
Neuroevolution with Analog Genetic Encoding

Peter Dürr, Claudio Mattiussi, and Dario Floreano

Laboratory of Intelligent Systems, Institute of Systems Engineering, Ecole
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

http://lis.epfl.ch

Abstract. The evolution of artificial neural networks (ANNs) is often
used to tackle difficult control problems. There are different approaches
to the encoding of neural networks in artificial genomes. Analog Genetic
Encoding (AGE) is a new implicit method derived from the observation
of biological genetic regulatory networks. This paper shows how AGE can
be used to simultaneously evolve the topology and the weights of ANNs
for complex control systems. AGE is applied to a standard benchmark
problem and we show that its performance is equivalent or superior to
some of the most powerful algorithms for neuroevolution in the literature.

1 Introduction

The use of artificial neural networks (ANNs) in control systems is a widely
covered research topic. The complexity of control tasks often makes it difficult to
design ANNs manually. Therefore, it is a common approach to use evolutionary
algorithms for this kind of problem. Not only the synaptic weights, but also
the structure of the network can be subject to neuroevolution. Thus one of
the challenges is to find an appropriate genotype-phenotype mapping for both
the topology and the weights. In the literature we find different methods to
accomplish this. The most straightforward approach is direct encoding (e.g. used
by [1–4]) where the genome is composed of a list of genes, each representing
either a neuron or a link between two neurons. Genomes of this type can be
decoded very easily, but their length grows rapidly with increasing complexity
of the network. Another popular approach is developmental encoding, as shown
in [5–9], which is based on the use of a genome that directs a developmental
process leading to the construction of the network. This allows a more compact
representation of complex networks, but the developmental process, linking the
genome to the developed network, typically makes it difficult to find suitable
genetic operators. Somewhat different is the implicit encoding. Derived from the
observation of biological genetic regulatory networks (GRNs) (see [10] for more
details), implicit encoding is a very interesting approach, which is quite popular
as a representation for GRNs [11] but is not very commonly used on ANNs.

Analog Genetic Encoding (AGE) [10, 12] is an implicit method, which - so
far - has only been applied to very simple problems of neuroevolution. The goal
of this paper is to show that it is possible to solve more complex problems using

Fig. 1. AGE provides a solution to the encoding of networks in digital genomes. The
genome contains genes encoding the devices that form the network.

AGE and that it outperforms other established methods. The double pole bal-
ancing without velocity information, which has been used as a standard problem
in various publications (e.g. [13–15]), has been selected as benchmark. The re-
sults allow a direct comparison to the above-mentioned methods, thus showing
the high performance of AGE, quantitatively and qualitatively.

2 Analog Genetic Encoding (AGE)

2.1 The Challenge

The evolution of an artificial neural network requires the encoding of the network
in a genome. In the general case, an arbitrary network of hidden neurons, con-
nected to a given number of fixed input and output neurons has to be evolved.
The analog genetic encoding as presented in [10, 12] provides a very plausible
approach to this problem. The basic idea of AGE is to define a genetic repre-
sentation that allows the interpretation illustrated in Figure 1.

2.2 Device Representation

The genome is constituted by a sequence of characters from a finite genetic
alphabet. Here, the 26 characters of the ASCII uppercase alphabet are used
(see [10] for justification). The experimenter defines the kind of devices that
can appear in the network. (Here a single type of dynamic neuron is used.) For
each device type, a specific device token has to be defined. Each device token
signals the start of a gene, that is a fragment of the genome which encodes an
instance of the corresponding neuron. Furthermore, a terminal token is defined,
whose role is to delimit the sequence of characters that must be associated with a
terminal of the corresponding device. These are the so-called terminal sequences.
A neuron is hence encoded by a device token, followed by a number of terminal
sequences, each delimited by a terminal token1.

1 Tokens are typically short sequences of letters. The tokens used in the experiment
can be found in Figure 2 (hidden neurons) and Figure 3 (input and output neurons).

Fig. 2. Neurons can be represented as symbolic devices with two associated terminal
sequences: one for the output terminal and one for the input terminal. The device ex-
traction process obtains them from the genome by assigning the sequences of characters
between the device token (“NE”) and the terminal tokens (“TE”) to the respective ter-
minal. The terminal sequences of the different neurons are then used to determine the
synaptic weights of the network. The interaction map I(s1, s2) assigns a weight to a
pair of sequences, so that we can for example calculate w11 = I(s11, s12). The entire
weight matrix can be calculated by doing this for all pairs of terminal sequences in the
network.

2.3 Device Extraction

Given a list of device tokens and a terminal token, a list of devices can be decoded
from a genome by simply extracting the devices one by one. To this end, the
genome is scanned in search of device tokens and if one is found, the fragment of
genome following the token is scanned for the necessary terminal tokens. Then
the sequences of characters between the device token and the terminal token
(or between two terminal tokens respectively) are assigned to the corresponding
terminal of the neuron. If a device token in the genome is not followed by the
required number of terminal sequences, the gene is considered invalid and the
decoding continues with the next device token in the genome.

2.4 Device Connection

To determine the synaptic weights between the neurons, a so-called interaction

map I(s1, s2) = N(L(s1, s2)) is needed. This function assigns a synaptic weight
value to any given pair of terminal sequences. The inner function L(s1, s2) is
called sequence interaction map and returns a distinct interaction score i for
each pair of terminal sequences s1 and s2. For these experiments, the value of
the sequence interaction map corresponds to the value of the local alignment

score2 between the two sequences s1 and s2 (see [16]). The parameters of the
local alignment function (the circulant substitution matrix and the indels vector)
used here are:

A B C D E F G ... U V W X Y Z
A 5 2 1 0 -1 -2 -5 ... -5 -2 -1 0 1 2
B 2 5 2 1 0 -1 -2 ... -5 -5 -2 -1 0 1
...

and
A ... Z

- -3 ... -3

The network-specific interaction map N(i) transforms the (integer) sequence
interaction values to the (floating point) values of the synaptic weight between
the terminals. Here a logarithmic quantization N : [1, 37] −→ [0.001, 1000]
was used, mapping interaction scores from imin = 1 to imax = 37 to weights in
an interval from wminP

= 0.001 to wmax = 1000. Interaction scores lower than
imin lead to a weight wmin = 0, scores above imax lead to a weight of wmax.

We can calculate the whole weight matrix of the network by applying the
interaction map to all pairs of input and output terminals. Since no inhibitory
neurons are used, the two outputs of a neuron provide a positive and negative
output of its state. If there are n neurons, the entries wij of the weight matrix
W are accordingly defined as

wij = N(L(isinput
, jsoutput+

)) − N(L((isinput
, jsoutput−

))

for i = [1, n] and j = [1, n].

2.5 External Connections

Based on the same principle, it is very easy to incorporate the connections to the
external input and output neurons. For each type of signal a separate, external
neuron type with a distinct token is defined (see Figure 3). The connection
weights from the external neurons to the hidden neurons can be calculated using
the same method as above.

2.6 Genetic Operators

Artificial (and natural) evolution relies on the reorganization of the genome.
Contrary to other methods, the AGE genome is very robust to such operations,
since it is of variable length and there is no special protection needed to keep the
genome decodable. There is actually no distinction between tokens, coding and
non-coding regions of the genome. In the experiments, the following operators
where used:

2 The local alignment score is a function which operates on pairs of sequences of
arbitrary length and has some very desirable properties from an evolutionary point
of view, which are more extensively discussed in [10, 16].

Fig. 3. The external input and output neurons are encoded as separate devices (exactly
like the hidden neurons in Figure 2). For each sensor input, the motor output and a
bias input, a device type with an associated token is used to decode the respective
neurons from the genome. The tokens used for the external inputs are “AA”, “AB”,
“PA” and “BB”, the token for the output is “OA”.

– Character deletion, insertion, and substitution. A character is removed, in-
serted or substituted in the genome.

– Fragment deletion, transposition and duplication. Two points of the genome
are chosen and the intervening fragment is deleted, transferred or copied to
another point of the genome.

– Device insertion. The descriptor of a device (e.g. a hidden neuron) is inserted
in the genome. The terminal sequences are randomly generated.

– Homologous Crossover. Fragments of the genome are recombined using ho-
mologous crossover (see [10] for more details).

– Genome duplication. The whole genome is duplicated.
– Generation of an initial population. The initial population is created by

generating individuals with a random genome and inserting a given number
of different neurons with random terminal sequences.

3 Double Pole Balancing as a Benchmark Test

In order to compare the different approaches in neuroevolution on a practical
rather than a purely theoretical level, a benchmark test is needed. The double
pole balancing problem without velocity information (DPNV) is quite challeng-
ing compared to the fairly simple single pole balancing problems3, while it is
still easy to understand and simple enough to be simulated without huge com-
putational efforts. Stanley and Miikkulainen [15] compare the results of the only
neuroevolution methods which have reportedly solved the DPNV problem by
evolving topology and weights of neural networks: Gruaus Cellular Encoding

(CE, [13]), Gomez and Miikkulainens Enforced Sub Populations (ESP, [14]), and
Stanley and Miikkulainens Augmenting Topologies (NEAT, [15])4.

3 They can typically be solved in a few generations with simple evolutionary algo-
rithms, or with random search in the parameter space.

4 In [17] Igel shows that it is possible to outperform these methods by using an evo-
lution strategy (CMA-ES) to optimize the weights of a fixed topology ANN. But

FX

m1

l 1

θ1

θ2

l 2

m2

mCar

x

Fig. 4. The double pole balancing problem (DPNV). Two poles mounted on a car have
to be balanced, using measurements of the pole angles and the position of the car.

3.1 The Controlled System

The double pole balancing setup (see Figure 4), consists of a car with mass
mCar = 1[kg] and one degree of freedom x, on which two poles of different lengths
l1 = 1[m] and l2 = 0.1[m] are mounted. The poles have the masses m1 = 1[kg]
and m2 = 0.1[kg]. Based on the measured values of the joint angles θ1 and θ2 and
the position of the car x, the controller is required to balance both of the poles
by applying a force Fx (with a maximal magnitude of Fmax = 10[N]). Assuming
rigid body dynamics and neglecting friction, the system can be described by the
equations of motion as in [18]. The numerical simulation of the system is based
on a 4th-order Runge-Kutta integration of these equations with a time step of
∆t = 0.01s.

3.2 Fitness Assignment

In their original publication, Gruau, Whitley and Pyeatt [13] suggest the fol-
lowing approach for the assessment of candidate solutions. In order to avoid
demanding calculations for every fitness evaluation, they split the definition of
the fitness value from the decision to judge a solution successful by applying a
simple fitness function to every individual in the population and an extensive
test series on the best individual of the population. Although it saves a lot of
computation time, this is very questionable, since it is not a priori clear that
individuals with a high fitness will perform well in the extensive test. But since
the benchmark data collected by [14] and [15] relies on this measure, the same
approach is used here.

The Fitness Function. In order to assign a fitness value to an individual, a
numerical simulation is carried out over a maximum of 1000 timesteps, starting

since in general evolution of both weights and topology is needed, his results are not
really comparable to those presented here.

from given initial conditions (θ1(0) = 0.0785, θ̇1(0) = θ2(0) = θ̇2(0) = x(0) =
ẋ(0) = 0). For each timestep the position of the car and the pole angles are
observed and the simulation continues only as long as they stay in a given range:

−θMax
1 ≤ θ1 ≤ θMax

1 (1)

−θMax
2 ≤ θ2 ≤ θMax

2 (2)

−xMax ≤ x ≤ xMax (3)

where θMax
1 = θMax

2 = 36◦ and xMax = 2.4[m]. The fitness value F is defined as

F = 0.1f1 + 0.9f2 with (4)

f1 =
t

1000
(5)

f2 =

{

0 if t < 100,
0.75

∑

t

i=t−100
(|xi|+|ẋi|+|θi

1|+|θ̇i
1|)

otherwise. (6)

where t is the number of time steps the system remains inside the boundaries
(1), (2) and (3).

The Generalization Score. The best individual (i.e. the one with the highest
fitness value F) of every generation is tested for its ability to balance the system
for a longer time period. If a potential solution passes this test by keeping the
system balanced for 100’000 timesteps, the so called generalization score (GS)
of this particular individual is calculated. This score measures the potential of
a controller to balance the system starting from different initial conditions. It
is calculated with a series of experiments, running over 1000 timesteps, starting
from 625 different initial conditions. The initial conditions are chosen by assign-
ing each value of the set Ω = [0.05 0.25 0.75 0.95] to each of the states x, ẋ, θ1

and θ̇1, scaled to the range of the variables (as specified in the following section).
The short pole angle θ2 and its angular velocity θ̇2 are set to zero. The GS is
then defined as the number of successful runs from the 625 initial conditions and
an individual is defined as a solution if it reaches a generalization score of 200
or more.

3.3 The Artificial Neural Network

Neuron Model. The neurons used here are simple continuous time recurrent
neurons as in [19]. The time constant is set to τ = 0.001[s]. The resulting network
state equation

τ ẏ = −y + Wσ (y + θ) + I (7)

where σ(x) =
1

1 + e−x
(8)

is integrated with a separate embedded Runge-Kutta-Fehlberg (4,5) method.
For this benchmark problem, the bias vector θ is set to zero and an external

input with the constant output of 1.0 is connected to the network. To match
the conditions of the original experiment [13], the input neurons are fed with
scaled measurement values (θ1neur

= θ1

0.52
, θ2neur

= θ2

0.52
and xneur = x

4.8
). The

outputs of the motor output neuron ranging from −1 to 1 are scaled to forces
from −Fmax to Fmax.

3.4 Genetic Algorithm

The genetic algorithm used in the experiment is a standard generational GA
with the AGE specific genetic operators as explained above and tournament
selection. The mating pool size is 30 and there is an elite of size 1, thus the
total population size is 31. The tournament size is set to 2. The probability
of homologous recombination is 0.1 with 5 characters required to be similar
for recombination to take place. The probabilities of nucleotide substitution,
insertion and deletion are set to 0.001, the probabilities of fragment duplication,
insertion and deletion to 0.01. Random devices are inserted with a probability
of 0.01 with terminals of length 20.

In order to improve the performance of the algorithm, the GA is restarted
whenever it gets stuck (i.e. when no improvement in the fitness of the best indi-
vidual is observed after 15 generations). This choice was inspired by experiments
with NEAT reported in [20], where subpopulations, which do not improve within
15 generations are removed. To avoid bootstrapping problems, the GA is initial-
ized with a large initial population of 1000 individuals, each with a random
genome of 500 to 800 characters. Each individual in the initial population gets a
complete set of input, output and bias neurons plus one or two hidden neurons
with randomly generated terminal sequences.

4 Results

Table 1 shows the results of AGE compared to the other methods, which have
reportedly solved the DPNV so far. Both the number of fitness evaluations and
the generalization score are about equal or better than the results obtained by
NEAT. The average number of function evaluations needed by AGE is smaller

x

1

1θ

θ2

FX

N 2

N 1

Fig. 5. An example neural network, found by AGE. Despite its simple structure, it
generalizes really well (with a GS of 525).

Method Evaluations Standard Deviation Generalization

CE 840000 n.a. 300
ESP 169466 n.a. 289
NEAT 33184 21790 286
AGE 25065 19499 317

Table 1. The results of the double pole balancing with no velocity information
(DPNV). CE is cellular encoding [13], ESP is enforced subpopulations [14], NEAT
is augmenting topologies [15]. All results are averaged over 20 evolutionary runs. AGE
has to be restarted about 10 times on average to obtain a solution.

than the best results previously reported in the literature. It seems that AGE is
able to produce better solutions in a smaller number of generations. The example
solution in Figure 5 (which obtained a GS of 525) shows that simple structures
can obtain relatively high generalization scores. Initialized with only one or two
hidden neurons, AGE tends to exploit these small structures and finds elegant
solutions.

An odd property of the DPNV benchmark with the split fitness is that high
fitness scores do not automatically lead to good generalization properties. In the
experiment, some populations with relatively high fitness of the best individ-
ual got stuck without producing a solution which could pass the long run test,
whereas other populations with relatively low fitness could produce good solu-
tions very quickly. The fact that the fitness function and the generalization test
do not correlate well indicates that a better fitness function should be chosen
for future benchmark experiments.

5 Conclusion

The results obtained in the standard benchmark double pole balancing problem
with no velocity information show that it is possible to use analog genetic encod-
ing to evolve neural networks for a difficult control task. They also indicate that
AGE outperforms the best algorithms existing in the literature for the evolution
of ANN topology and weights, producing compact, high quality solutions within
a small number of fitness evaluations.

Acknowledgments. The implementation of the benchmark problem relies di-
rectly on source code by Kenneth O. Stanley. Thanks to Daniel Marbach for
his collaboration on the implementation of AGE and a lot of inspiring discus-
sions. Thanks to Sara Mitri for her valuable comments and further thanks to
the anonymous reviewers for their helpful remarks.

References

1. Maniezzo V.: Genetic evolution of the topology and weight distribution of neural
networks. IEEE Transactions on Neural Networks, vol. 5, no. 1 (1994) 39–53

2. Pujol J., Poli R.: Evolving the topology and the weights of neural networks using a
dual representation. Applied Intelligence, vol. 8, no. 1 (1998) 73–84

3. Kobayashi K., Ohbayashi M.: A new indirect encoding method with variable length
gene code to optimize neural network structures. Proceedings of the International
Joint Conference on Neural Networks, vol. 6(1999) 4409–4412

4. Stanley K., Miikkulainen R.: Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, vol. 10, no. 2 (2002) 99–127

5. Cangelosi A., Parisi D., Nolfi S.: Cell division and migration in a genotype for neural
networks. Network: Computation in Neural Systems, vol. 5, no. 4 (1994) 497–515

6. Gruau F.: Automatic definition of modular neural networks. Adaptive Behaviour,
vol. 3, no. 2, (1995) 151–183

7. Nolfi S., Parisi D.: Genotypes for neural networks. The Handbook of Brain Theory
and Neural Networks, M. Arbib, Ed. Cambridge, MA: MIT Press (1995) 431–434.

8. Eggenberger P.: Creation of neural networks based on developmental and evolu-
tionary principles. Proceedings of the International Conference on Artificial Neural
Networks, Lausanne, Switzerland (1997)

9. Astor J., Adami C.: A developmental model for the evolution of artificial neural
networks. Artificial Life, vol. 6, no. 3 (2000) 189–218

10. Mattiussi, C.: Evolutionary synthesis of analog networks. Ph.D. dissertation
n.3199, EPFL, Lausanne (2005)

11. Bongard, J.: Evolving modular genetic regulatory networks. Proceedings of the
IEEE 2002 Congress on Evolutionary Computation, CEC2002. Piscataway, NJ: IEEE
Press (2002) 1872–1877

12. Mattiussi, C., Floreano, D.: Evolution of analog networks using local string align-
ment on highly reorganizable genomes. Proceedings of the 2004 NASA/DoD Confer-
ence on Evolvable Hardware (2004) 30–37

13. Gruau,F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and
direct encoding for genetic neural networks. Genetic Programming 1996: Proceedings
of the First Annual Conference (1996) 81–89

14. Gomez, F. J., Miikkulainen, R.: Solving non-markovian control tasks with neu-
roevolution. Proceedings of the International Joint Conference on Artificial Intelli-
gence (1999) 1356–1361

15. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2) (2002) 99–127

16. Gusfield, G.: Algorithms on strings, trees, and sequences. Cambridge: Cambridge
University Press (1997).

17. Igel C.: Neuroevolution for reinforcement learning using evolution strategies.
Congress on Evolutionary Computation 2003 (CEC 2003) 2588–2595

18. Wieland, A.P.: Evolving neural network controllers for unstable systems. Proceed-
ings of the International Joint Conference on Neural Networks (1991) 667–673

19. Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks.
Adaptive Behavior 3(4) (1995) 469–509

20. Stanley K.O.: Efficient evolution of neural networks through complexification.
Ph.D. dissertation, University of Texas at Austin (2004)

