5)
fby1¥(v,g,s)
foy1#(v, L.s;, L.p)
fby1#(v,v1.51,V2.5p)

when® (g,) = €
when®(L.s,C) = _L.when®(sc)
when®(v.s,1.c) = vwhen®(s,c)

1 .when*(s,c)
cifsg=corsp=c¢
vmerge®(c,s1,%)
vmerge”(c,s1, %)

O.not*c
lnot®c

when®(v.s,0.¢)
merge”(C,s1,%)
merge”(1.c,v.s;, L.5)
merge?(0.c, 1.51,V.Sp)
not¥1.c

not*0.c

on#(l.Cl, l.Cg)
on#(l.Cl,O.Cz)
On#(o.Cl7 Cz)

l.on#(Cl, Cg)
0. on#(Cl, Cg)
0. On#(Cl7 Cz)

Figure 5. Semantics for the core primitives

e The const primitive produces a constant stream from an im-
mediate value. This primitive is polymorphic since it may
produce a value (or not) according to the environment. For
this reason, we add an extra argument giving its clock. Thus,
const” i ¢ denotes a constant stream with stream clack
(clockconst¥ic) = c).

¢ For a binary operator, the two operands must be synchronous
(together present or together absent) and the purpose of the
clock calculus is to ensure it statically (otherwise, somé b
fering is necessary).

e f by is the unitary delay: it “conses” the head of its first argu-
ment to its second one. The arguments and resulbpfmust

be on the same clockby corresponds to a two-state machine:
while both arguments are absent, it emits nothing and stays i
its initial state £by™). When both are present, it emits its first
argument and enters the new staey(1*) storing the previous
value of its second argument. In this state, it emits a valeeye
time its two arguments are present.

e The sampling operator expects two arguments on the same
clock. The clock of the result depends on the boolean canditi

(©).
¢ The definition ofner ge states that one branch must be present
when the other is absent.

« Note thatmot” andon” operate on boolean sequences only. The
other boolean operations on clocks, eng.and &, follow the
same principle.

It is easy to check that all these functions are continuous on
clocked sequences.

Semantics is given to expressions which have passed thie cloc
calculus £ judgments). We define the interpretation of clock types
as the following:

= [[lcta]p — [cto]lp]
[cta]lp x [ctz]lp
vk, ..., Ckn,
se [[ct[cky/aq,...,Cky/an]]p
se [[cK]lp clock(s) < P(ck)

In order to take away causality problems (which are treated b
some dedicated analysis in synchronous languafes)y, contains
all the streams whose clock is a prefix of the valueclofand in
particular the empty sequeneg This way, an equatiorn = x+ 1
which is well clocked (sinc® H,x: cki- x+ 1 : ck) but not causal
(its smallest solution is) can receive a synchronous semantics.

For any period environmef, clock environmenH and any as-
signmentp (which maps variable names to values) such gifaf €
[H(x)]p, the meaning of an expression is given[liyH - e: ct]],
suchthaf[P,H I~ e: ct], € [ct]]p. The denotational semantics of the
language is defined structurally in Figure 6.

[cty — cto]lp
[t x co]lp
se [Vay,...,an.ct]p

4.2.4 Example
Let us illustrate these definitions on the downscaler in fédu

1. Suppose that the inputhas some clock type;.

2. The horizontal filter has the following signature, copasding
to the effective synchronous implementation of the pracess
02 — 02 on (10100100.

. Between the horizontal filter and the vertical filter, therder
process stores the 5 previous lines in a sliding window ¢ §jz
but has no impact on the clock besides delaying the outpiit unt
itreceives 5 full lines, i.e., 5 720= 3600 cycles. We shall give
to the reorder proess the clock signatuge— az on 03609(1).

The vertical filter produces 4 pixels from 9 pixels repeégte
across the 720 pixels of a stripe (6 lines). Its signaturedhiag
the process’s synchronous implementation) is:

172007201720072007201720072007201720)

4,

o4 — dgon(

To simplify the presentation, we will assume in manual compu
tations that the unit of computation of the vertical filteriine

and not a pixel, hence replace 720 by 1 in the previous sigha-
ture, yielding:a4 — a4 on (10100100].

. Finally, the designer has required that if the global tnpu
is on clock a1, then the clock of the outpud should be
o1 on (100009 — the 6 times subsampled input clock — tol-

[PHFop(er,e) : cK
[PHEX:ct

|
|
[PHEI:cK]
[PHFelfby ey :ck

[[P,H I~ ewhen pe: ckon pe]
[P,H+ nerge pe g e :cK|
|

I

|

|

p(X)
i*[[cK]p

[PHFel(e): ct

[PHEe,e:cty xcty

[PHEfst 51,5 :¢cty

[PHESsnd s, s ctp

[PHE € wherex=e:ct']

[PHFEIlet node f(x)=e:fgencty — ctr)]p
[PHFerat e:cKp

T T ©T T T VT O O OV T DO
[[A

op([P.H F ey : cKlp, [PH e cKp)

£by*([PH ey : cKp, [P H ez ckp)

when”([P.H - e: ck]p, P(pe))

merge#(P(pe), [P,HF e;:ckon pé]p, [P,H e :ckon not pelp)
([PHFer:cty — cillp)([PHF e :cti]p)

([PHFer:ctiflp, [PHFex:ctflp)

s1 wheres;, s, = [P.H - e:cty x cto]lp

S wheresy, s, = [P,H - e: cty x cto]p

[P, H,x:cth € :ct' o/ wherex® = fix(d — [P, H,x: cti-e: ct]yq/x)
[(d— [P, H,x:cty Fe:ctof o)/ f]

[PHFep:cK]p

Figure 6. Data-flow semantics over clocked sequences

erating an additional delay that must automatically be dedu
from the clock calculus.

The composition of all 5 processes yield the type conssaint=
0, 03 =0 on (10100100, anda4 = a3 on 03899(1). Finally, after
replacing variables by their definitions, we get for the aifpthe
following clock type:

(a1 on (10100100) on 0%69%(1)) on (101001001 =
a1 on 0%699(100001000000010000000100

Yet, the result isnot equal to the clock constraint stating that
o0 should have clock type on (10000Q. The downscaler is thus
rejected in a conventional synchronous calculus. Thisdgé¢ason
why we introduce theelaxednotion ofsynchronizability

4.3 Relaxed Synchronous Semantics

The downscaler example highlights a fundamental probleth wi
the embedding of video streaming applications in a synausn
programming model. The designer often has good reasongty ap
a synchronous operator (e.g., the addition) on two channils
different clocks, or to compose two synchronous processeses
signatures do not match, or to impose a particular clock kwhic
does not match any solution of the constraints equatiodgea, in
many cases, the conflicting clocks may be “almost identjgad’,
they have the same asymptotic production rate. This adeséat a
more relaxed interpretation of synchronism. Our main dbation

is a clock calculus to accept the composition of clocks wiaich
“almost identical”, as defined by the structural extensidrthe
synchronizability relation on infinite binary words to sira clocks:

DEFINITION 2 (synchronizable clocks)\Ve say that two stream
clocks ckon w and ckon W are synchronizablg and we write
ckon w<ckon w, if and only if weaw.

Notice this definition does not directly extend to streantk&owith
different variables.

4.3.1 Buffer Processes

When two processes communicate with synchronizable clacics
when causality is preserved (i.e., writes precede or cdaeiith
reads), one may effectively generate synchronous codeding
(the bounded number of) pending writes.

Consider two infinite binary words andw with w < w'. A
buffer buf fer s is a process with the clock typeuf f er y :
VB.Bonw — Bonw and with the data-flow semantics of an un-
bounded lossless FIFO channel [18]. The existence of sugh an
priori unbounded) buffer is guaranteed by the causalithefdom-

munication (writes occur at cloci that precede clockv). We
are only interested in buffers @ihite size(a.k.a. bounded buffers),
where the size of a buffer is the maximal number of pendingesri
it can accomodate while preserving the semantics of an urdzal
lossless FIFO channel.

PrRoOPOSITION?. Consider two processes :fck — a on w and
f’:aonw — ck, with wea W and w= w. There exists a buffer
buf f er yw : VB.Bonw— Bonw such that fobuf feryw o fis
a (0—)synchronous composition (with the unification=).

Proof. A buffer of size n can be implemented with n data registers
X and 2n+ 1 clocks (w;)1<i<n and (ri)o<i<n. Pending writes are
stored in data registers: Mj] = 1 means that there is a pending
write stored in x at cycle j. Clocksrdetermine the instants when
the process associated with igads the data inixri[j] = 1 means
that the data in registerixis read at cycle j. For a sequence of
pushes and pops imposed by clocks w ahdthe following case
distinction simulates a FIFO on the segistersstaticallycontrolled
through clocks wand r:

NOP: w[j] = 0 and W[j] = 0. No operation affects the buffer, i.e.,
rili] = 0, wi[j] = w;i[j — 1]; registers x are left unchanged.

PUSH: w[j] = 1and w/[j] = 0. Some data is written into the buffer
and stored in register all the data in the buffer being pushed
from % into % 1. Thus x=X_1 and x = input, Vi > 2,w;[j] =
Wi—1[j — 1], wa[j] = 1 and f[j] = 0.

POP: w[j] =0andwW[j] = 1. Let p=max({0}U{1<i<n|w[j—
1] = 1}). If p is zero, then no register stores any data at cycle
j: input data must be bypassed directly to the output, cragsi
the wire clocked byg; setting {[j] = 0fori > 0and rp[j] = 1,
wi[j] =w;[j —1]. Conversely, if p> 0, Vi # p,ri[j] =0, rp[j] =
1, Vi # p,wi[j] = wi[j — 1] and wy[j] = 0. Registers are left
unchanged (notice this is not symmetric tofwSHoperation).

POP; PUSH: w[j] =1andw/|j] = 1. This case boils down to the
implementation of #0P followed by aPUSH, as defined in the
two previous cases.

O
Assumingw andw’ are periodic and have been written= u(v)
andw = U (V') under the lines of Remark 1, it is sufficient to con-
duct the previous simulation fdu| + |v| cycles to compute peri-
odic clocksw; andr;. This leads to an implementation in a plain
(0—)synchronous language; yet this implementation is impracti
cal because each clogk or r; has a worst case quadratic size in
the maximum of the periods af andw’ (from the application of
remark 1), yielding cubic control space, memory usage arnf co

size. This motivates the search for an alternative bufferiémen-
tation decoupling the memory management for the FIFO froen th
combinatorial control space; such an implementation ippsed

in Section 5.2.

4.3.2 Relaxed Clock Calculus
Let us now modify the clock calculus in two ways:

1. a subtyping [22] rulgsuB) is added to the clock calculus to
permit the automatic insertion of a finite buffer in order to
synchronize clocks;

2. rule(cTr) is modified into a subtyping rule to allow automatic
insertion (and calculation) of a bounded delay.

The Subtyping Rule
DEFINITION 3. The relation<: is defined by
W< W <= wxw AW=<W.

This is a partial order, and its restriction to equivalendasses for
the synchronizability relatiorn) forms a complete lattice.

We structurally extend this definition to stream clock®ichky
and ckon w where w<: w'.”

Relation <: defines a subtyping rulesus) on stream clocks
types:
PHFe:ckonw w<:w

P.HFe:ckonw

This is a standard subsumption rule, and all classical tesul
subtyping apply [22].

The clock calculus defined in the previous section rejects ex
pressions such asty when the clocks of andy cannot be unified.
With rule (suB), we can relax this calculus to allow an expressgon
with clock ck to be used “as if it had” clockk as soon ask and
cK aresynchronizabl@nd causality is preserved.

E.g., the following program is rejected in ti{@—)synchronous
calculus since, assuminghas some clock:, a on (01) cannot be
unified witha on 1(10).

I et node f(x) =ywhere
y = (xwhen (01)) + (xwhen 1(10))

Let e; denote expressionx (when (01)) ande, denote expression
(x when 1(10)), and let us generate the type constraints for each
construct in the program:

(SUB)

1. (NODE). suppose that the signature bfs of form f : a — ao;
2. (+): the addition expects two arguments with the same clocks;

3. (WHEN): we getcky = a on (01) for the clock ofe; andcky =
o on 1(10) for the clock ofey;

4. (suB). because(01) and 110) are synchronizable, the two
clocks cky = a on (01) andck, = a on 1(10) can be resyn-
chronized intax on (01), since(01) <: (01) and 110) <: (01).

The final signature i$: Va.a — a on (01).

Considering the downscaler example, this subtyping rutsé&
does not solve the clock conflict: the imposed clock first seted
be delayed to avoid starvation of the output process. Thikdas
purpose of the following rule.

The Clock Constraint Rule The designer may impose the clock
of certain expressions. RuleTR) is relaxed into the following

7 Yet this definition does not directly extends to stream cdowith different
variables.

subtyping rule:

PHEe :ckonw, PHEe:ckonw, wp <:0%s

(CTR)

PH e at e:ckon 09w,

Consider the previous example with the additional constrai
that the output must have clo¢k001).

et node f(x)=yat (xwhen (1001)) where
y = (xwhen (01)) + (xwhen 1(10))

We previously computed thak when (01)) + (xwhen 1(10)) has
signaturea — o on (01), and(01) does not unify with(1001).
Rule(cTr)yields

P.HFy:aon (01),xwhen (1001 : aon (1001) (01) <:0(1001)
PHFyat (xwhen (1001) : aon 0(1001)

Finally, f : Va.a — a on 0(100]). Indeed, one cycle delay is the
minimum to allow synchronization with the imposed outputaX.

Relaxed Clock CalculusRules The predicatd® H -5 e: ct states
that an expressioa has clockcet in the period environmerf and
the clock environmenH, under the use of some synchronization
mechanismlts definition extends the one &H + e: ct with the
new rules in Figure 7. The axiom and all other rules are idahtd
the ones in Figure 4, usirtgs judgments instead of.

P,HFse:ckonw;
P,HFse:ckonw,
PHtse :ckonw, PHbser:ckonw, wy <: 0%

(suB) w1 <IWp

(CTR)

PH Fse at e :ckon 0%,

Figure 7. The relaxed clock calculus

Thus, starting from a standard clock calculus whose purfose
to reject non-synchronous program, we extend it véthotyping
rules expressing that a stream produced on some a&gclcan
be read on the clockk, as soon ask; can be synchronized into
cky, using some buffering mechanism. By presenting the system
in two steps, the additional expressiveness with respesttigsical
synchrony is made more precise.

Relaxed Synchrony and thef by Operator Noticef by is consid-
ered a length preserving function in data-flow networks,cleeits
clock schemeéva.a x o — a in the 0-synchronous case, and de-
spite it only needs its first argument at the very first instémthe
relaxed case, we could have chosen one of the following dagek
naturesva.a on 1(0)ex o — a, Yo.a on 1(0) x o on 0(1) — a,
orVa.a x a on 0(1) — a. The first two signatures require the first
argument to be present at the very first instant only, whidvésly
restrictive in practice. The third signature is fully actage, with
the observation that the original length-preserving sigreacan be
reconstructed by applying the subtyping ralen (1) <: o on 0(1).
This highlights the fact that theby operator is a one-place buffer.

4.3.3 Construction of the System of Clock Constraints

The system of clock constraints is build from the systemapigli-
cation of the core rules in Figure 4 and the relaxed calcullesrin
Figure 7. All rules are syntax directed excepiB) whose applica-
tion is implicit at each (function or operator) composition

Rule(cTr)is a special case: the clock constraint is built by com-
puting a possible value for the delay This computation is syn-
tax directed, and we always choose to minimize delay ir@erti
delay(w,w) = min{l | w= 0'w'}. Whenw < w/, no delay is neces-
sary. Note that in general, delayw') # delayw/,w).

PrRopPOSITION8. The delay to synchronize an infinite periodic bi-
nary word w with an imposed infinite periodic binary word san
be automatically computed by the formula

delayw,w') = max(mglx([w}p —W1]p),0).

On periodic words, this delay is effectively computablenitta
to Remark 1.

Proof. Indeed, let d= max(maxy([w]p — [W]p),0) and v= 09w
we have w= v since for all p,[v]p = d + [W],. Moreover, d is
minimal: suppose there exists p such thatd< [w], — [W]p, then
V = 091w satisfiegv]p = d — 14 [W]p < [W]p. Thus, wAV. O

For the simplified downscaler, the minimal delay to resyonehr
nize the vertical filter with the output process 8, since 9603
(clock cycles) is the minimal value af such that
0%600(100001000000010000000108: 09(10000Q. For the real
downscaler (with fully developed vertical filter signatyreve au-
tomatically computed that the minimal delay wE&000to permit
communication with the SD output.

4.3.4 Unification

Yet in our relaxed synchronous setting, the most generdileuni
has an interesting property:

PROPOSITION1O0 (synchronizable unifiersConsider m, w,
(v1,v}) and(v2,V,) such that m=v; onw=V; onwW = v, onw=
v, on W'; we have y > vp and v x5,

This directly derives from Proposition 2.

We can make an arbitrary choice fév,v') among maximal
unifiers, and select one that is easy to compute. Formallgefiae
theearliestsubstitutionsl’ and1” through the following recurrent
equations:

V(091.w,0%0%1w) = 1909 1.9(w,w)
V(0% 1w, 091w) = 19191 V(ww)
V' (092w, 0909 1L w) = 19191 97 (w,w)
V'(090% 1w, 091.w) = 190919 (w,w)
Let M (w,w') denote the unifier
M(w,w) =V(ww)onw= 7" (ww)onw.

The computation oft/ and 7 terminates on periodic words
because there are a finite number of configurations (boungied b

We need a better unification procedure on clock types than the the product of the period lenghts wfandw’).

structural one (see Section 4.2.2), types to obtain antefée@so-
lution algorithm for this system of constraints. In our ceseyntac-
tic unification would unnecessarily reject many synchranpto-
grams with periodic clocks. We propose a semi-interpretefiaa-
tion that takes into account the semantics of periodic dobkore
precisely, the unification of two clock typesandct’ can be purely
structural on functional and pair types, where no simplifaxaon
periodic clocks can be applied, but it has to be aware of thper
ties of the sampling operatasr() when unifying stream clock types
of the formckon w andckK on w'. Two cases must be considered.

First of all, unifyinga on w anda on w returns true if and only
if w=w.

In the most general case, assumanda’ are clock variables
(clocks can be normalised, thanks to the associativipndfEqua-
tion a on w= o’ on W always has an infinite number of solutigns
these solutions generate an infinite number of differenniigibi-
nary words. Intuitively, a periodic sampling @f consists of the
insertion of Os inw, in a periodic manner. Ifv < w/, it is always
possible to delay the@-th 1 inw (resp.w) until the p-th 1 inw
(resp.w) through the insertion of Os ia (resp. ina’). Let us define
the subsampling relatiofisg such that

/
a<gsd <= 3Ja,a=aond.

Note that ifa <ssa' thena’ < a, but the converse is not trugdl) <
(0011 and there is no solutioa such tha{0011) = a on (01).

PrRoOPOSITION9. Relation<gsis a partial order.

Proof. <gsis trivially reflexive and transitive. Antisymmetry holds
becausex is a partial order, and a<ssa@ implies 4 < a. O

In a typical unification scheme, one would like to replace the
above type equation by “the most general clock type satigfte
equation”. We will see that there is indeed a most generatiwor
such that all common subsampleswéndw’ are subsamples of
(<ssis an upper semi-lattice), yet the expressiomoE von w =
Vv on W does not lead to a unique choice forand for the maximal
unifiersv andV. In fact, there can be an infinite set of such words.

In a strictly synchronous setting, we need to fall back to an
incomplete unification scheme (some synchronous prograitins w
periodic clocks will be rejected), choosing one of thesetsonhs. If
(v,V) is the chosen solution, the unificationa@bén w anda’ on w/
yields a unique clock type onvonw=aonV onw, and every
occurence of (resp.a’) is replaced by on v (resp.a on V).

E.g.,aon (1000 = & on 0(101):

w 100010001000 0..](1000

w 010110110110 1..][0(10]

Pww) [0111111111111..]071

PWwW) |1 11001000110 0. |1(11001000

Mww)[010001200010 0 0..|0(1000
PrRoPOSITION11. For all w,w, p,

[M(WW)]pr1 = [M(WW)]p+
max([W]p1— [Wp, [W]pr1— [W]p).

Proof. An inductive proof derives naturally from the previous
algorithm. In particular, observe that between two consiseuls
in M (w,w), the associated subword of either v diwa sequence
of 1s; hence eithefM (W, W)]p1 — [M (W, W)]p = [W]pr1 — [W]p
or [M (WW)] i1 — [M(Ww)]p = [W]pi1— [W]p. 0

In addition, M (w,w’) is the maximuncommon subsample of
andw’ and has several interesting properties:

THEOREM1 (structure of subsamples)yhe subsampling relation
<gsforms an upper semi-lattice on infinite binary words, thersup
mum of a pair of words w/ being M (w,w').

Common subsamples of w antifarm a complete lower semi-
lattice structure for<, M (w,w') being the bottom element.

M is also associativeM (w, M (W ,w")) = M (M (w,w'),w").
(Hence the complete lower semi-lattice structure foholds for
common subsamples of any finite set of infinite binary words.)

Proof. We proceed by induction on the position of the p-th 1. Con-

sider a infinite binary word f=uon w= 1’ on w'. By construction

of m,[m]1 = max([w]1,[W]1), hencem|; < [m]1. Assume all com-

mon subsamples of w and are subsamples of m up to their p-th

1, and thafm| < [, for some p> 1. Proposition 11 tells that m

is identical to either w or Wbetween its p-th and p 1-th 1; hence

common subsamples of w antlake subsamples of m up to the next

1; and since w= m’ and W < ' (<ssis a reversed sub-order of

=), we getm|,1 < [m]p 1, hence mx m' by induction on p.
Associativity derives directly from Proposition 11. O

4.3.5 Resolution of the System of Clock Constraints

We may now define a resolution procedure through a set of
constraint-simplification rules.

(CYCLE) S+{oonw; <:aonwy} ~ S if wy <:Wp
(SUP) S+{aonw; <:d/, aonwy <:a'} ~ St{aonwiliwy <:a'} if Wy bWy
(NF) S+{a’ <taonwg, ' <:aonwy} ~» S+{a’ <iaonwilMwye} if Wy bdwy
o onvy/og e lip={agonw; <:cki}or{ck <:agonwi} a;#ay Vvi=V(wg,Wp)
(EQUAL) S ~ S[a;ZL on va/dz it S=S+11+l2, I ={aponw, <:cke} or {cko <:aponwWo}’ Wy # Wy 7 Vo = V' (Wy,Wo)

(cuT)

(JOIN)
(suesT) S@®| ~ Slck/a]

S+{aionw<:azonw} ~» S+{aq <:030nug, 030N Uy <:02}
(FORK) S+ {a <:ajonw, o <:0z0nw} ~» Soagonuonw/a]+{azonu<:oq, 030nU<:0z2}
S+{ajonw<:a, aponw<:a} ~ Soagonuonw/a]+{a; <:azonu, 0z <:0z0nUu}
if | ={a<:ck}or{ck<:a},a¢FV(ck)

if 01 % 02, Up = Umax(W), U2 = Umin(W)
if a1 7 02, U= Umin(W)
if 01 # d2, U= Umax(W)

Figure 8. Clock constraints resolution

The clock system given is turned into an algorithm by intmdu
ing a subtyping rule at every application point and by savinset
of constraints of the fornek <: ck. The program is well clocked
if the set of constraints is satisfiable.

DEFINITION 4 (constraints and satisfiabilityp system S of clock
constraints is a collection of inequations between cloglesy

S = {cki<:ck,...,cky <:cky}

We write St {cky <: cky} for the extension of a system S
with the inequation{ck; <: cko}. We write Sp {cky <: cky} for
S+ {cky <: cky} such that S does not containdirected chairof
inequations from any free variable in cko any free variable in
cky. For example, $ {01 <: ap on wp} means that, in Sy1 never
appear on the left of an inequation that leads transitivelyan
inequation where, appears on the right.

A system S is satisfiable if there exists a substitutidinom
variables to infinite binary words such that for gltk <: ck'} €

Sp(ck) <:p(cK).

There is a straightforward but important (weak) confluence
property on subsampling and satisfiability:

PROPOSITION12 (subsampling and satisfiabilitylf. o’ ¢ S, then
for all w, S is satisfiable iff 8 on w/a] is satisfiable.

Proof. Suppose S is satisfiable wipfia) = yon m. Then we can
build another substitutiop’ satisfying the system of constraints by
choosingp’(y) =Y on “(m,w), p’(a) =y on %(m,w) on m and
p'(a’) =y on V’(m,w). The reciprocal is obvious. O

Let us eventually define three functions useful to bound #te s
of subsamples of a given wordnin, Umax and A are defined
recursively as follows:

umax(oalb.W) = anb 1a1b. ﬂmax(W)
A(0°19.u,021°.w,r) = 121P0%121P19 A(u,w,r + f — [+ f])

with q= 2@ o — ¢y |r4q)
andf =q—[q]

Notice A — from pairs of infinite binary words and rational
numbers to infinite binary words— is of technical interest thoe
proofs only.

PropPoOsITION13. For all w, Umin(W) < Umax(W), Umin(W) <:
Urmax(W), and Unmin(W) 0n W = TUrmax(W) 0N W.

For all u, w,A(u,w,0) is an infinite periodic binary word and is
synchronizable with u.

Proof. The first part of the proposition is proven inductively on the
position of 1s in the subsampling.

The second part is a consequence of the definition ,ofles
signed to match the asymptotic rate of 1s in u (through th@gro
gation of r, the fractional part of the asymptotic rate). O

The set of subsamples of a given word is characterized by the
following technical proposition:

ProprosITION14. For all v, w, we have
Umin(w) on W <:von w = Umin(W) <: Vv
and
VOoNn W <: Umax(W) oON W = V <: Umax(W).
For all u, v, w,
uon Umin(w) onw <:vonw = A(u,w,0) on Umin(w) <: Vv
and

vVon W <:uon UnaxW) onw = v <: A(U,w,0) on Umax(W).

Proof. The first pair of implications is proven inductively on the
definition of Umin and Umax.
For the second pair of implications, observe that

121°0° 121° on 12020°1P.U = 120°0° 0?1°
and
121P0¢ 121P on 020P121°.U = 020P0° 121°,

henceA(u,w,0) on Umin(w) (resp.A(u,w, 0) on Umax(W)) yields a
lower (resp. upper) bound on alf guch that

v on w = A(u,w,0) on Umin(w) on w =
A(u,w, 0) 0n Umax(W) On .

Finally, observe thatA(u,w,0) is synchronizable with u, which
allows to apply the first part of the proposition and conclsidlee
proof. O

Let us finally define the simplification relatier between clock
constraints. Its definition is given in Figure 8. Any new edlie ap-
pearing in right-hand side of the simplification relatiorassumed
to be fresh.

THEOREM2 (preservation of satisfiability)f S is satisfiable and
S ~ S then $is satisfiable.

Proof. Proposition 12 authorizes to sample (to slow down) the
system and will be used throughout the proof.
Let us consider every relation in Figure 8.

(SUP) (INF) and(cYCLE). Presevation of satisfiability is a direct ap-
plication of Propositions 2 and 5.

(EQUAL). This rule preserves satisfiability: it just subsamples a pai
of variables.

(cuT). By definition of Umin and Umax the right-hand side of the
relation is a sufficient condition of satisfiability.

Conversely, consider a solution = a on vy anda, = a on vo.
Let Vi = V(v1, Umin(w)) and V| = V’(vq, Unmin(w)), and re-
placea bya’ on V;. We havex; = a’ on Vj on Unin(w). Let us
choosenz = a’ on A(V{,w,0); From Proposition 14, we have
ag <: o’ onVj on UnadWw) <: 03 0n UnaxW).

We also have Yon Unin(w) on w <: V4 on v, on w, hence
Proposition 14 yield&\(V{,w,0) on Umin(W) <: V1 0n va. Since
ay = a’ on'Vy on vy, we havenz on Umin(W) <: az. The right-
hand side of the relation is thus satisfiable.

(FORK)and(JoIN). The proof is very similar: choosing the samg
satisfies both inequalities am anda, simultaneously.

(sussT) Consider the form of the inequality | @n The right-hand
side of the relation is of course a sufficient condition ofssat
fiability. It is also clear that it is necessary when the inagu
ity does not belong to a circuit. Assuming it belongs to a cir-
cuit, simplify the system through the systematic apphcatf
all other rules, enforcing that no inequality belongs to tiul
ple simple circuits. A retiming argument [20] shows thathié
system is satisfiable, then there is a solution such thatnall i
equalities in a given circuit but (at most) one are convelrtied
equalities: considering a solution with at least two striat
equalities, split the circuit by renaming the common cloai-v
able, choosing one name for the path from one inequalityeo th
other and another one on the other path, unify any one of the
broken inequalities to effectively remove this inequditityn the
solution.

The proof is symmetical for the second form of I.

O
Rule (EQuUAL) is only provided to factor the unification step
out of the (curt), (FORK) and (JOIN) rules. As a consequence, in
the following resolution algorithm, we assume r@muAL) is an
enabling simplification, applied once before each rater), (FORK)
and(JoIN).

THEOREM3 (resolution algorithm)The set of rules in Figure 8
defines a non-deterministic, but always terminating resotual-
gorithm:

1. the tree of simplifications S+ S is finite;
2. if S is satisfiable, there is a sequence of rule applicatiead-
ing to the empty set.

Proof. The proof is based on the graph structure induced by S.

(sup) and (INF) strictly reduces the number of acyclic paths.
(EQUAL)is only used once for each application(bT), (FORK)and
(JOIN). The W # wp condition guarantees it can only be applied
a finite number of times. A systematic applicationsafr) (INF),
(cuT), (FORK) and (JOIN) leads to a system where no inequality
belongs to multiple simple circuits. This enablssBsT) which
strictly reduces the length of any circuit or multi-path sgitaphs.
(cycLE)reduces short-circuits on a single variable.

Any ordering in the application of these rules terminatas] a
yields the empty set when S is satisfiable. O

As a corollary:

THEOREM4 (completeness)or any expression e, and for any
period and clock environments P and H, if e has an admissible
clock type in PH for the relaxed clock calculus, then the type
inference algorithm computes a clock ct verifyingdP-s e: ct.

Intuitively, if the type constraints imposed by the clockotdus
are satisfiable, then our resolution algorithm discoverssmiution.
This strong result guarantees the clock calculus’s ahititgccept

all programs with periodic clocks that can be translateddtriatly
(0—)synchronous framework.

Completeness would be easier to derive from principaligy, i
from the existence of a most general type for every expragdgip,
1]. Yet the unification of clock stream types is not purelystural
(it exploits the properties of then operator), and there are many
ways to solve an equation on clock types. There is not muck hop
either that the system of clock constraints can be solveddst af
confluent rules, since multiple solutions are often eqeialp to
retiming [20].

Finally, although Theorem 3 proves completeness, our uesol
tion algorithm does not guarantee anything about the quafithe
result (total buffer size, period length, rate of the comrotmtk).

5. Translation Procedure

When a network is associated with a system of clock inedealit
where not all of them are simplified into equalities, its axém

is undefined with respect to the semantics of 0-synchronoos p
grams. Buffer processes are needed to synchronize pradwiter
consumers.

5.1 Translation Semantics

Consider the input clockk on w and the output periodk on w/,
with w < w'. To fully synchronize the communication, we insert a
new buffer nodebuf f er y with clock VB.Bonw — Bonw;w
(resp.w) states when push(resp.pop) occurs.

ProposITION1S (buffer size).Consider two synchronizable infi-
nite binary words w and #such that w< w’. The minimal buffer to
allow communication from w to’vis of size

sizgw,w') = max(max({d - p| W]p > [Wq}),0).

Communication from w to Wis called sizéw,w’)-synchronous.
On periodic words, this size is effectively computable kisan
Remark 1.

Proof. This is the maximal number of pending writes appearing
before their matching reads, hence a lower bound on the nainim
size. It is also the minimal size, since it is possible to ém@nt a
size n buffer with n registers. O

For the simplified downscaler, buffer size is equal to 1, sinc
clock 0°600(1000010000000 1000000010May take at most one
advance tick with respect to clock®®3(100000. For the real
downscaler, we automatically computed the €86.

Let us now define &ranslation semantic®r programs accepted
with the relaxed clock calculus. This will enable us to statecor-
nerstone result of this work, namely that programs accepitul
the relaxed clock calculus can be turned into synchronoas pr
grams which are accepted by the original clock calculuss T#i
obtained through a program transformation which insertsfteb
every time a strict inequality on stream clock types remaifter
resolution. Because a buffer is itself a synchronous progitae
resulting translated program can be clocked with the inslyatem
and can thus be synchronously evaluated. This translasiai-
tained by asserting judgmeRtH s e: ct = €, meaning that in
the period environmerR and the clock environmett, the expres-
sionewith clock ct is translated int@'. The insertion rule is:

PHFse:ckonw=¢€¢ w<w
PHFse:ckonw = bufferyw(€)

(TRANSLATION)

Other rules are simple morphistfs.

8 Notice the(CTR) rule shifts a clock constraint imposed by the program-
mer; this rule will often lead to the insertion of a synchmation buffer,
triggering the(TRANSLATION) rule indirectly.

pushl push2

push DL DL D4 o @ push enpty
Bl B2 B3 Bn _ B o

! ol 02 03 o o i L o
T =] ‘ ™ ‘ pop m

Figure 9. A synchronous buffer

5.2 Practical Buffer Implementation

5.3 Correctness

From the definition in Section 4.3.1, one may define a custom We define judgmenP,H I e: ct to denote that expressiahas

buffer process with the exact clock type to resynchronizerarou-
nication. Yet this definition suffers from the intrinsic cbmatorics

clockct in the period environmer® and the clock environmeiit,
for the original 0-synchronous system. The following result states

of (0—)synchronous communication between periodic clocks (with that any program accepted by the relaxed clock calculusiates

statically known periodic clocks). We propose an altereation-
struction where the presence or absence of data is captyrég-b
namically computed clocks. The memory and code size becom
linear in the buffer size, which is appropriate for a praatienple-
mentation. The downside is that static properties abouptbeess
become much harder to exhibit for automated tools (modetiche
ing, abstract interpretation): in particular, it is hardptmve that the
code actually behaves as a FIFO buffer when at mdekens are
sent and not yet received.

et node bufferl (push, pop, i) = (enpty, 0) where
o =if penpty then i else pneno
and neno = if push then i else pnenmo
and pneno = 0 fhy menp
and enpty =
if push then if pop then penpty else false
else if pop then true
el se penpty
and penpty = true fby enpty

Figure 10. Synchronous buffer implementation

A buffer of size one, called 1-buffer, can be written as a syn-
chronous program with three inputs and two outputs. It has tw
boolean inputgush andpop and a data . o andenpty are the
outputs. Its behavior is the following: the outguequali when its
internal memory was empty and equals the internal memomroth
wise. Then, the memory is setitowhenpush is true. Finally, the
enpt y flag gives the status of the internal memory. [fush and a
pop occur and the memory is empty, then the buffer is bypassed. If
push occurs onlyenpt y becomes false. Conversely, ipap occurs
then the memory is emptied. This behavior can be programmed i
a synchronous language. Figure 10 gives an implementatitiso
buffer in a strictly synchronous langua@&uffers of sizen can be
constructed by connecting a sequence of 1-buffers as shrofig-
ure 9. To complete these figures, notice the boolean strpasts
andpop need to be computed explicitely from the periodic words
w andw’ of the output and input stream clocks.

Finally, because safety is already guaranteed by the celar
periodic clocks, a synchronous implementation for thedi not
absolutely required. An array in random-access memory kgt
and tail pointers would be correct by construction, as so®iit a
satisfies the size requirements.

9LucIb SYNCHRONE[13]; distribution and reference manual available at
ww. | ri. fr/~pouzet/I ucid-synchrone.

to an equivalent 0-synchronous program (in terms of data-fio
streams). This equivalent program has the same clock types.

THEOREMS5 (correctness)For any period environment P and
clock environment H, if M Fse: ct = € then PH I- € : ct.

The proof derives from the subtyping rule underlyingjudg-
ments: classical subtyping theory [22, 1, 23] reduces ¢loba
rectness to the proof of local 0-synchronism of each process
position in the translated program (includiag clock constraints).
This is guaranteed by the previous buffer insertion schesimee
each buffer’s signature is tailored to the resynchronizatf a pair
of different but synchronizable clocks. This ensures thegfated
program is synchronous.

6. Synchrony and Asynchrony

A system that does not have a single synchronous clock isawt n
essarily asynchronous: numerous studies have tackledelétked
or multi-clocked synchrony at the hardware or software levé/e
only discuss the most closely related sudies, a wide andrluat
perspective can be found in [7].

There are a number of approaches to the specification and de-
sign of hybrid hardware/software systems. Most of them eaplg-
cal tools based on process networks. Kahn process netwopds)(
[18] is a fundamental one, but it models only functional pdies,
as opposed to structural properties. KPN are used in a nuaofber
tools such as YAPI [14] or the COSY project [5]; such tooldl sti
require expertise from different domains and there is nvensal
language that combines functional and structural featressin-
gle framework.

Steps towards the synchronous control of asynchronousragst
are also conducted in the domain of synchronous programiaimg
guages, such as the work of Le Guernic et al. [19] on Polyghron
This work targets the automatic and correct by construatidime-
ment of programs, in the same spirit as our clock compositioih
it does not consider quantitative properties of clockse&trlt [24]
is a language for high performance streaming computatibat t
tackles mainly stream-level and algebraic optimizatiGués.

Ptolemy [6] is a rich platform with simulation and analyssis
for the design of embedded streaming systems: it is basetleon t
synchronous data-flow (SDF) model of computation [15]. kil
synchronous languages, SDF graphs cannot express (boonded
not) recursion and arbitrary aperiodic execution. Theyrayeex-
plicitly clocked either: synchrony is a consequence of lbedance
equations on periodic execution schemes. The SDF modelsllo
static scheduling and is convenient for the automatic dédn of
timing properties [21], but the lack of clocks weakens iteaabil-

ity for formal reasoning and correct-by-construction gatien of
synchronous code, with respect to synchronous language<]1
Interestinglyn-synchronizable clocks seem to fill this hole, leading
to the definition of a formal semantics for SDF while exposiing
precise static schedule to the programmer (for increasettaamn
buffer management and code generation). Further analysbe o
correspondence between the two models are left for futur&.wo

7. Conclusion and Perspectives

We proposed a synchronous programming language to imptemen

correct-by-construction, high-performance streamingliaptions.
Our model addresses the automatic synthesis of commuomeati
between processes that are not strictly synchronous. $mibidel,
we show that latencies and buffer requirements can be edexu-
tomatically. We extend a core data-flow language with a motio
of periodic clocks and with a relaxed clock calculus to cosgo
synchronous processes. This relaxed synchronous modeledefi
a formal semantics for synchronous data-flow graphs, mgldi
long awaited bridge with synchronous languages. The clatk c
culus and the translation procedure from relaxed synchusrio
strictly synchronous programs are proven correct, and #s®-a
ciated type inference is proven complete. An implementatio
the synchronous languageJtib SYNCHRONE is under way and
was applied to a classical video downscaler example. We\zeli
this work widens the scope of synchronous programming betyon
safety-critical reactive systems and circuit synthesisppsing in-
creased safety and productivity in the design and optinuzaif a
large spectrum of applications.

Acknowledgments

This work is partially funded by the French “ACI Sécurité”
Alidecs. We are grateful to anonymous reviewers for theieftd
reading and deep remarks which contributed to improve tha fin
version of this paper. We would also like to thank Zbigniewa@h
ski who contributed several key ideas that lead to the cdnckep
n-synchrony.

References

[1] A. Aiken and E. L. Wimmers. Type inclusion constraintsdaiype
inference. InFunctional Programming Languages and Computer
Architecture pages 31-41, 1993.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Leric,
and R. de Simone. The Synchronous Languages Twelve Yeags Lat
Proceedings of the IEEP®1(1):64-83, 2003.

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synausn
programming with events and relations: the signal languagkits
semanticsSci. Comput. Program16(2):103-149, 1991.

[4] G. Berry. The Foundations of EstereMIT Press, 2000.

[5] J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, F. Pétr&.. Pasquier,
E. A. de Kock, and W. J. M. Smits. COSY communication IP’s. In
37th Design Automation Conference (DAC'0pages 406-409, Los
Angeles, California, June 2000.

[6] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptotefy
framework for simulating and prototyping heterogenoudeys. Int.
Journal in Computer Simulatior}(2):155-182, 1994.

[7] P. Caspi. Embedded control: From asynchrony to syngheomd
back. INEMSOFT'0] volume 2211 oLNCS Lake Tahoe, October
2001. Springer-Verlag.

[8] P. Caspi and M. Pouzet. Synchronous Kahn networkdCkP '96:
Proceedings of the first ACM SIGPLAN international confeeenn
Functional programmingpages 226—238. ACM Press, 1996.

[9] Z.S. Chamski, M. Duranton, A. Cohen, C. Eisenbeis, Pukres, and
D. Genius. Application-domain-driven system design forvasive

video processingAmbient intelligence: impact on embedded system
design pages 251-270, 2003.

[10] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous
SystemsPhD thesis, Stanford University, October 1984.

[11] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F.dlat and
M. Pouzet. Synchronization of periodic clocks. ACM Conf.
on Embedded Software (EMSOFT'03grsey City, New York,
September 2005.

[12] J.-L. Colago, A. Girault, G. Hamon, and M. Pouzet. Toilga
Higher-order Synchronous Data-flow Language. EMSOFT’'04
Pisa, Italy, september 2004.

[13] J.-L. Colago and M. Pouzet. Clocks as first class abistypes. In
Rajeev Alur and Insup Lee, editorEMSOFT'03 volume 2855 of
Lecture Notes in Computer Scienpages 134-155. Springer, 2003.

[14] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.
Y. Brunel, W. M. Kruijtzer, P. Lieverse, and K. A. Vissers. pia
Application modeling for signal processing systems3Tth Design
Automation Conferen¢é&os Angeles, CA, june 2000. ACM Press.

[15] D. G. Messerschmitt E. A. Lee. Static scheduling of $ynaous data
flow programs for digital signal processintEEE Trans. Computers
36(1):24-25, 1987.

[16] K. Goossens, G. Prakash, J. Rover, and A. P. Niranjaterdonnect
and memory organization in SOCs for advanced set-top ba@3 ¥
— evolution, analysis, and trends. In Jari Nurmi, Hannu Tev&m,
Jouni Isoaho, and Axel Jantsch, editdrgerconnect-Centric Design
for Advanced SoC and NeChapter 15, pages 399-423. Kluwer,
April 2004.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. Thelspnous
dataflow programming language lustr@roceedings of the IEEE
79(9):1305-1320, September 1991.

[18] G. Kahn. The semantics of a simple language for parphegram-
ming. In J. L. Rosenfeld, editoinformation processingpages
471-475, Stockholm, Sweden, Aug 1974. North Holland, Amste
dam.

[19] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polyolirtor system
design. Journal for Circuits, Systems and Computers, Special Issue
on Application Specific Hardware DesigApril 2003.

[20] C. E. Leiserson and J. B. Saxe. Retiming synchronousuitiy.
Algorithmica 6(1), 1991.

[21] A.J.M. Moonen, M. Bekooij, and J. van Meerbergen. Tignanalysis
model for network based multiprocessor systemsprbteedings of
ProRISC, 15th annual Workshop of Circuits, System and Signa
Processing pages pages 91 — 99, Veldhoven, The Netherlands,
November 2004. ISBN: 90-73461-43-X.

[22] B. C. Pierce.Types and Programming LanguagegIT Press, 2002.

[23] F. Pottier. Simplifying subtyping constraints. ACM Intl. Conf. on
Functional Programming (ICFP’96)volume 31(6), pages 122-133,
1996.

[24] W. Thies, M. Karczmarek, and S. Amarasinghe. Streaflanguage
for streaming applications. limternational Conference on Compiler
Construction Grenoble, France, April 2002.

[25] J. E. Vuillemin. On circuits and nhumberdEEE Trans. Comput.
43(8):868-879, 1994.

