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Abstract

In this report we introduce an artificial evolutionary system, Artificial Ontogeny (AO),
that uses a developmental encoding scheme to translate a given genotype into a complete
agent, which then acts in a physically-realistic virtual environment. Evolution is accom-
plished using a genetic algorithm, in which the genotypes are treated as genetic regulatory
networks. The dynamics of the regulatory network direct the growth of the agent, and lead
to the construction of both the morphology and neural control of the agent. We demon-
strate that such a model can be used to evolve agents to perform non-trivial tasks, such
as directed locomotion and block pushing in a noisy environment. It is shown that mu-
tations expressed earlier in development tend to have a more variable morphological and
behavioural effect than mutations expressed later in development, which tend to have a
less pronounced effect. These results support the hypothesis that ontogeny provides arti-
ficial evolution with beneficial mutations that have varying degrees of phenotypic effect,
depending on their onset of expression during development. In addition, we evolve agents
using a fitness function which indirectly selects for increased size. In these agents we find
evidence of functional specialization and repeated, differentiated structure. In the final
section we argue that such a system would be a useful tool for the evolutionary design of
morpo-functional machines.

1 Introduction

There are three major obstacles challenging the investigation of the interdependence be-
tween an adaptive agent’s morphology, neural control and environment in the field of
artificial intelligence. First, the internal processing bias in classical artificial intelligence
has tended to place an inordinate emphasis on neural processing, to the detriment of the
other aspects of an agent. Second, technological limitations have largely prohibited the
investigation of the behavioural effect of changing the morphology of real-world robots.
Finally, the computational resources required to evolve both the morphology and neural
control of simulated agents, in a physically-realistic environment, have, until recently,
been beyond the reach of most artificial intelligence research laboratories.

However, the emerging field of embodied cognitive science [18, 3] is beginning to
challenge the computational biases of classical artificial intelligence. The field of morpho-
functional machines is producing examples of robots with flexible morphological config-
urations [15, 12, 8]. Finally, several examples of evolved complete agents in physically-



realistic environments have recently appeared in the literature [23, 14, 2, 16], either ex-
tending or complementing the work conducted by Karl Sims in 1994 [21]. This paper
contributes to the third stream of investigation by demonstrating that the close interde-
pendence between morphology and behaviour allows Artificial Ontogeny—that is, an ar-
tificial evolutionary system with differential gene expression during growth—to evolve
complete agents that solve a non-trivial task.

All of the evolved agents reported in [21, 23, 14, 2, 16] were evaluated within a phys-
ically realistic virtual environment. The agents reported in [16] were then constructed as
real-world robots. Terzopoulos [22] and Ijspeert [9] evolved neural controllers for agents
which acted within a physically-realistic environment. By using a physically-realistic en-
vironment, artificial evolution is free to tune both the morphology and neural control of the
evolving agents such that they exploit the physics of their environment. For example, we
reported in [2] that only a fraction of the joints in some agents evolved for locomotion are
actuated. The other joints are passive, and the forward momentum of the agent—along
with that agent’s particular morphology—moves these joints in an appropriate manner
during locomotion. This demonstrated that artificial evolution can make use of passive
dynamics [17]. As in [2], the experiments reported in this paper were conducted using a
commercially available physics-based simulation package1.

Eggenberger [5] used an evolutionary method for evolving agents that grow via dif-
ferential gene expression, but the agents lacked neural structure, and were only evaluated
as to their body shape. This report extends the work of Eggenberger by using genetic reg-
ulatory networks to evolve both the morphology and neural control of complete agents.
The aim of this work is not to produce a detailed model of biological development, but
rather to abstract just those developmental mechanisms from nature that makes the AO
system highly evolvable [24, 13]. That is, given an arbitrary task, the abstracted biological
mechanisms lend the AO system a relatively high probability of finding an agent in the
search space that performs the task well.

Section 2 provides details about the genetic regulatory networks, as well as other as-
pects of the AO system. Section 3 demonstrates some of the agents that were evolved, as
well as results detailing how selection pressure tends to modify differential gene expres-
sion patterns to produce the evolved agents. Section 4 provides an analysis of the results,
and the final section provides some concluding remarks and promising avenues for future
investigation.

2 The Model

In this section we introduce an artificial evolutionary method which we term Artificial
Ontogeny (AO). In this method, there is a translation from a linear genotype into a three-
dimensional agent complete with a set of sensors, actuated and/or passive limbs, and in-
ternal neural architecture, such as in [21, 23, 2, 16]. However unlike these other methods,
the genotype to phenotype translation takes place via ontogenetic processes, in which
differential gene expression, coupled with the diffusion of gene products, transforms a
single structural unit in a continuous manner into an articulated agent, composed of sev-
eral structural units, some or all of which contain sensors, actuators and internal neural

1MathEngine PLC, Oxford, UK, www.mathengine.com



structure. If we wish to evolve both the morphologies and controllers of robots, biologi-
cal ontogeny seems a useful (and, at the moment, the only) guide upon which evolution
can coordinate the construction of the various morphological and neural structures nec-
essary for a functioning agent. First we describe the mechanical, morphological aspects
of the agents that are evolved. This is followed by a description of the differential gene
expression model, and how this affects the ontogenetic development of an agent. The
final sub-section details how neural structure grows in time with the growing body of the
agent.

2.1 Agent Morphology

Each agent evaluated in the physically-realistic simulation is composed of one or more
structural units. For the experiments reported here, spheres are used to represent these
units. Spheres reduce the computational cost related to collision detection during the
evaluation of an agent, as well as facilitate the quantitative comparison of different mor-
phologies (see section 3). Structural units are the basic building blocks from which the
agent’s morphology is constructed. By scaling up the number of units used to construct
an agent, increasingly arbitrary morphologies can be evolved.

Each agent begins its ontogenetic development as a single structural unit. Depending
on the changing concentrations of the gene products within this unit, the unit may grow
in size, until the radius grows to twice that of the unit’s original radius. At this point the
unit splits into two units, each of which has the default radius. Note that the volume is
thus not conserved across the split event: whether volume concentration in a necessary
component of morphogenesis remains to be tested. Although the agent grows through
repeated division of units, and units retain a single genome which regulates the diffusion
of a constellation of gene products, the structural units used in this model are not to
be equated with the biological concept of a cell, such as in the AES system [5], nor
are they equivalent to the structural units employed in the parametric models reported in
[21, 23, 2, 16]. Rather, repeated division is a useful abstraction that allows for a relatively
continuous transition from a single unit into a fully developed agent composed of many
such units.

Each structural unit contains: zero to six joints attaching it to other units via rigid con-
nectors; a copy of the genome directing development of the given agent; and six diffusion
sites. Each of the six diffusion sites are located midway along the six line segments orig-
inating at the centre of the sphere, terminating at the surface, and pointing north, south,
west, east, up and down. Each diffusion site contains zero or more diffusing gene products
and zero or more sensor, motor and internal neurons. The neurons at a diffusion site may
be connected to other neurons at the same diffusion site, or another diffusion site within
the same unit or in other units. Each of the components of a structural unit are described
in more detail in the following sub-sections.

A newly-created unit is attached to its parent unit in one of six possible directions, and
is connected by a rigid connector that maintains a constant distance between the units,
even though one or both of the attached units may continue to grow. The placement of the
new unit is determined by the maximum concentration of the growth gene product found
among the six diffusion sites in the parent unit. After a unit splits from its parent unit, the
two units are attached with a rigid connector, the ends of which are located in the centres
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Figure 1: Architecture of articulated joints Panels [1] through [3] depict parts of an agent’s morphology.
In this hypothetical scenario, unit 1 split from unit 0, and units 2 and 3 split from unit 1 during the growth
phase. The black squares represent fused joints; the black circles represent rotational joints. The fused joints
connecting units 2 and 3 to unit 1 are not shown for clarity. Rotation occurs through the plane described by
the angle between units 0, 1 and 2. Panel [1] shows the configuation of the agent immediately after growth,
before activation of the neural network. Unit 1 contains a proprioceptive sensor neuron, which emits a zero
signal. In panel [2], unit 1 has rotated counterclockwise, either due to internal actuation or external forces.
The proprioceptive sensor in unit 1 emits a nearly maximal negative value. In panel [3], the hinge in unit
1 has rotated clockwise: the proprioceptive sensor now emits a nearly maximal positive signal. Note that
the architecture of the agent’s morphology precludes the hinge from reaching its rotational limits, and the
proprioceptive sensor from generating either a maximally negative or positive signal.

of the two units. The parent unit is fixed to the rigid connector. The new unit is attached to
the rigid connector by a one degree of freedom rotational joint. The fulcrum of the joint
is placed in the centre of the new unit. Joints can rotate between − π

2
and π

2
radians of

their starting orientation. The axis about which a unit’s joint rotates is set perpendicular
to the plane described by the parent unit, the unit in which the joint resides, and the first
unit that split from the unit in which the joint resides. Fig. 1 illustrates the creation and
actuation of an agent’s joints in more detail. In this way, the final agent is an articulated
body composed of connected units; the agent cannot contain cyclically connected units.
Fig. 2 depicts, schematically, the morphologies of eight evolved agents.

In addition to the morphology of the agent, neural structure may grow within the
developing agent. The growth of neural structure is covered in more detail in the next
sub-section. Once development is complete, the neural network that has grown within the
agent is activated. At each time step of the evaluation period, the input to each neuron is
summed, and thresholded using the activation function 2

1+e−s −1, where x is the neuron’s
summed input. Neuron values can range between −1 and 1.

The agent’s behaviour is dependent on the real-time propagation of sensory informa-
tion through its neural network to motor neurons, which actuate the agent’s joints.

There are three types of sensors that artificial evolution may embed within the struc-
tural units of the agent: touch sensors, proprioceptive sensors, and light sensors. Touch
sensor neurons return a maximal positive signal if the unit in which they are embedded
is in contact with either the target object or the ground, or a maximal negative signal
otherwise. Proprioceptive sensors return a signal commensurate with the angle described
by the two rigid connectors forming the rotational joint within that unit (refer to Fig. 1).
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Figure 2: Sample morphologies of evolved agents Panels [1] through [4] indicate the fittest agent
evolved in four independent evolutionary runs in which the fitness function was to grow as many struc-
tual units as possible during the growth period. Panels [5] through [8] indicate the resulting morphologies
of the fittest agents in evolutionary runs in which the task was to move as far as possible in a direction
indicated by a target object in the environment. The direction of the target (not shown in this figure) lies to
the right of the axes.



Light sensor neurons return a signal that is linearly correlated to the distance between the
unit in which the sensor is embedded and the target object in the environment. The light
sensors are not physically simulated, but calculated geometrically.

The agent can achieve motion by actuating its joints. This is accomplished by av-
eraging the activations of all the motor neurons within each unit, and scaling the value
between −π

2
and π

2
. Torque is then applied to the rotational joints such that the angle

between the two rigid connectors forming the joint matches this value. The desired angle
may not be achieved if: there is an external obstruction; the units attached to the rigid
connectors experience opposing internal or external forces; or the values emitted by the
motor neurons change over time. Note that failure to achieve the desired angle may be
exploited by evolution, and may be a necessary dynamic of the agent’s actions.

If a unit contains no motor neurons, the rotational joint in that unit is passive. If no
units split from a unit, that unit’s rotational joint is removed, and the unit is fixed to the
rigid connector it shares with its parent unit. This precludes the evolution of wheels, in
which units rotate about their own centre of mass.

Internal neurons can also be incorporated by evolution into an agent’s neural network,
in order to propagate signals from sensor to motor neurons. Two additional neuron types
are available to evolution. Bias neurons emit a constant, maximum positive value. Oscil-
latory neurons emit a sinusoidal output signal. The summed input to an oscillatory neuron
modulates the frequency of the output signal, with large input signals producing an output
signal with a high frequency, and low input signals producing a low frequency output sig-
nal. These additional neuron types allow the agent to perform actions even when deprived
of any sensory input.

The different types of neurons are connected to each other by synapses. During de-
velopment, neurons can migrate between different units. If the neurons are connected by
a synapse, this may lead to signal propagation between neurons in distant units.

2.2 Differential Gene Expression

For the results reported in the next section, a variable length, floating-point valued genetic
algorithm was used. Unlike the recursive parametric encoding schemes used by Sims [21]
and Lipson [16], each genome is treated as a genetic regulatory network [11, 5, 20], in
which genes produce gene products that either have a direct phenotypic effect or regulate
the expression of other genes.

The initial, random genomes in the genetic algorithm population have a length of 100
floating-point values; each value is rounded to a precision of two decimal places. Values
range between 0.00 and 1.00. For each genome to be evaluated in the population, it is
first copied into the single structural unit from which the eventual fully-formed agent
develops. The genome is then scanned by a parser, which marks the site of promotor
sites. Promotor sites indicate the starting position of a gene along the genome. A value
in the genome is treated as a promotor region if the value is below n

l
, where n is the

average number of genes that should appear within each initial random genome, and l is
the length of genomes in the initial, random genetic algorithm population. This is done
so that, given a starting population of random genomes, each genome will contain, on
average, the desired number of genes. In the results reported in the next section, l = 100
and n = 10, causing values between 0.00 and 0.10 to serve as promotor region indicators.



During the growth phase, the genes may emit gene products: gene products are treated as
chemicals which diffuse out from the site of gene expression, and spread to neighbouring
diffusion sites, and to a lesser degree, into neighbouring structural units.

Fig. 3 provides a pictorial representation of a genome directing the growth of an
agent. The seven floating-point values following a gene’s promotor region supply the
parameter values for the gene. If the first value (P1 in Fig. 3) is less than 0.5, gene
expression is repressed by presence of the gene product which regulates its expression;
otherwise gene expression is enhanced by presence of its regulating gene product. The
second value (P2 in Fig. 3) indicates which of the 24 possible gene products regulates the
gene’s expression. The third value (P3 in Fig. 3) indicates which of the 24 possible gene
products is produced if this gene is expressed. The fourth value (P4 in Fig. 3) indicates
which of the 6 gene product diffusion sites the gene product is diffused from if this gene is
expressed. The fifth value (P5 in Fig. 3) indicates the concentration of the gene product
that should be injected into the diffusion site if the gene is expressed. The sixth and
seventh values (P6 and P7 in Fig. 3) denote the concentration range to which the gene
responds. If the concentration of the regulating gene product to which the gene responds is
within this range, and the gene is enhanced by presence of its regulating gene product, the
gene is expressed; otherwise, gene expression is repressed. Genes that are repressed by
their regulating gene product are expressed if the gene product’s concentration is outside
the denoted range, and repressed otherwise.

After the genes in the genome have been located, the single structual unit is injected
with a small amount of gene product at gene product diffusion site 1. During the initial
time steps of development, the gene product diffuses to the neighbouring four diffusion
sites, and thence into the diffusion site diametrically opposite to site 1. In this way we
establish a diffusion gradient within the unit, analagous to the establishment of a gradient
of maternal gene product in fruit flies, which leads to the determination of the primary
body axis within these organisms [1]. Indeed the majority of body plans reported in this
paper have a clearly visible primary body axis, and a high degree of bilateral symmetry
(see Figs. 2, 4 and 9).

As the injected gene product diffuses throughout the unit, it may enhance or repress
the expression of genes along the genome, which in turn may diffuse gene products.
There are 24 different types of gene products. Two affect the growth of the unit in which
they diffuse. At each time step of the development phase, the difference between the
concentration of these two gene products is computed. If the difference is positive, the
radius of the structural unit is increased a small increment; if the difference is negative,
the unit does not grow in size. Thus these two gene products function as growth enhancer
and growth repressor, respectively. If the radius of a structural unit reaches twice that
of its original radius, a split event is initiated. The radius of the parent unit is halved,
the gene product diffusion site with the maximum concentration of growth enhancer is
located, and a new unit is attached to the parent unit at this position. Half of the amounts
of all gene products at this diffusion site are moved to the neighbouring diffusion site in
the new unit.

There are then 17 other gene products which affect the growth of the agent’s neural
network, and are explained in the next section. Finally, five gene products have no di-
rect phenotypic effect, but rather may only affect the expression of other genes. That is,
concentrations of these gene products at diffusion sites can enhance or repress gene ex-
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Figure 3: Ontogenetic interactions in a developing agent A schematic representation, from the side, of
three structual units of an agent are shown above. Four of the six gene product diffusion sites are shown: the
other two lie at the top and bottom of the spherical units. The genome of the agent is displayed, along with
parameter values for two genes. The values in parentheses indicate that these values are rounded to integer
values. Gene G1 indicates that it is repressed (parameter P1) by concentrations of gene product 3 (P2)
between 0.5 and 0.99 (P6, P7). Otherwise, it diffuses gene product 22 (P3) from gene product diffusion
location 4 (P4), indicated in the diagram by C4. Note that genes G1 and G3 emit gene products which
regulate the other’s expression. The thick dotted lines indicate gene product diffusion between diffusion
sites within a unit; the thin dotted lines indicate gene product diffusion between units (diffusion in the
second unit is not shown for clarity). All three units contain a touch sensor neuron, (TS) but the motor
neuron (M ) in the first unit was deleted by gene product diffusion. In the other two units, the touch
sensor and motor neurons are attached by an excitatory synapse. Note that gene products have inverted the
direction of the two synapses. If the motor neurons do not acquire any new input synapses from sensors
during growth, these two units will contain non-actuated joints during the evaluation phase. The second unit
contains an actuator (A), innervated by the resident motor neuron. If the actuator receives motor commands
during the evalution phase, the third unit will rotate relative to the other two units.

pression in that unit (like the other 19 gene products), but cannot modify neural structure,
or stimulate or repress the growth of that unit.

All 24 gene products share the same fixed, constant diffusion coefficients. For each
time step that a gene emits gene product, the concentration of that gene product, at the
diffusion site encoded in the gene, is increased by the amount encoded in the gene (which
ranges between 0.0 and 1.0), divided by 100. All gene product concentrations, at all
diffusion sites, decay by 0.005 at each time step. Gene products diffuse between neigh-
bouring diffusion sites within a unit at one-half this rate. Gene products diffuse between
neighbouring units at one-eighth the rate of intra-unit diffusion.



2.3 Neural Growth

Based on the changing concentrations of growth enhancing and growth repressing gene
products during development, continuous growth from a single structual unit into a three-
dimensional, multi-unit agent is achieved, as described in the previous sub-section. Six
frames from a typical growth pattern are depicted schematically in Fig. 4. Cellular en-
coding [7] has been incorporated into our model to achieve the correlated growth of mor-
phology and neural structure in a developing agent. Cellular encoding is a method for
evolving both the architecture and synaptic weights of a neural network by starting with a
simple neural network, and iteratively or recursively applying a set of graph rewrite rules
to transform the simple network into a more complex network. In AO, high concentra-
tions of certain gene products can trigger graph rewriting rules that modify or increase
the amount of neural structure in a structural unit. In this way, both morphology and neu-
ral structure can change together during the growth phase. This stands in contrast to the
neural development model used by Delleart and Beer [4], in which innervation of cells
occurs only after cell division has ceased. Cellular encoding is a developmental method
for evolving both the architecture and synaptic weights of a neural network. The pro-
cess involves starting with a simple neural network of only one or a few neurons, and
iteratively or recursively applying rewrite rules that modify the architecture or synaptic
weights of the growing network.

In our model, for each new structural unit that is created, including the first unit,
a small neural network is created as follows: A touch sensor neuron (TS) is placed at
diffusion site 1, a motor neuron (M) is placed at diffusion site 2, and a synapse with a
weight of 1.0 is connected from the sensor neuron to the motor neuron (refer to Fig. 3).
When a structural unit undergoes a split event, any neurons at the diffusion site where the
split event was initiated are moved to the neighbouring diffusion site in the new unit. For
example, if a structural unit splits, and the new unit is attached to its northern face, all the
neurons in the northern diffusion site of the parent unit are moved to the southern diffusion
site in the new unit. Neurons may also move from one diffusion site to another within a
unit, depending on the concentrations of gene products at those sites. The combination
of these dynamics may lead to the directed migration of neurons across the units as they
divide. As they migrate, synapses connecting these neurons are maintained: although
this process is different from the neural growth cone model—in which biological neurons
innvervate distant cells using exploratory synaptic outgrowths [10]—it does allow for
neurons in distant units to remain connected. Any one agent may contain up to 100
neurons, and 100 synapses: if, during growth, either of these maximii are reached, any
subsequent graph rewrite rules that attempt to add neural structure are ignored.

Each of the 17 gene products responsible for neural development correspond to one
operation which modifies local neural structure. At each diffusion site, two pointers are
maintained: the first pointer indicates which synapse will undergo any synaptic modifi-
cation operations; the second pointer indicates which neuron will undergo any neuronal
modification operations. The operations are summarized in Table 1. A pictorial represen-
tation of the first two rewrite rules are shown in Fig. 5. Rewrite rules 11 to 14 listed in
Table 1 change the synapse or neuron pointer.

If the concentration of one of these 17 gene products at a diffusion site exceeds a
concentration of 0.8, and there is neural structure at that site, the corresponding rewrite
rule is applied to the neural structure there. Using this neural development scheme, the



Gene
Product Cellular Encoding Operation Description

0 Split the current neuron into two neurons. Move the output synapses of the original
neuron to the new neuron. Connect the original neuron to the new neuron with a
synapse of positive weight.

1 Split the current neuron into two neurons. Copy the input and output synapses to the
new neuron. Connect the two neurons to each other using two synapses of positive
weight.

2 Move the current neuron to the previous diffusion site.
3 Move the current neuron to the next diffusion site.
4 Move the head of the current synapse to the current neuron.
5 Move the tail of the current synapse to the current neuron.
6 Increment the weight of the current synapse by 0.01.
7 Decrement the weight of the current synapse by 0.01.
8 Duplicate the current synapse.
9 Delete the current neuron, including any ingoing and outgoing synapses.

10 Delete the current synapse.
11 Move the neuron pointer to the next neuron at the current diffusion site.
12 Move the neuron pointer to the previous neuron at the current diffusion site.
13 Move the synapse pointer to the next synapse at the current diffusion site.
14 Move the synapse pointer to the previous synapse at the current diffusion site.
15 Change the type of the current neuron (Touch sensor→ Proprioceptive sensor→ Light

sensor → Bias neuron → Oscillatory neuron → Internal neuron → Motor neuron →
Touch sensor)

16 Change the type of the current neuron (Motor neuron→ Internal neuron→Oscillatory
neuron → Bias neuron → Light sensor → Proprioceptive sensor → Touch sensor →
Motor neuron)

Table 1: Phenotypic effect of neural development gene products The rewrite rules are triggered when
the gene product responsible for that rule reaches a concentration threshold. When a rule is triggered at a
diffusion site, the rule is applied to the current neuron or synapse at that site. In the current model, rules
cannot be applied to more than one neuron or synapse at the same time.

AO system is able to evolve dynamic, recurrent neural networks that propagate neural
signals from sensor neurons to motor neurons distributed throughout an agent’s body.
Growth of both morphology and neural structure halts when 300 time steps have elapsed.

3 Results and Analysis

The results reported below were collected from evolutionary runs lasting 200 generations
and using a population size of 200. The mutation rate was tuned to produce an average
of one mutation per genome copied. Unequal crossover was used, which allows for gene
duplication and deletion, as well as the production of child genomes which are not nec-



Figure 4: Progression of growth in an evolved agent Panels [1] through [6] indicate the progression of
growth of an evolved agent. The nodes are scaled to half their actual size for clarity.

essarily the same length as the parental genomes.2 Crossover was accomplished using
tournament selection, with a tournament size of 2.

Each genome in the population is evaluated as follows: The genome is copied into a
single structural unit, which is then placed in a virtual, three-dimensional environment.
A target object is placed 20 units3 to the north of the unit. Morphological and neural
development is allowed to proceed, as described in the previous section, for 300 time
steps. After the development phase, the neural network is activated, and the agent is
allowed to operate in its virtual environment for 1000 time steps. A small amount of noise
is introduced into the environment by applying random instantaneous external forces, of
varying but mild magnitudes, to the structural units of the agent during the evaluation
period. At the end of this evaluation period, the northern distance from the origin to the
agent’s trailing, southernmost structural unit is recorded. The agent is then regrown and
re-evaluated nine more times. The northern distances achieved are averaged and recorded
as the fitness of the agent grown from the given genome. By averaging the agent’s fitness

2Unequal crossover involves choosing crossover points in the two parent genomes that may be located
as different positions along the two genomes. In the standard crossover operation, the crossover points are
chosen at an equal distance along the two genomes.

3Spatial distance in the physics-based simulator is relative; we treat a ‘unit’ as equal to the default radius
of a newly-created structural unit.
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Figure 5: Two cellular encoding rewrite rules Panel [1] illustrates the result of a serial divide event,
initiated by high concentrations of gene product 0. Panel [2] illustrates the result of a parallel divide event,
initiated by high concentrations of gene product 1. (See Table 1).

Figure 6: Behaviour of an evolved agent A schematic representation of the movement of the agent
depicted in Fig. 4. Note that the agent traces a curved, rather than a direct path towards the target direction.

values, we avoid evolving agents that only perform well in a particular noisy environment.
In other words, selection favours those agents which are stable against fluctuations in the
external environment.

The task is thus to move as far as possible in a northerly direction—indicated by
a target object—in a noisy environment. Agents [5] through [8] in Fig. 2 report the
morphologies of the fittest agents produced by four independent evolutionary runs. Figs.
4 and 6 illustrate the growth, and subsequent locomotion, of agent [5] from Fig. 2.

A total of 10 independent evolutionary runs were conducted, and the genotypes of
the fittest agents during the runs were recorded. This produced a series of genotypes
gi2

i1 , g
i3
i2 , . . . g

ik
ik−1

, where the agent grown from genotype gi2
i1 was the fittest agent in the

population for generations i1 to i2. Thus, genotype gi3
i2 appeared in the population in

generation i2, and produced an agent fitter than the agent grown from genotype g i2
i1 .

The morphological difference m(t)j
i between two agents ai and aj , composed of ni

and nj structural units respectively, at time step t during the growth phase was computed
using

m(t)j
i =

∑N
k=1(|p(t)i

k − p(t)j
k| + |r(t)i

k − r(t)j
k|)

N
,

where N = min(ni, nj). p(t)i
k and p(t)j

k give the three-dimensional positions of structural



units k of agent i and agent j, respectively, at time step t during the growth period. Thus
|p(t)i

k − p(t)j
k| gives the distance between units k of agents i and j at time step t. r(t)i

k

and r(t)j
k give the radii of structural units k of agents i and j at time step t. Thus |r(t)i

k −
r(t)j

k| gives the difference between the radii of the two units. Note that this measure does
not capture differences in agent pairs in which one agent is much larger than the other.
However, due to the growth mechanisms involved, agents of differing size usually show
pronounced differences among the first N units.

By recording the morphologies of agents i and j for each time step during their devel-
opment, and by translating their positions so that the positions of their originating structual
units are identical, we can compute m(t)j

i for each time step of their development. For
time steps in which growth is identical, m(t)j

i = 0. However, if their ontogenetic develop-
ment diverges, their morphologies may differ, and m(t)j

i > 0. Because there is only noise
during phenotype evaluation, i.e. after growth has been completed, any phenotypic differ-
ence must be caused by genetic change. Thus we can then record time step t as the point
during development when a mutation in agent j led to a change in its development. As
in the results reported here, agent j replaced agent i as the fittest agent in the population,
so we can conclude with reasonable certainty that the mutation which led to ontogenetic
divergence of this pair was a beneficial mutation.4

It was found that for the majority of the agent pairs compared, morphological di-
vergence began at t0. However, there were many agent pairs in which morphological
divergence occurred later in development. Fig. 7 reports those agent pairs in which
morphological divergence occurred later than t0. The time of morphological divergence,
given by time t in m(t)j

i , is scaled between 0 and 1, with 1 representing a divergence
during the last time step of the growth period. The time of morphological divergence is
plotted against m(te)

j
i , where te is the final time step of the growth phase.

Each of the agents extracted from the 10 evolutionary runs was then evaluated 30
times in a noisy environment, to better determine its fitness. For each pair of agents i
and j, the absolute difference between their averaged fitness values was calculated, and is
referred to as the behavioural difference of this agent pair. The behavioural difference of
each agent pair is plotted against that pair’s m(t) value in Fig. 8.

Using the same parameters given above, a second fitness function was implemented
in which agents must push a large square block in a specific direction. The length of each
side of the block is 70 times that of the starting radii of structural units. In this way it is
possible to exert indirect selective pressure towards larger agents. The maximum number
of units that could be used to construct an agent was increased to 50. Fig. 9 depicts the
fittest agents extracted from two independent evolutionary runs; both agents contain the
maximum possible number of structural units. The first agent appeared in its population
after 83 generations; the second agent appeared in its population after 51 generations. The
shadings of the structural units denote the architecture of the neural structure embedded
within them, and are explained in more detail in the figure caption. Both agents use
an anterior appendage to push against the block, and establish an oscillatory motion in
the posterior appendage to achieve slow forward motion (the anterior to posterior axes

4This assumes that the mutation causing ontogenetic divergence is not overshadowed by a second muta-
tion appearing in agent j which is actually the beneficial mutation, an event which has a very low probability
of occurring.



Figure 7: Time of morphological divergence versus magnitude of final morphological divergence

of the agents are shown from left to right in Fig. 9). The agent in panel [2] uses two
appendages to push the block. The lower appendage contains all white structural units,
except for the end unit. The upper appendage rests on the lower appendage, and contains
two neighbouring black units. This appendage provides support for the pushing action of
the lower appendage; however, the upper appendage also pushes against the block during
part of the evaluation period.

4 Discussion

The four sample morphologies shown in panels [5] to [8] in Fig. 2 seem quite similar, and
indeed the behaviours of these agents are also very similar. For the task of directed loco-
motion in a noisy environment, a long primary body axis tends to evolve in the direction
of the target object, with a few outgrowths at the posterior end of the agent. Motion then
proceeds by oscillations along the body axis, produced by propagation of signals from
touch sensors to motor neurons. Orientation is maintained using the outgrowths, which
keep the agent stable while its oscillations propel it towards the target object. In most
evolutionary runs, there is little or no modification of the original, embryonic neural net-
works implanted in the growing agents. Note that the number of structural units embodied
in these agents was not a criterion in the fitness function, but rather is an indirect result of
the selection pressure specific to this task.

In contrast, however, if agents are evolved to incorporate a maximum of possible
structural units, morphologies evolve in which the differences are much more pronounced
(see panels [1] to [4] in Fig. 2). Similarly, the morphologies of the two block pushing



Figure 8: Time of morphological divergence versus behavioural difference

agents exhibit differing morphologies.
This indicates that the repeated convergence on a similar body plan in the directed

locomotion task is specific to the task, and not a universal trait of the model introduced
here. What the results suggest is that in the task in which the agent must make use of its
internal neural structure, modification of the agent’s morphology is sufficient to produce
an agent that performs well at the task. Thus, the resulting morphologies for the directed
locomotion task work well with the user-encoded neural network. We plan in future
studies to begin agent development with a single neuron in the originating structural unit
of the agent, and determine whether more varied phenotypes evolve.

Fig. 7 indicates that for agent pairs in which a mutation causes morphological diver-
gence during ontogeny, the final morphological difference between the pairs shows more
variance for divergences that occur early during ontogeny. For agent pairs in which the
morphological divergence has a late ontogenetic onset (indicated by points further to the
right in the figure), the final morphological difference is not as pronounced.

Although this result is somewhat intuitive, we see a similar pattern in Fig. 8, in which
the fitness improvement between agent pairs has a higher variance in those pairs in which
the mutation separating them has an early ontogenetic onset. This suggests a correlation
between the morphological and behavioural difference of an agent pair. Although no such
correlation was detected when behavioural difference was plotted against morphological
difference (not shown here), we hypothesize that a more sophisticated measure of be-
havioural difference may reveal a correlation. Note that the behavioural difference only
captures the difference between how well two agents perform; it does not measure the
different ways two agents may perform the same task. Thus, two agents which travel, on
average, the same distance during evaluation, but travel that distance in different ways,



[1] [2]

Figure 9: Two agents evolved for block pushing The fittest agents extracted from two independent
evolutionary runs. The block is not shown in the figure for the sake of clarity, but lies just to the left of both
agents. The white units indicate the presence of both sensor and motor neurons within that unit. The light
gray units indicate the presence of both sensor and motor neurons in that unit, but the one or more motor
neurons do not actuate the rotational joint in that unit either because there are no input connections to the
motor neuron, or because there is no joint within this unit. The dark grey units indicate the presence of
sensor neurons, but no motor neurons. The black units indicate there are neither sensor nor motor neurons
within that unit.

would have a very low behavioural difference. A more sophisticated measure would be
required to distinguish between different methods of locomotion, and will be the focus of
future studies.

Figs. 7 and 8 suggest that mutations with an earlier ontogenetic onset have a more
variable morphological and behavioural effect than mutations with a later ontogenetic on-
set. Because this was shown for agent pairs in which the agent bearing the mutation was
fitter than the other agent, it follows that this holds for selectively advantageous mutations.
In future we plan to test whether this correlation also holds for deleterious mutations. We
hope to show in future work that this mechanism proves useful during incremental evo-
lution, in which a population of agents are evolved to solve a relatively simple task, and
are then presented with a slightly more challenging task. We hypothesize that the com-
bination of ontogenetic development and differential gene expression allows evolution to
continually explore the altered fitness landscape by exploiting beneficial mutations with
differing times of ontogenetic onset, and thus differing magnitudes of phenotypic effect.
That is, mutations with varying magnitudes of phenotypic effect are always available dur-
ing search. In the case of parametric encoding schemes, it is not always obvious whether
mutations of a given magnitude of phenotypic effect are possible, which will allow artif-
ical evolution to escape local optima and continue exploration of the search space. We
predict that this property of the AO system makes it more evolvable than parametric en-
coding schemes.

By evolving agents to push a block much larger than their constituent structural units,
we were able to indirectly evolve agents with a large number of units. Moreoever, we
find evidence of functional specialization in these agents. In Fig. 9, we note that in the
central part of the agent, several units lose their motor capabilities during growth. This
is a result of the migration of motor neurons out of these units during ontogeny, but it is
interesting to note that the sensor neurons do not migrate. This suggests that the sensory
capabilities of this central part of the agent may serve a purpose, perhaps by activating
motor neurons in distant structural units. In the agent depicted in panel [2] of Fig. 9, we
note that the appendages of the agent are composed of differentiated units (indicated by



the two pairs of neighbouring black units), unlike the appendages of the agent in panel
[1]. This suggests that the evolution of differentiated, repeated structure has occurred in
this second population.

5 Conclusions and Future Research

In this report we have introduced the Artificial Ontogeny system, which uses genetic reg-
ulatory networks to grow a complete agent from a single building block. It was demon-
strated that the AO system can evolve functioning agents in a physically-realistic virtual
environment: specifically, agents were evolved to perform directed locomotion and block
pushing in a noisy environment. Although agents for the directed locomotion task tended
to converge on a similar body plan, agents evolved for large size, and for block pushing
demonstrated a wide range of morphologies during independent evolutionary runs.

Also, we have shown that beneficial mutations which have an early ontogenetic onset
lead to varying magnitudes of morphological differences between the agent without the
mutation and the agent in which the mutation first appears. Moreover, it was demon-
strated for some agent pairs, the agent containing the mutation tends to achieve a much
higher performance increase over its predecessor, compared with agent pairs separated by
a mutation which has a later ontogenetic onset. This property of the AO system demon-
strates that in this model, mutations of varying phenotypic effects are always available
during search, which may make the AO system more evolvable than parametric encoding
schemes. This hypothesis will be explored in future studies.

We have also shown that for agents composed of many units, functional specializa-
tion tends to evolve in these populations. This was indicated by the repeated appearance
of agents with a central structure that had lost its motor capabilities, but not its sensory
capabilities. Moreover, in one population, an agent with repeated differentiated structure
was found, suggesting that a recursive, parametric encoding scheme is not necessary for
achieving such structure. In future studies we plan to better elucidate the connection be-
tween scaling the number of possible units composing an agent, functional specialization,
and the appearance of repeated, differentiated structure. Repeated, differentiated structure
is desirable if we wish to transfer evolved designs in an efficient manner onto real-world
modular robots.

Finally, we have begun to analyze the resulting gene expression patterns from the
evolved agents. We hope to shed some light on how artificial evolution alters regulatory
networks in order to achieve fitter phenotypes. We also hope to find evidence of the evolu-
tion of regulatory genes that control suites of structural genes, analagous to the homeotic
genes found in biological organisms [6]. It has been demonstrated in natural evolution that
homeotic genes are closely coupled with the modular property of body plans [19]. This
suggests that the appearance of homeotic genes in artificial evolution could facilitate the
transfer of evolved agents to modular robots: adaptive changes to the evolving robot body
plan may require only the rearrangement of functional units composed of many building
blocks, as opposed to low-level changes to all or some of the building blocks comprising
the robot.
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