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Abstract. We present a functional model for the analysis of large vol-
umes of detailed transactional data, accumulated over time. In our model,
the data schema is an acyclic graph with a single root, and data analysis
queries are formulated using paths starting at the root. The root models
the objects of an application and the remaining nodes model attributes
of the objects. Our objective is to use this model as a simple interface
for the analyst to formulate queries, and then map the queries to a com-
mercially available system for the actual evaluation.

1 Introduction

In decision-support systems, in order to extract useful information from the
data of an application, it is necessary to analyse large amounts of detailed
transactional data, accumulated over time - typically over a period of several
months. The data is usually stored in a so-called “data warehouse”, and it
is analysed along various dimensions and at various levels in each dimension
[5, 10, 12].

A data warehouse functions just like a usual database, with the following
important differences: (a) the data of a data warehouse is not production data
but the result of integration of production data coming from various sources, (b)
the data of a data warehouse is historic data, that is data accumulated over time,
(c) access to the data warehouse by analysts is almost exclusively for reading
and not for writing and (d) changes of data happen only at the sources, and
such changes are propagated periodically to the data warehouse.

The end users of a data warehouse are mainly analysts and decision makers,
who almost invariably ask for data aggregations such as “total sales by store”, or
“average sales by city and product category”, and so on. In this context, the basic
requirements by data analysts are (a) a data schema that is easy to understand
and (b) a flexible and powerful query language in which to express complex data
analysis tasks. The so called “dimensional schemas” and their associated “OLAP
query languages” were introduced precisely to satisfy these requirements.
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This paper is focused on dimensional schemas and their OLAP query
languages, as opposed to normalized relational schemas and their transaction
processing languages.

Schema normalization was introduced in relational databases with the goal of
increasing transaction throughput. Normalized schemas, however, rarely reflect
the “business model” of the enterprise, that is the way the enterprise actually
functions. Their main concern is to make database updating as efficient as pos-
sible, usually at the cost of rendering the schema virtually incomprehensible by
the non specialist. Therefore normalized schemas are not suitable for data ware-
houses, as the analysts and decision makers of the enterprise are unable to “read”
the schema and to formulate the queries necessary for their data analyses.

On-Line Analytic Processing, or OLAP for short, is the main activity carried
out by analysts and decision makers [3, 4]. However, although several SQL ex-
tensions are available today for OLAP, there seems to be no agreement as to a
simple conceptual model able to guide data analysis. The objective of this paper
is to propose such a model.

The products offered today by data warehouse vendors are not satisfactory
because (a) none offers a clear separation between the physical and the con-
ceptual level, and (b) schema design is based either on methods deriving from
relational schema normalization or on ad hoc methods intended to capture the
concept of dimension in data. Consequently, several proposals have been made
recently to remedy these deficiencies.

The proposal of the cube operator [7] is one of the early, significant contri-
butions, followed by much work on finding efficient data cube algorithms [2, 9].
Relatively little work has gone into modelling, with early proposals based on
multidimensional tables, called cubes, having parameters and measures [1, 11].
However, these works do not seem to provide a clear separation between schema
and data. More recent works (e.g. in [8]) offer a clearer separation between struc-
tural aspects and content (see [17] for a survey).

However, a common characteristic of most of these models is that they some-
how keep with the spirit of the relational model, as to the way they view a tuple
in a table. Indeed, in all these models, implicitly or explicitly, a tuple (or a row
in a table) is seen as a function associating each table attribute with a value
from that attribute’s domain; by contrast, in our model, it is each attribute that
is seen as a function. Our approach is similar in spirit to the one of [6] although
that work does not address OLAP issues.

Roughly speaking, in our model, the data schema is an acyclic graph with
a single root, and a database is an assignment of finite functions, one to each
arrow of the graph. The root of the graph is meant to model the objects of
an application, while the remaining nodes model attributes of the objects. Data
analysis queries (that we call OLAP queries) are formulated using paths starting
at the root, and each query specifies three tasks to be performed on the objects: a
classification of the objects into groups, following some criterion; a measurement
of some property of objects in each group; a summarization of the measured
properties in each group, with respect to some operation.
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2 The Functional Algebra

In this section we introduce four elementary operations on (total) functions that
we shall use in the evaluation of path expressions and OLAP queries later on.

Composition
Composition takes as input two functions, f and g, such that range(f) ⊆ def(g),
and returns a function g ◦ f: def(f) → range(g), defined by: (g ◦ f)(x)= g(f(x))
for all x in def(f).

Pairing
Pairing takes as input two functions f and g, such that def(f)= def(g), and re-
turns a function f ∧ g: def(f) → range(f) × range(g), defined by: (f ∧ g)(x)=
〈f(x), g(x)〉 , for all x in def(f). The pairing of more than two functions is defined
in the obvious way. Intuitively, pairing is the tuple-forming operation.

Projection
This is the usual projection function over a Cartesian product. It is necessary in
order to be able to reconstruct the arguments of a pairing, as expressed in the
following proposition (whose proof follows easily from the definitions).

Proposition 1
Let f : X → Y and g : X → Z be two functions with common domain of
definition, and let πY and πZ denote the projection functions over the product
Y × Z. Then the following hold:

f = πY ◦ (f ∧ g) and g = πZ ◦ (f ∧ g)

In other words, the original functions f and g can be reconstructed by compos-
ing their pairing with the appropriate projection.

Restriction
It takes as argument a function f : X → Y and a set E, such that E ⊆ X , and
returns a function f/E : E → Y , defined by: (f/E)(x) = f(x), for all x in E.

The four operations on functions just introduced form our functional algebra.
It is important to note that this algebra has the closure property, that is the ar-
guments and the result of each operation are functions. Well formed expressions
of the functional algebra, their evaluation, and the evaluation of their inverses
lie at the heart of the OLAP query language that we shall present later.

3 The Data Schema and the Data Base

In our model, the data schema is actually a directed acyclic graph (dag) satis-
fying certain properties, as stated in the following definition.
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Definition 1. Data Schema
A data schema, or simply schema, is a finite, labelled dag, whose nodes and
arrows satisfy the following conditions:

– Condition 1 There is only one root
– Condition 2 There is at least one path from the root to every other node
– Condition 3 All arrow labels are distinct
– Condition 4 Each node A is associated with a nonempty set of values, or

domain, denoted as dom(A)

We recall that a directed acyclic graph always has one or more roots, a root being
a node with no entering arrows. Condition 1 above requires that the graph have
precisely one root. We shall label this root by O and we shall refer to it as the
origin; it is meant to model the objects of an application.

Condition 2 requires that there be at least one path from the root to every
other node. This condition makes sure that there are no isolated components in
the schema (i.e. the graph is connected). We note that trees do satisfy conditions
1 and 2, therefore trees constitute the simplest form of schema in our model.

In a directed acyclic graph, it is possible to have “parallel” arrows (i.e. ar-
rows with the same start node and the same end node). Such arrows can be
distinguished only through their labels. This is the reason for having condition
3 above. In this respect, we shall use the notation f : X → Y to denote that f
is the label of an arrow from node X to node Y ; moreover, we shall call X the
source of f and Y the target of f , that is source(f) = X and target(f) = Y .

As we shall see shortly, each arrow f : X → Y will be interpreted as a total
function from a set of X-values to a set of Y-values. Condition 4 makes sure that
such values exist at every node.

Figure 1 shows an example of a schema that we shall use as our running
example throughout the paper. This schema describes the data of a company that
delivers products of various types to stores across the country. There is at most
one delivery per store, per day. The data collected from delivery invoices is stored
in a data warehouse and accumulated over long periods of time. Subsequently,
they are analysed in order to discover tendencies in the movement of products.
The knowledge extracted from the accumulated data is then used to improve
the company operations.

The data that appears on an invoice consists of an invoice identifier, a date,
the reference number of the store, and a sequence of products delivered during
one visit; each product appearing on the invoice is characterized by a number
(local to the voucher), followed by the product reference, and the number of
units delivered from that product (the number of units is what we call Quantity
in the schema). A pair composed of an invoice identifier and a product number
on that invoice constitutes one object; and the origin of the schema shown in
Figure 1 models the set of all such objects.

Each object is characterized by a Date, a Store, a Product, and a Quan-
tity. These are the “primary” characteristics of the object. However, each of
these characteristics determines one or more “secondary” characteristics of the
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Fig. 1. Example of a data schema S

object. For example, Date determines Month; Store determines City, and City
determines Region; finally, Product determines both, Category and Supplier.
Although these secondary characteristics might not appear on the invoice, they
can usually be inferred from the primary characteristics, and are useful for data
analysis purposes (e.g. for aggregating the objects by region, by month and prod-
uct, and so on). We shall refer to all the characteristics of the object (primary
and secondary) as the attributes of the object.

Note that the schema of our running example is a tree, a choice made in order
to simplify the presentation. However, it should be clear that what we will say
in the remaining of this paper is valid for all forms of a schema, not just for
tree schemas. In fact, non-tree schemas are important as they allow expressing
multiple hierarchies among the attributes.

Having defined what a data schema is, we can now define the concept of a
database.

Definition 2. Database
Let S be a schema. A database over S is a function δ that associates:

– each node A of S with a finite nonempty subset δ(A) of its domain
– each arrow f : X → Y of S with a total function δ(f) : δ(X) → δ(Y ).

Figure 2(a), shows a database δ over the schema S of our running example. In
this figure, each arrow is associated with a binary table containing the function
assigned to it by δ; for example, the arrow f : Store → City is associated with
the binary table whose headings are Store and City.

Several remarks are in order here concerning the above definition of a data-
base. Our first remark concerns notation. In the remainder of this paper, in order
to simplify the presentation, we adopt the following abuse of notation: we use an
arrow label such as f to denote both the arrow f and the function δ(f) assigned
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Fig. 2. Example of database and OLAP query over S

to f by δ; similarly, we use an attribute label such as X to denote both the
attribute X and the finite set δ(X) assigned to X by δ. This should create no con-
fusion, as more often than not the context will resolve ambiguity. For example,
when we write def(f) it is clear that f stands for the function δ(f), as “def” de-
notes the domain of definition of a function; similarly, when we say “function f”,
it is clear again that f stands for the function δ(f) and not for the arrow f . We
hope that this slight overloading of the meaning of symbols will facilitate reading.

Our second remark concerns the manner in which functions are assigned to
arrows by the database δ. Each function f in a database can be given either
extensionally, that is as a set of pairs 〈x, f(x)〉 , or intentionally, that is by giving
a formula or some other means for determining f(x) from x. For example, the
function q : O → Quantity can only be given extensionally, as there is no formula
for determining the quantity of products to be delivered to a store; whereas the
function f1 : Date → Month will be given intentionally, as given a date one
can compute the month: dd/mm/yy �→ mm/yy. In fact, this is why δ(f1) is not
given in Figure 2(a).

Our third remark concerns the requirement that all functions assigned by
the database δ to the arrows of S be total functions. This restriction could be
relaxed, by endowing each attribute domain with a bottom element ⊥ (mean-
ing “undefined”) and requiring that for any function f : X → Y we have (a)
f(⊥) =⊥, that is “bottom can only map to bottom”, and (b) if x /∈ def(f)
then f(x) =⊥. Under these assumptions, the functions can again be considered
as total functions. However, the resulting theory would be more involved and
would certainly obscure some of the important points that we would like to bring
forward concerning OLAP queries. Keep in mind, however, that the restriction
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that all functions assigned by δ be total functions entails the following property:
for every pair of functions of the form f : X → Y and g : Y → Z we have
range(f) ⊆ def(g).

Our fourth and final remark concerns a particular way of looking at the func-
tions of a database, namely as means for grouping objects together. Indeed, each
function f : X → Y can be seen as grouping together the elements of X and
“naming” each group using an element of Y . This is expressed by the inverse
function f−1 which maps each y in the range of f to a nonempty subset of X as
follows: f−1(y) = {x ∈ X/f(x) = y}.

For example, consider the function g2 : City → Region of our running ex-
ample. The inverse g−1

2 maps each region r to the set of cities belonging to
that region. As we shall see shortly, inverse functions play a crucial role in the
evaluation of OLAP queries.

4 Path Expressions and OLAP Queries

Roughly speaking, a path expression over a schema S is a well formed expres-
sion whose operands are arrows from S and whose operators are those of the
functional algebra. A path expression represents a generalized notion of arrow,
and therefore a path expression has a source and a target. For example, referring
to Figure 1, the expression g ∧ (h2 ◦ h) is a path expression, whose source is O
and whose target is Store × Supplier. Below, we give a more formal definition
of path expression, in which we use the following simplifying notation:

– for attributes A and B we write A ⊆ B to denote that dom(A) ⊆ dom(B)
– for attributes A1, .., Ar we write A1 × ... × Ar to denote an attribute such

that dom(A1 × ... × Ar) = dom(A1) × ... × dom(Ar)

Definition 3. Path Expression
Let S be a schema. A path expression e over S is defined by the following gram-
mar, where ”::=” stands for ”can be”, and p and q are path expressions:

e::= f, where f is an arrow of S; source(e) = source(f) and target(e) =
target(f)
q ◦ p, where target(p) = source(q); source(e) = source(p) and

target(e)=target(q)
p ∧ q, where source(p) = source(q); source(e) = source(p) and

target(e) = target(p) × target(q)
p/E, where E ⊆ source(p); source(e) = E and target(e) = target(p)
πX(A1 × ... × Aj), where X = {A1, .., Ar} ⊆ {A1), .., Aj)} ;

source(e) = A1 × ... × Aj , target(e) = A1 × ... × Ar

Here are some examples of path expressions over the schema S of Figure 1:

– e1 = f1 ◦ f , with source(e1) = O and target(e1) = Month
– e2 = f ∧ g, with source(e2) = O and target(e2) = Date × Store
– e3 = ((g2 ◦g1◦g)∧(h1◦h)), with source(e3) = O and target(e3) = Region×

Category
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Now, the functions stored in a database represent information about some ap-
plication being modelled. By combining these functions (using our functional
algebra) we can derive new information about the application. Specifying what
kind of new information we need is done using path expressions; and finding the
actual information is done by evaluating these expressions.

Intuitively, given a path expression e over schema S, and a database δ over
S, the evaluation of e proceeds as follows:

1. replace each arrow f of S appearing in e by the function δ(f);
2. perform the operations of the functional algebra (as indicated in the expres-

sion);
3. return the result

It is important to note that the evaluation of a path expression e always
returns a function from the source of e to the target of e. More formally, we
have the following definition.

Definition 4. The Evaluation of a Path Expression
Let S be a dimensional schema and e a path expression over S. Given a
database δ over S, the evaluation of e with respect to δ, denoted eval(e, δ), is
the function defined below, where p and q denote path expressions over S:

– if e = f , where f is an arrow of S, then eval(e, δ) = δ(f);
– if e = q ◦ p then eval(e, δ) = eval(q, δ) ◦ eval(p, δ);
– if e = p ∧ q then eval(e, δ) = eval(p, δ) ∧ eval(q, δ);
– if e = p/E then eval(e, δ) = (eval(p, δ))/dom(E)
– if e = πX(A1 × ... × Aj) then eval(e, δ) = πX(δ(A1) × ... × δ(Aj))

A path expression of particular interest is obtained when we compose a path
expression with a projection over the empty set. Indeed, if we apply the projec-
tion function π∅ on any nonempty Cartesian product A1 × ... × Aj the result
is always the same, namely the empty tuple, denoted by λ. In other words,
π∅(A1 × ... × Aj) = {λ}, for any A1 × ... × Aj �= ∅. This particular path expres-
sion, is called the constant path expression, denoted by ⊥. Clearly, the constant
path expression evaluates to a constant function over any database and, as we
shall see, it is useful in expressing OLAP queries of a special kind.

Path expressions are the basis for defining OLAP queries in our model. Roughly
speaking, the purpose of an OLAP query is to perform a sequence of three tasks:

– Grouping (or Classification): group together the objects into mutually dis-
joint sets

– Measuring: in each group, for each object, measure some specified property
of the object

– Summarizing: in each group, summarize the measured properties of the
objects

Before giving formal definitions, let us illustrate these three tasks intuitively,
using our running example. Suppose we want to evaluate the following query:
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for each store-supplier pair, find the total quantity of products delivered

To do this, let us perform the three tasks described above, that is grouping,
measuring, and summarizing.

Grouping. Two objects are put in the same group if they correspond to the
same store-supplier pair. To check this condition, we need a function that
takes as input an object and returns a store-supplier pair. Such a function can
be obtained by evaluating a path expression with source O and with target
Store × Supplier. Referring to Figure 1, we can easily check that the only path
expression having this property is the expression u = (g ∧ (h2 ◦ h)). Clearly,
the inverse function u−1 associates each store-supplier pair to the set of all
objects having that pair as image, and thus it groups the objects into the
desired groups. (Note that, in presence of more than one such expression, a
choice will have to be made by the user.) Concerning the actual calculations,
we note that only the store-supplier pairs that belong to the range of u have
nonempty inverses. Referring to Figure 1, we can easily check that the range
of u contains four pairs: {(St1, Sup1), (St1, Sup2), (St3, Sup2)and(St2, Sup1)};
all other pairs of Store × Supplier have empty inverse images under u. The
nonempty groups of objects obtained as inverse images of the pairs in the range
of u are as follows:

u−1((St1, Sup1)) = {1, 4, 6, 8}
u−1((St1, Sup2)) = {2, 7}
u−1((St3, Sup2)) = {3}
u−1((St2, Sup1)) = {5, 9}

These four inverse images form a partition of O, and this partition is
the result of the grouping.

Measurement. Within each group of objects, as computed in the previous step,
and for each object in the group, we apply the function q in order to find the
quantity of delivered products for that object:

{1, 4, 6, 8} → 〈200, 400, 300, 400〉
{2, 7} → 〈300, 500〉
{3} → 〈200〉
{5, 9} → 〈400, 500〉

Summarizing. For each group in the previous step, we sum up the quantities
found, in order to obtain the total quantity of the group:

〈200, 400, 300, 400〉 → 1300
〈300, 500〉 → 800
〈200〉 → 200
〈400, 500〉 → 900
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As we can see through the above three steps, each store-supplier pair (St,
Sup) is associated to a group of objects u−1((St, Sup)); and this group of
objects, in turn, is associated to a total quantity of products delivered. This
process is depicted below, where we summarize the results of the computations
that took place:

(St1, Sup1) → {1, 4, 6, 8} → 1300
(St1, Sup2) → {2, 7} → 800
(St3, Sup2) → {3} → 200
(St2, Sup1) → {5, 9} → 900

The important thing to retain is that the above process defines a function
from Store × Supplier to Sales. It is precisely this function that answers our
original question, that is “for each store-supplier pair, find the total quantity of
products delivered”. This query and its answer are shown in Figure 2(b).

The above considerations lead to the following definition of OLAP query and
its answer

Definition 7. OLAP query and its answer

– OLAP Query
Let S be a schema. An OLAP Query over S is a (ordered) triple Q =
(u, v, op), satisfying the following conditions:

• u and v are path expressions such that source(u) = source(v) = O
• op is an operation over the target of v

The expression u will be referred to as the classifier of Q and the expression
v as the measure of Q.

– Answer
Let δ be a database over S. The answer to Q with respect to δ is a function
ansQ,δ: target(u) → target(v) defined by ansQ,δ(y) = op(v(u−1(y))), for all
y ∈ range(u).

Here are two more examples of queries, over the schema of our running example:

– Q1 = (f ∧ (h1 ◦ h), q, avg), asking for the average quantity by date and
category

– Q2 = (f ∧ g, q, min), asking for the minimal quantity by date and store

It is important to note that the notions of “classifier” and “measure” in the
above definition are local to a query. That is, the same path expression can be
classifier in one query and measure in another. As an extreme example, consider
the following two queries over the schema of our running example:

– Q = (g, h, count), asking for the number of product references by store
– Q′ = (h, g, count), asking for the number of stores by product reference

An interesting class of OLAP queries is obtained when the classifier u is the
constant expression (i.e. u =⊥) and v is any measure. Such queries have the form
Q = (⊥, v, op). As ⊥ evaluates to a constant function over any database with
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nonempty set of objects, its inverse returns just one group, namely the set O of
all objects. Hence the answer of Q associates the unique value λ in the range of u
with op(v(O)). In our running example, the answer of the query Q = (⊥, q, sum)
will associate λ with 3200. Here, 3200 represents the total quantity delivered (i.e.
for all dates, stores and products).

5 Optimization Issues

As we have seen in the previous section, the partition of O resulting from the
grouping step, plays a crucial role in determining the answer. Given a query
Q = (u, v, op), the partition induced by the function u on the set of objects O is
called the support of Q and it is denoted as sQ. Query optimization consists in
using the answer of an already evaluated query in order to evaluate the answer
of a new query without passing over the data again; and the lattice of partitions
of the set O is the formal tool to achieve such optimization.

Definition 8. The Lattice of Partitions
Let p, p′ be two partitions of O. We say that p is finer than p′, denoted p ≤ p′,
if for each group G in p there is a group G′ in p′ such that G ⊆ G′.

One can show that ≤ is a partial order over the set of all partitions of O
(i.e. a reflexive, transitive and anti-symmetric binary relation over partitions).
Under this ordering, the set of all partitions of O becomes a lattice in which the
partition {O} is the top (the coarsest partition) and the partition {{o}/o ∈ O}
is the bottom (the finest partition).

To see how this lattice can be used to achieve optimization, consider a query
Q = (u, v, op) which has already been evaluated. As we have explained earlier, if
y1, .., yk are the values in the range of u, then the support of Q is the following
partition of O: sQ = {u−1(yi)/i = 1, .., k}.

Based on the support, the answer to Q is expressed as follows: ansQ(yi) =
op(v(u−1(yi))), i = 1, .., k.

Now, suppose that a new query Q′= (u′, v′, op′) comes in and we want to
evaluate its answer. We claim that if sQ ≤ sQ′ then the answer to Q′ can be
expressed in terms of the support of Q. This is based on a simple fact, which
follows immediately from the definition of the partition ordering:

Fact : if sQ ≤ sQ′ then each group G′ in sQ′ is the union of groups from sQ.

As a result, if G′= G1 ∪ . . . ∪ Gj then op′(v′(G′))= op′(v′(G1 ∪ . . . ∪ Gj))= op′

(v′ (G1) , . . . , (v′ (Gj)).
As the support of Q has already been computed (and is available), we can

apply v′ and then op′ “off-line” (i.e. without passing over the data again).
Moreover, if v= v′ then we can reuse the measurements of Q as well. That
is, if v= v′ then we have:

op′(v′(G1), . . . , (v′(Gj)) = op′(v(G1), . . . , (v(Gj))
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Finally, if in addition op= op′ then we can reuse even the summarizations of
Q, provided that the following property holds:

op(v(G1), . . . , v(Gj)) = op(op(v(G1)), . . . , op(v(Gj))

One can show that this property holds for most of the usual operations,
namely “sum”, “count”, “max”, and “min”, but not for “avg”. For example,
sum(2, 4, 6, 8) = sum(sum(2, 4), (sum(6, 8)), while avg(2, 4, 6, 8) �= avg(avg
(2, 4), avg(6, 8)).

However, all the above results hold under the condition that sQ ≤ s′Q (see Fact
above), so the question is: given two queries, Q and Q′, can we decide whether
sQ ≤ s′Q?

To answer this question, we observe first that the classifier u of an OLAP
query is essentially the pairing of a number of compositions. Therefore it is
sufficient to answer the above question for two separate cases: when the classifier
is a composition and when the classifer is a pairing. The following proposition
provides the answers.

Proposition 2. Comparing Classifiers

– �Grouping by Composition
Let Q = (u, v, op) and Q′ = (u′, v′, op′) be two OLAP queries such u = p
and u′ = q′ ◦ p, where p and q′ are path expressions. Then sQ ≤ sQ′ .

– �Grouping by Pairing
Let Q = (u, v, op) and Q′ = (u′, v′, op′) be two OLAP queries such u = p ∧ q
and u′ = p, where p and q are path expressions. Then sQ ≤ sQ′ .

In our running example, if Q = (g, q, sum) and Q′= (g1 ◦ g, q, sum), then
sQ ≤ sQ′ , therefore the answer of Q′ can be computed from that of Q. Similarly,
if Q = (g ∧ h, q, sum) and Q′= (g, q, sum), then again sQ ≤ sQ′ , and the answer
of Q′ can be computed from that of Q.

The proof of the above proposition follows from properties of function
inverses, as stated in the following proposition.

Proposition 3. Properties of Inverses

– Composition
Let f : X → Y and g : Y → Z be two functions. Then for all z ∈ range(g◦f)
we have: (g ◦ f)−1(z) = ∪{f−1(y)/y ∈ g−1(z)) that is, a z-group under g ◦ f
is the union of all y-groups under f , where y ranges over the z-group under g

– Pairing
Let f : X → Y and g : X → Z be two functions. Then for all
(y, z) ∈ range(f ∧ g) we have: (f ∧ g)−1((y, z)) = f−1(y) ∩ g−1(z)

Lack of space does not allow further details on optimization. The interested
reader is referred to the full paper.
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6 Concluding Remarks

We have presented a functional model for data analysis, offering a clear separa-
tion between schema and data, as well as a functional algebra for data manipula-
tion. We have also discussed some optimization issues, concerning the evaluation
of OLAP queries.

Two important aspects of the model that are not treated in this paper are its
expressive power and the computational complexity of OLAP queries. Regarding
expressive power, we believe that one can gain useful insights by studying first
how the operations of the relational algebra can be embedded in our functional
algebra. As for computational complexity, the most appropriate context for its
study seems to be the lattice of partitions of the set O. Work on computational
complexity and optimization issues is ongoing, based on previous work by the
author [15], and will be reported in a forthcoming paper [16].

Another generalization of the model concerns the existence of multiple busi-
ness applications in the same enterprise. In our running example we have consid-
ered one such application, concerning delivery of products. A different business
application (in the same enterprise) may concern investments; it will be modelled
by a different schema with a different origin O′, whose objects represent invest-
ment records. Although the two schemas may share some of their attributes,
they will not be the same in general. Therefore the question arises how one
does “joint” analysis in order to correlate results from both applications. Note
that the need for two different schemas may arise even within the same business
application, when one wants to consider the same data but from different per-
spectives (each perspective corresponding to a different set of dimensions). In
relational terminology, this happens when the set of attributes in the fact table
has two or more different keys.

Finally, one practical aspect concerning our model is its embedding into com-
mercially available systems, and ongoing work considers its embedding into a
relational system. In fact, a prototype is under development that uses our model
as an interface for the definition of OLAP queries which are then passed on to
a relational engine for the actual evaluation.
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