
Information Access Based on User Preferences

Nicolas Spyratos
Laboratoire de Recherche en Informatique

Bat. 490 Université Paris sud 11
Orsay, France
spyratos@lri.fr

ABSTRACT

In this paper, our basic thesis is that information is
useful to the casual user only if it can be retrieved
from an information source easily and the retrieved
results are presented in a manner easy to exploit or
‘digest’ by the user. Keeping with this spirit, we
present an incremental approach to querying tabular
data (such as electronic catalogues), taking into
account user preferences. In our approach the answer
set of the query is partitioned into blocks, and the
blocks are presented to the user one by one: the first
block contains the best answers with respect to the
user’s preferences, the second block contains the
second best answers, and so on. The presentation of
blocks can stop at any time the user decides to do so.

1. INTRODUCTION

With the advent of the Internet and the Web,
tremendous amounts of information are available
today to ever increasing numbers of users. This
availability of information to casual users has spurred
a shift from system centred to user centred or
‘personalized’ information access.

Indeed, information is useful to the casual user only if
it can be retrieved easily and the retrieved results are
presented in a manner easy to exploit or ‘digest’ by the
user. Keeping with this spirit, we present an
incremental approach to querying tabular data (such as
electronic catalogues), taking into account user
preferences.

Incorporating user preferences in the dialogue between
the user and the information system is one way of
achieving personalization. In our approach, during this
dialogue, the user submits a query Q together with
preferences, online, and the system rewrites Q into a
sequence of sub-queries Q1 Q2 … Qn whose
answers contain the information retrieved in
decreasing order of preference. The presentation of
sub-query results can stop at any time the user decides
to do so.

Our approach addresses the above problem in the
context of tabular data. Such data is quite common
today, especially in applications concerning electronic
commerce. For example Autoreflex is an internet
company mediating the selling of used cars through an

electronic catalogue containing a reference number for
each available car and the main characteristics of the
car (model, colour, year, mileage, etc.). The company
site is the following:

 http://www.google.fr/search?hl=fr&q=Autoreflex& meta=

Information retrieval from such tables is done through
Boolean combinations of keywords, therefore rather
easy to do by the casual user. However, such tables
usually contain thousands or even tens of thousands of
entries, so the answer set of a query can be:

- either very small, thus unsatisfactory for the user (the
usual solution in this case is to enlarge the query)

- or very large, thus difficult to exploit by the user (the
usual solution in this case is to narrow the query)

Unfortunately, the solution to either of these problems
can lead to the other problem!

In this paper we address the problem of very large
answer sets and we propose a solution based on
rewriting of the user query (using the user preferences)
as mentioned earlier. More precisely, the questions
that we answer are the following:

how can a user express preferences online?

how can preferences be used to rewrite the user query?

how can we embody the rewriting in the query
language?

We call preference based query, or simply preference
query, an ordinary query together with a set of
preferences expressed by the user, online (i.e. the user
inputs both, a query and a set of preferences).

The specification and evaluation of preference queries
has received considerable attention in the past several
decades, mainly in the area of decision support.
However, the use of preferences for ranking query
answers in the area of databases is quite recent and
their embodiment in the query language presents a
number of difficult problems.

Roughly speaking, preferences are distinguished with
respect to their nature and with respect to their
persistence in time. In terms of their nature preferences

are further distinguished in quantitative and qualitative
preferences. A quantitative preference (or absolute
preference) is expressed by a number on a scale (thus
capturing intensity of desire). For example, “I like
BMWs 80%”, or “I like VWs 70%” are quantitative
preference expressions (see for example [10]).
Quantitative preferences are difficult to express by the
casual user but easy to compute by the system
(through mining of query logs). A qualitative
preference (or relative preference) is expressed by
comparison (see for example [12]). For example, “I
like BMWs more than VWs” is a qualitative
preference (note that no intensity of desire is
indicated). Qualitative preferences are easy to express
by the casual user.

In terms of their persistence or duration in time,
preferences are further distinguished to long term
preferences and short term preferences. A long term
preference is either discovered unobstrusively by the
system (by mining query logs) or declared explicitly
by the user; in both cases the preferences are stored in
the so called “user profile”. A short term preference is
expressed explicitly by the user, online, together with
the query.

We note that the nature and the duration in time are
orthogonal characteristics of preferences. In this work
we focus on short term, qualitative preferences

With respect to previous work [14, 20], the present
paper contributes in the following ways: (a) it provides
a new definition of answer to a preference query, by
taking into account the whole answer set (b) it
introduces a query rewriting technique inspired from
[14].

In what follows, in section 2, we explain the basic
concepts through examples; in section 3 we give
formal definitions; in section 4, we present the basic
design choices of an interface under development and
explain how a user interacts with it; finally, in section
5, we offer some concluding remarks and outline
possible extensions of this work.

2. PREFERENCE QUERY EXAMPLES

Consider the table T(Serial, Model, Colour, Mileage,
Price, Year) of

Figure 1, that we shall use in all our examples. This
table describes used cars that are for sale (over the
Internet). Each car is described by its serial number,
model, colour, mileage, price and year (for simplicity,
we denote serial numbers by integers).

When searching for a car, users specify their request as
a Boolean combination of elementary conditions of the
form A=v, A≠v or A≤v, where A is a column heading
(also called an attribute) and v is a value of A. As an
example, consider the following query:

Q= [(Model= BMW) ∨ (Model= VW)] ∧ (Mileage≤
40000 Km)

To find the answer to this query we must first find all
serial numbers that correspond to BMWs, and all serial
numbers that correspond to VWs, then take the union
of these two sets, and finally intersect the result found
with the set of serial numbers that correspond to cars
with a mileage at most 40000 miles:

 ans(Q) = ({1, 2, 6}∪ {3, 5, 8, 9})∩{1, 3, 5, 6, 7, 8, 9}

 = {1, 3, 5, 6, 8, 9}

As the table might contain a huge number of entries,
one problem is that the size of the answer set might be
too large to exploit by the average user (i.e. the cars of
actual interest to the user might be buried in a large
number of uninteresting cars).

One solution to this problem is to present the cars of
the answer set in a decreasing order with respect to
user preferences. The user can then inspect the most
interesting cars first, and stop inspection of the answer
set when the cars become less and less interesting.
However, to produce such an ordering of the answer
set, the system must have access to user preferences,
and one way to do this is to have the user declare his
preferences online, together with the query; one talks
then of preference based queries, or preference queries
for short.

The important thing to stress here is that the
preferences are declared by the user in order to
influence the presentation of the answer set. For
example, consider the following declaration of
preference over the attribute Model:

P.Model: BMW VW

This declaration is taken to mean that, with respect to
Model, the user prefers BMWs to VWs. We would
like the query Q, seen earlier, together with the above
preference, to return a result showing the BMWs
before the VWs. In other words, we would like the
answer to be presented to the user as follows:

Ans(Q, P.Model) = {1, 6} {3, 5, 8, 9}

It is important to note that the answer to the query Q,
processed alone (i.e. without preferences), and the
answer to query Q processed together with the above
preference contain the same serial numbers. The
difference lies in the fact that, in presence of the
declared preference, the answer set of Q is partitioned
into two blocks (i.e. two subsets) ordered so that the
first block contains BMWs only (serials 1 and 6),
while the second block contains VWs only (serials 3,
5, 8 and 9).

Therefore, in this paper, the answer to a preference
query is defined to be a sequence of data blocks, where

each block contains data that are more interesting (in
terms of the declared preferences) than the data in the
following block. In this way, the user can inspect the
blocks of the answer set one by one and stop
inspection at any point at which he feels satisfied by
the data already inspected. We are interested in the
computation of such block sequences, and their
presentation to the user, when data collections are
modelled as tables and preferences as binary relations
over attribute values.

In this first, simple example that we have just seen, the
preference P.Model involves just one pair of values of
the attribute Model. Clearly, the user might want to
express more than one such pair, as in the following
example:

P.Model: BMW VW, BMW Honda, VW Honda

This time, it is less obvious how to compute the
sequence of blocks that answers the preference query.

Moreover, the user might want to express preferences
over an attribute of cars not present in the query Q, as
in the following example:

P.Colour : Red Yellow, Black White, White Yellow

Another possibility is that the user might want to
express preferences by combining values from two
different attributes, as in the following example:

P.{Model, Colour}: Red∧VW Yellow∧BMW

 (meaning that the user prefers red BMWs to yellow
VWs)

Finally, the user might want to express preferences
over two or more columns independently of one
another, as in the following example:

P.Model: BMW VW, BMW Honda

P.Color : Red Yellow, Black White

In this case, the user might also want to declare
priorities over the attributes, as in the following
example:

Priorities: P.Model P.Color

(meaning that Model is more important than Colour,
and therefore preferences over Model carry more
weight than those over Colour)

We note here that the block sequence that answers a
preference query in presence of both, preferences and
priorities, is more complex to compute, in general.
Indeed, in the previous example, one will have to infer
precedence over pairs of Model-Color values from the
given preferences over Model and over Color.

As we can see from all these different forms that
preferences can take, computing the sequence of
blocks that answers a preference query can be very
involved.

Serial Model Colour Mileage Price Year
1 BMW Black 35000 3800 2002
2 BMW Black 48000 4500 2001
3 VW Red 30000 3500 2003
4 Honda Blue 63000 2900 2000
5 VW White 26000 3300 2000
6 BMW Green 16000 5700 2004
7 Toyota Black 12000 6300 2006
8 VW Red 34000 5600 2003
9 VW Yellow 13000 7200 2007

Figure 1. A Used Car Table

3. SPECIFICATION AND EVALUATION
OF PREFERENCE QUERIES.

In this section we give the formal definition of a
preference query and its answer, as well as an
algorithm for the evaluation of the answer. Evaluation
is done by rewriting the preference query <Q,
Preferences, Priorities> into a sequence of ordinary
queries Q1, Q2, …, Qn, such that the answers to the
queries of the sequence produce the sequence of
blocks answering the preference query.

Let R(Tid, A1, .., An) be a table, in the sense of the
relational database model, where each of the attributes
Tid, A1, .., An is associated with a set of values, or
domain. The table of

Figure 1 is an example of such a table. Each line of R
(also called a tuple of R) consists of values taken from
the corresponding domains. We assume that the
attribute Tid is a key of the table, thus acting as a tuple
identifier (or as a “surrogate” for the whole tuple); for
example, in

Figure 1, Serial is the key. Given a tuple t of R, we use
the notation t.Ai to denote the value of tuple t on
attribute Ai; for example, in

Figure 1, if t is the third line of the table then t.Colour
= Red and t.Mileage= 30000.

Definition 1. A preference over attribute A is defined
to be just a pair of values (v, v’) from the domain of A.
Such a pair is denoted as v v’ and interpreted as “v is
preferred to v’ ”, or “v precedes v’ “.

The set of all preferences expressed by a user over an
attribute A is called a preference relation over A. A
preference relation P over A is denoted as P.A. For
example, in

Figure 1, the following is a preference relation over
the attribute Color:

P.Colour: Red Yellow, Red White, Black White

Definition 2. Given two tuples t, t’ of R, and a
preference relation P.A, we say that “t is preferred to
t” with respect to P.A, or that “t precedes t” with
respect to P.A, if t.A t’.A is in P.A.

For example, with respect to the preference relation
P.Colour given above, we have the following
precedence over tuples in

Figure 1: 3 5, 3 9, 1 5. Note that no other
precedence between tuples is possible to infer from the
given preference relation.

Definition 3. A preference query over R is a pair <Q,
P.A> such that:

1) Q is an ordinary query over R, that is a Boolean
combination of elementary conditions of the form
A=v, A≠v or A≤v, where A is an attribute and v is
a value of A

2) P.A is a preference relation over attribute A

The answer to a preference query, denoted ans(<Q,
P.A>), is defined to be a sequence R0, R1, .., Rm, Rm+1
of sets of tuples, such that:

1/ the sets R0, R1, .., Rm+1 form a partition of ans(Q)
(i.e. they are mutually disjoint and their union is
ans(Q))

2/ R0 contains the “best” tuples, that is for every tuple t
in R0 there is no tuple s in R such that s t; and for
each i= 1, 2, ..m, and for each tuple t in Ri there is a
tuple s in Ri-1 such that s t with respect to P.A

3/ Rm+1= ans(Q) \ R0∪…∪Rm

Note that the block Rm+1 in the above definition
contains all tuples in the answer of Q that cannot be
compared to other tuples.

In what follows, for notational convenience, we shall
drop the attribute names whenever they are easy to
understand from context. For example, we shall write

Q= BMW∨VW instead of

Q= (Model = BMW) ∨ (Model = VW)

Following this convention, let us illustrate Definition 3
using a very simple example. Consider the preference
query <Q, P.Colour>, defined over the table of

Figure 1 as follows:

Q= (BMW∨VW)

P.Colour: Red Yellow, Red White, Black White

First, let us observe that the answer to Q, denoted
ans(Q), contains all cars that are of interest to the user;
it is precisely this set that we need to partition into a
sequence of subsets R0, R1, .., Rm, Rm+1 that will
constitute the answer to <Q, P.Colour> (see point 1/ in
the above definition). To compute R0, we look at the
preference relation P.Colour and we observe that Red
and Black are the only two colours that are not
preceded by any other colour (and none of them
precedes the other). Therefore, all tuples of ans(Q) that
refer to either a red or a black car are the “best” with
respect to the preferences in P.Colour (see point 2/ of
the above definition). More formally, this is expressed
as follows:

R0= ans(Q)∩[ans(Red)∪ans(Black)]

Now, if we call Q0 the ordinary query whose answer is
R0, then Q0 can be expressed in terms of Q, Red and
Black as follows:

Q0= Q∧(Red∨Black)

A similar reasoning shows that the ordinary query
whose answer is R1 is defined as follows:

Q1= Q∧(Yellow∨White)

There are no more colours to consider in the
preference relation P.Colour, therefore these two steps
correspond to point 2/ in the above definition. As for
point 3/, we have:

R2= ans(Q) \ (R0∪R1)

(note that R2 contains all tuples that are not possible to
compare with other tuples, with respect to P.Colour).

Now, if we call Q2 the ordinary query whose answer is
R2, then we can express Q2 in terms of Q, Q0 and Q1 as
follows:

Q2= Q ∧ ¬(Q0∧Q1)

As a result, the sequence of ordinary queries Q0, Q1,
Q2 is such that the answers to its queries produce the
sequence of blocks answering the preference query of
our example. Clearly, if the preference relation
P.Colour is more complex, then we need an algorithm
in order to produce the sequence of queries that
answers the preference query. In the remaining of this
section we present such an algorithm.

First, let G be an acyclic binary graph, and define the
rank of a node t as follows:

if t is a root of G then rank(t)= 0

else rank(t)= the length of a maximal path among all
paths from a root of G to t

Next, let us denote by Bi the set of nodes with rank i,
and let m be the maximal path length among all paths
starting from a root. Then it is rather easy to see that
the sequence B0, B1, .., Bm has the following
properties:

1/ B0, B1,.., Bm form a partition of the set of nodes of G

2/ for each i= 1, 2,.., m, and each node in Bi there is an
antecedent s of t in Bi-1 (i.e. there is a node s in Bi-1 and
an arc s t in G)

3/ for each i= 0, 1, 2,.., m, there is no arc of G
connecting two nodes of Bi

To find the sets B0, B1, .., Bm one can use the
following algorithm (which is a variant of the well
known topological sorting algorithm):

Algorithm Ordered-partition(G)

Input: An acyclic graph G
Output: A sequence B0, B1, .., Bm of sets of nodes
Method:
Aux:= G; i:= 0 ;
while Aux≠∅ do
 begin Bi:= {r / r is a root of Aux};
 output Bi;
 delete from Aux all roots and
 all arcs emanating from the roots;
 i:= i+1
 end;
The complexity of this algorithm is linear in n+a,
where n is the number of nodes and a is the number of
arcs of G.

Now, in a preference query <Q, P.A>, the preference
relation P.A can be represented as a binary graph that
we shall denote by G(P.A). With this observation at
hand, the following algorithm produces the sequence
of queries Q0, Q1, .., Qm, Qm+1 that answers the
preference query <Q, P.A>:

Algorithm Evaluate-Pref-query

Input: A preference query <Q, P.A> such that the
graph G(P.A) is acyclic.
Output: The sequence Q0, Q1, .., Qm+1 answering the
preference query
Method:
1/ Ordered-partition(G(P.A))
 {the output is a sequence B0, B1, ..,
 Bm of sets of values of A}
2/ For each i=0, 1, .., m do

 begin
 Q’i := conjunction of all values of A
 in Bi;
 Qi := Q∧Q’i;
 output Qi
 end
3/ Qm+1 := Q∧ ¬ (Q0∨Q1∨…∨Qm);
 output Qm+1
So far, we have considered that the preference relation
P.A is expressed over a single attribute. Clearly, if the
preference relation is expressed over two or more
attributes the way of defining the answer to the
preference query remains the same. In other words, if
instead of having P.A we now have P.{A, B} then the
only difference is that each node of the graph G(P.{A,
B}) is a conjunction of two values, a value of A and a
value of B (instead of being just a single value). For
example, consider a preference query <Q, P.{Model,
Colour} with the following preferences:

P.{Model, Colour}:
Red∧VW Yellow∧BMW, Black∧VW Yellow∧BMW

Then the answer to the preference query is the
following sequence:

Q0= Q∧[(Red∧VW)∨(Black∧VW)]

Q1= Q∧(Yellow∧BMW)

Q2= Q∧ ¬ (Q0∨Q1)

However, things become more complex when two or
more preference relations are declared together with
the ordinary query Q, that is when the preference
query has the form <Q, {P.A1, .., P.Ak}>. Clearly, in
this case we can proceed as in the case above,
provided that we can derive a preference relation
P.{A1, .., Ak} from the given preference relations P.A1,
.., P.Ak. However, in order to do this, we need to know
whether the preference relations P.A1, .., P.Ak all carry
the same weight or there are priorities among them; a
priority is a linear ordering over {P.A1, .., P.Ak} and it
is declared by the user together with the preference
relations P.A1, .., P.Ak. The following definitions state
how the preference relation P.{A1, .., Ak} is derived
from the given preference relations P.A1, .., P.Ak. In
these definitions, “Pa” stands for “Pareto” and “Pr”
stands for “Prioritized”.

Pareto preference relation:

For all tuples s and t in R, s Pa t if and only if
s.(A1…Ak) ≠ t.(A1...Ak) and either s.Ai = t.Ai or s.Ai i
t.Ai, i=1,.., k

We treat the relation Pa up to tuple equivalence, where
equivalence is defined as follows: s ≡Pa t if and only if
s.(A1..Ak) = t.(A1..Ak).

Prioritized preference relation:

Let the preference relations P.A1, .., P.Ak be prioritized
as follows: P.A1 P.A2 … P.Ak, where we use the
arrow to also show priority. Under this assumption,
we have the following definition:

 For all tuples s and t in R, s Pr t if and only if
s.(A1…Ak) ≠ t.(A1…Ak) and either s.A1 i t.A1 or
[(s.A1 = t.A1 and s.(A2..Ak) Pr t.(A2..Ak)]

We treat the relation Pr up to tuple equivalence, where
equivalence is defined as follows: s ≡Pr t if and only if
s.(A1..Ak) = t.(A1..Ak).

We note that the well known lexicographic ordering is
a special case of prioritized relation Pr as defined
above. Indeed, the lexicographic ordering is a
prioritized ordering with the additional assumption that
the domain of each of the attributes A1, ..., Ak is totally
ordered (i.e. given any two values v and v’ of attribute
Ai, either v v’ or v’ v)

3. THE INTERFACE

The interface that we have implemented allows
users to input queries, preferences and priorities
in a user friendly manner; and to control the
presentation of the answer set, through two
buttons, “Next” and “Stop”, in an interactive way,
as follows:

• enter query, preferences, and possibly priorities;

• activate the button “Next” (if you wish to see the
next block) else activate the button “Stop”.

More specifically, our interface allows users to
perform the following tasks:

Searching the Table: The user can enter an ordinary
query Q; this is done by forming elementary
conditions of the form A=u or A=v or A=w, and
connecting them using Boolean connectives chosen
from a menu.

Entering Preferences: The user can enter preferences
and possibly priorities, together with the query Q. To
declare a preference relation, the user first selects an
attribute from a menu containing all attributes, and
then declares pairs of values of that attribute; and if
more than one preference relation is declared with the
same query Q then the user is asked to select a priority
(either Pareto or Prioritized) from a popup menu.

Controlling the presentation: In the presence of
preferences, the user can control the presentation of
the answer set by activating two buttons, “Next” and
“Stop”. The button “Next” is pressed when the user
wishes to see the next block of tuples in the sequence
of blocks answering the preference query; the button
“Stop” is pressed when the user wishes to terminate
inspection of the answer set.

In each task, the user has the possibility to undo an
action.

The third task above (controlling the presentation) is a
basic feature of the interface. Indeed, it is expected
that, as the blocks are presented in decreasing order of
preference, the user will find the data of interest quite
quickly (i.e. in the first few blocks). As a result, the
interface will not have to execute all the sub-queries
Q0, Q1, …, Qm, Qm+1, in the answer to the preference
query. Although we have not yet conducted real life
experiments, we expect this feature to contribute
significantly in enhancing user satisfaction, as well as
improving the performance of the interface (in terms
of savings in computation time).

In designing the interface, a major decision to be made
was whether the preference relation should satisfy
certain properties. For example, in the related
literature, the preference relation is always assumed to
be transitive. In designing our interface we made no
assumption whatsoever as to the nature of the
preference relation. In other words, we let users
declare just any preference relation they wish (i.e. just
any set of pairs of values from a selected attribute).

However, as we have seen in the previous section, the
algorithm that computes the answer to a preference
query does assume the preference relation to be acyclic
(in fact, this is an indispensable assumption in order
for the algorithm to work). On the other hand, as we
would like the user to be free to declare any desirable
preference, the set of preferences declared by the user
might contain cycles. So the question arises as to how
the system could cope with the presence of cycles in
the preference relation.

Intuitively, a cycle means that all nodes in the cycle
are equally preferred. If the system detects cycles in
the preference relation submitted by the user, then
these cycles can be handled in one of two ways, as
follows:

Dialogue with the user: The cycles are presented to the
user, and the user is asked to break them (possibly by
modifying the declared preferences).

Automatic Processing: The system processes the
cycles without help from the user, by considering all
nodes on a cycle as being equivalent, thus
“coalescing” all nodes of a cycle into a single node.
We note that, formally, cycle equivalence in a
preference relation P is defined as follows: (a) x ≡ x,
for all attribute values appearing in P and (b) x ≡ y, if
x and y are on the same cycle. Then instead of P one
works with the quotient relation P/ ≡.

To apply either of these two ways of processing
preference relations containing cycles we need an
efficient algorithm for finding all cycles in a graph;

and although there are such algorithms in the
literature, we have designed and implemented a novel
algorithm that outperforms existing algorithms [15-
19].

4. CONCLUDING REMARKS

We have presented an approach for processing
preference queries over tabular data. In designing the
interface, particular care was taken to make the task of
the user as simple as possible. In this respect, the
following two features of the interface are important:
(a) the user can declare as preferences just any set of
pairs of values over any attribute of the table, and (b)
the user can control the presentation of the answer set.

The implementation of the interface is now completed
but several aspects need to be improved. One major
feature currently missing is the possibility to create
intervals over attributes with ordered domains. For
example, it would be interesting to be able to create
intervals over attributes such as Mileage or Price. Such
intervals, if given appropriate names (e.g. low,
medium, high) would be much more convenient for
the user to use, instead of using specific numbers.

As a final remark we would like to emphasize that
there is an important difference between the preference
queries that we study here and the Order-by instruction
of SQL. Indeed, using the Order-by instruction, one
can ask the system to return the results of a query in an
ascending or descending order, following the
predefined order of some attribute domain (e.g. the
predefined order over the domain of attribute Price is
that of the integers). However, in the preference
queries considered in this paper, it is the user that
inputs an order for the attribute domain - an order
expressing the user’s preferences; and in fact, the order
that the user inputs might contradict the predefined
order of the attribute domain. Additionally, some
attribute domains have no predefined order; for
example, the domains of attribute Model or Colour are
unordered so the Order-by instruction simply doesn’t
apply to such attributes. In contrast, preference queries
as explained here apply on any attribute, independently
of whether its domain is ordered or not.

1. REFERENCES

[1] Agrawal, R., and Wimmers, E. L. A Framework
for Expressing and Combining Preferences. ACM
SIGMOD (Dallas, USA), 2000, 297-306.

[2] Balke, W.-T., Güntzer U., and Kießling W. On
Real-time Top k Querying for Mobile Services.
International Conference on Cooperative
Information Systems, Irvine, USA, 2002.

[3] Börzsönyi, S., Kossman, D., and Stocker, K. The
Skyline Operator. In Proceedings of the 17th
International Conference on Data Engineering
(ICDE), Heidelberg, 2001.

[4] Boutilier, C., Brafman, R., Hoos, H., and Poole,
D. Reasoning with conditional ceteris paribus
preference statements. In UAI-99, pages 71-80,
1999.

[5] Bruno, N., Gravano, L., and Marian, A.
Evaluating Top-k Queries over Web-Accessible
Databases. ICDE, 2002, 369-279.

[6] Chomicki J, Iterative Modification and
Incremental Evaluation of Preference Queries.
FoIKS 2006: 63-82

[7] Chomicki, J. Querying with Intrinsic Preferences.
In Proceedings of the 8th International Conference
on EDBT, Prague, Czech Rep., 2002, 34-51.

[8] Chomicki, J. Semantic optimization of preference
queries. In 1st Int. Sym. on Appl. of Constraint
Databases, Springer (LNCS 3074), 2004.

[9] Fagin R et al., Comparing Partial Rankings,
SIAM J. Discrete Mathematics

[10] Fagin R. et al. Comparing and aggregating
rankings with ties. In PODS, 2004.

[11] Fagin R., Kumar R., and Sivakumar D.
Comparing top k lists. In SODA, 2003.

[12] Kießling, W., and Köstler, G. Preference SQL
Design, Implementation, Experiences. In
Proceedings of 28th International Conference on
Very Large Data Bases, Hong Kong, China, 2002,
990-1001.

[13] Manzini Paola & Mariotti Marco, 2003. “How
vague can one be? Rational preferences without
completeness or transitivity,” Game Theory and
Information 0312006, EconWPA, revised 16 Jul
2004.

[14] N. Spyratos, V. Christophides, P. Georgiadis, M.
Nguer, Semantics and Pragmatics of Preference
Queries in Digital Libraries, Knowledge Media
Science Workshop, October 2-5, 2006, Meiningen
Castle, Germany (Also: LRI Research Report
N°1478, November 2007

[15] An optimal algorithm for cycle breaking in
directed graphs T. Orenstein, Z. Kohavi I.
Pomeranz . Journal of Electronic Testing: Theory
and Applications, 7, 71-81 (1995)

[16] D.B. Johnson. Find all the elementary circuits of a
directed graph. J. SIAM, 4:77-84, 1975

[17] J.C. Tiernan. An efficient search algorithm to find
the elementary circuits of a graph. Comm. ACM,
13:722-726, 1970.

[18] A new way to enumerate cycles in graph
Hongbo Liu; Jiaxin Wang - Advanced Int'l
Conference on Telecommunications and Int'l
Conference on Internet and Web Applications and
Services (AICT-ICIW 2006). 19-25 Feb. 2006
Page(s): 57 – 57

[19] P. Mateti and N. Deo. On algorithms for
enumerating all circuits of a graph. SIAM J.

Comput., 5:90-99,1976
[20] P.Georgiadis, I.Kapantaidakis, M.Nguer,

N.Spyratos, V.Christophides, Efficient Rewriting
Algorithms for Preference Queries, 24th
International Conference on Data Engineering
(ICDE’08), April 7-12, 2008, Cancun, Mexico

