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Abstract

Automatic accent insertion (“AAI”) is the problem of re-inserting accents (diacritics)
into a text where they are missing. Unaccented French texts are still quite common in
electronic media, as a result of a long history of character encoding problems and the lack
of well-established conventions for typing accented characters on computer keyboards.
An AAT method for French is presented, based on a statistical language model. Next,
it is shown how this AAT method can be used to do real-time accent insertions within a
word-processing environment, making it possible to type in French without having to type
accents. Various mechanisms are proposed to improve the performance of real-time AAI,
by exploiting on-line corrections made by the user. Experiments show that, on average,
such a system produces less than one accentuation error for every 200 words typed.

1 Introduction

Even in this era of flashy, high-speed multimedia information, unaccented French
texts (i.e texts without diacritics) are still routinely encountered in electronic me-
dia. Two factors account for this: first, the computer field has long suffered from
a lack of sufficiently widespread standards for encoding accented characters, which
has resulted in a plethora of problems in the electronic transfer and processing of
French texts. Even now, it is not uncommon for one of the software links in an
E-mail distribution chain to deliberately remove accents in order to avoid subse-
quent problems. Secondly, when using a computer keyboard that is not specifically
designed for French, keying in French accented characters can turn out to be a
laborious activity. This is a matter of both standards and ergonomics. As a re-
sult, a large number of French-speaking users systematically avoid using accented
characters, at least in informal communication.

If this situation remains tolerable in practice, it is essentially because it is ex-
tremely rare that the absence of accents renders a French text incomprehensible
to the human reader. Cases of ambiguity do nonetheless occur: for instance, “Ce
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chantier ferme a cause des emeutes” could be interpreted as “Ce chantier ferme a
cause des émeutes” (“This work-site is closing because of the riots”) or “Ce chantier
fermé a causé des émeutes” (“This closed work-site [more naturally put, this work-
site closure] has caused riots”). From a linguistic point of view, the lack of accents
in French simply increases the relative degree of ambiguity inherent in the language.
At worst, it is awkward and slows down reading, much as a text written entirely in
capital letters might do.

The fact remains, however, that while unaccented French text may be tolerated
under certain circumstances, it is not acceptable in common usage, especially in the
case of printed documents. Furthermore, unaccented text poses serious problems
for automatic processing: NLP-based applications such as information retrieval,
information extraction, machine translation, human-machine conversation, speech
synthesis, as well as many others, will usually require that French texts be properly
accented to begin with.

Actually, for human readers, unaccented text is probably the most benign of
a more general class of ill treatments to which French texts are subjected. For
example, it is not uncommon for older programs that are not “8-bit clean” to
“strip” the eighth bit of each character, thus irreversibly mapping French characters
onto the basic ASCII set. When this treatment is applied to an ISO-Latin text,
‘¢’ becomes ‘i’, ‘¢’ becomes ‘h’, etc. Other programs will simply delete accented
characters, or replace them with a unique character, such as a question mark. The
texts that result rapidly become unreadable.

All of the above factors prompted the initial interest in methods of automatic
accent insertion (AAI). Of course, as standards such as Unicode (multilingual
character-coding standard) and MIMFE (multipurpose Internet mail extensions)
gain ground, the accent legacy problem is slowly disappearing. The problem of
typing accents, however, is likely to remain. For this reason, we have become inter-
ested in methods that would perform AAT on-the-fly, in real time. It appears to us
that such a tool would be a valuable addition to any word-processing environment,
equally useful for native and non-native speakers of French.

In what follows, we first present a general AAI method, based on a statistical
language model (Section 2).We then examine how this method can be adapted
to perform accent insertions on-the-fly within a word-processing environment, and
describe a possible implementation (Section 3). Finally, we explore various ways of
exploiting user-feedback to improve the performance of the system (Section 4).

Although our research focuses on unaccented French texts, we believe that our
approach could be adapted to other languages that use diacritical marks, as well as
to other types of text corruption, such as those mentioned above. The AAT problem
and the solutions that we propose are also related to the more general problems of
word-sense disambiguation and spelling and grammar checking.

2 Automatic Accent Insertion (AAI)

In its simplest form, the AATI problem can be formulated this way: we are given as
input an unaccented French text, in the form of a sequence of unaccented words
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ULUs - . - Up. TO every one of these input words u; may correspond any number of
valid words (accented or not) w;y ... w;y,: our task is to disambiguate each word,
i.e. to select index k; of the correct word w;y, at every position in the text, in order
to produce a properly accented text.

An examination of the problem reveals that the vast majority (approximately
85%) of word tokens in French texts carry no accents at all, and that the correct
form of more than half of the remaining tokens can be deduced deterministically on
the basis of the unaccented form. Consequently, with the use of a good dictionary,
accents can be restored to an unaccented text with a success rate of nearly 95% (i.e.,
an error in accentuation will occur in approximately every 20 words). The problems
that remain at this point mostly revolve around ambiguous unaccented words, i.e.
words to which more than one valid form may correspond, whether accented or
not®.

Obviously, for many such ambiguities in French, a simple solution is to systemat-
ically select the most frequent alternative. For instance, the most frequent word in
most French texts is usually the preposition de, which turns out to be ambiguous,
because there is also a French word dé, meaning either dice or thimble. If we simply
ignore the latter form, we are likely to produce the correct form over 99% of the
time, even in texts related to gambling and sewing! This general strategy can be
implemented by determining a priori the most frequent alternative for each set of
ambiguous words in a dictionary, by means of frequency statistics extracted from
a corpus of properly accented French text. Using this simple method, we achieve a
success rate of approximately 97%, i.e. roughly one error per 35 words.

Clearly, to attain better performances than these, an AAI system will need to
examine the context within which a given ambiguous word appears, and then re-
sort to some form of linguistic knowledge. Statistical language models seem to be
particularly well fit to this task, because they provide us with quantitative means
of comparing alternatives.

2.1 AAT Method

We propose an AAT method that proceeds in two steps: first, identify for each
input word the list of valid alternatives to which it may correspond (what we call
hypothesis generation); then select the best candidate in each list of hypotheses
(candidate selection). This is illustrated in Figure 1.

Hypothesis generation produces, for each word-form u; of the input, a list of
the possible words wj; . . . w, to which it may correspond. For example, the form
pousse may correspond to either pousse or poussé; cote to cote, cote, coté or cote;
the only valid form for francais is francais (with a cedilla), and ordinateur is its
own unique correct form.

In theory, nothing precludes generating invalid as well as valid hypotheses at this
stage: for instance, for cote, also generate cété and ¢ote. All that would be needed

1 As we will see later on, other problems are caused by unknown words , i.e. words for
which the valid accented form is not known.
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Input text:
w1 = Mais u2 =la u3 =cote U4 =Uune us =fois

Hypothesis generation:

wi,1 = Mais w21 = la w31 cote w41 = une ws;1 = fois

wi,2 = Mais w22 = 1la w32 = coté
w3,3 = cote
w3,4 = cOté

Candidate selection:
k1=1 k=1 ks =3 ks=1 ks =1

wi,1 = Mais w21 = la w33 = cbte ws31 = une ws1 = fois

Table 1. Automatic accent insertion method

to perform hypothesis generation then would be a list of possible accentuations
for each letter of the alphabet. Instead, to limit the number of possibilities that
the system must consider, hypotheses are produced using a list of known French
word-forms, indexed on their unaccented version. When the hypothesis generator
encounters word-forms that it does not know, it simply reproduces them verbatim.

Once lists of hypotheses have been identified for each input word, the best candi-
date of each list must be selected. For this, we rely on a statistical language model,
which can assign a score to any sequence of words, corresponding to the probability
that the model generate this sequence. Given an input sequence of words ujus . .. ty,,
and for each word u; in the sequence, a list of hypotheses (wj1, - -, Wi ), our goal
can be reformulated as finding the sequence of hypotheses w1k, wak, - . . Wk, that
maximizes the overall likelihood of the output sequence.

The statistical model we use is a hidden Markov model (HMM), based on parts-
of-speech, such as those proposed by Church (Church, 1988) and DeRose (DeRose,
1988) for part-of-speech tagging. Within this kind of model, a text is viewed as the
result of two distinct stochastic processes. The first process generates a sequence
of abstract symbols, informally called “tags”. In our case, each of these tags cor-
responds to the name of a part-of-speech, augmented with some morpho-syntactic
features, e.g. “common noun, masculine-singular”, “verb, present indicative form,
third person plural”. In an N-tag HMM, the production of a tag depends only on
the N — 1 preceding tags, so that the probability of observing a given tag ¢; in a
given context follows a conditional distribution P(t;|t;—n -..ti—1)-

Then, for each tag in this first sequence, a second stochastic process generates a
second symbol: in our case, these symbols correspond to actual word-forms in the
language.

Hence, the parameters that define the model are:

o P(t;|h;—1): the probability of observing tag t;, given the previous N — 1 tags
(hi—1 designates the series of N — 1 tags ending at position ¢ — 1);
e P(wj;|t;): the probability of observing word w; given the underlying tag ¢;.

The actual values of individual parameters are learned automatically, by exam-
ining large quantities of running text (the “training corpus”). Through a procedure
known as “Baum-Welch re-estimation” (Baum, 1972), the parameters are gradually
refined, so as to maximize the likelihood of the training corpus with regard to the
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model. Whether or not this procedure converges to the overall maximum depends
on the initial values of the parameters; the better our initial guess at these values,
the better our chances of reaching maximum likelihood and, ultimately, the better
our model.

Short of knowing the right initial values, the best approach is to estimate them
by observing the frequency of each event in a sample of text in which the hidden
layer is visible, i.e. a corpus of text manually annotated with POS tags. Another
useful resource in this regard is a dictionary, from which we can determine which
parts-of-speech are possible for each word-form, and which are not; otherwise, for
words that do not appear in the training material (i.e., most words), we will have
to assume a priori that all tags are equally likely.

Once the model has been trained, the probability of observing some sequence of
words w = wyws ... w, can be evaluated. If T" is the set of tags, and T™ denotes
the set of all possible sequences of n tags of T, then:

n
P(w) = Z H P(tdhz’,l)P(wi'ti)
teT™ i=1

The number of possible tag sequences in T™ grows exponentially with n, but
fortunately, there exists an algorithm for computing the value of P(w) in polynomial
time (see Rabiner and Juang (Rabiner and Juang, 1986), for example).

To find the sequence of accentuation hypotheses that maximizes the probability
of the text, each individual combination of hypotheses is examined. Because the
number of possible combinations grows exponentially with the length of the text,
we will want to segment the text into smaller pieces, whose probabilities can be
maximized individually. Sentences are usually considered to be syntactically inde-
pendent, and so we may assume that maximizing the probability of each sentence
will yield the same result as maximizing the whole text. Even within sentences, it
is sometimes possible to find subsegments that are “relatively” independent of one
another. Typically, the inner punctuation of sentences (semicolons, commas, etc)
separates segments that are likely to be independent of one another. In the absence
of inner punctuation, it is still possible to segment a sentence around regions of
“low ambiguity”.

Our AAT method relies on a heuristic segmentation method, which cuts up each
sentence into a number of segments, such that the number of combinations of hy-
potheses to examine in each segment does not exceed a certain fixed threshold,
while minimizing dependencies between segments. This segmentation strategy ef-
fectively guarantees that the accent-insertion can be done in polynomial time. But
we sometimes end up segmenting the text at “sub-optimal” locations. This will
have consequences on performance, as we will see later.

Segments are processed in a left-to-right fashion. In practice, one way of mini-
mizing the negative impact of sub-optimal segmentations is to provide the last few
words of the previous segment, as re-accented by the AAI system, as additional
context to the current segment. Hence, the system is actually processing overlap-
ping segments of text. Of course, the additional words preprended to each segment
are dropped when the final result is pieced together.
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2.2 AAI Implementation

The method presented in the previous section was implemented in a program called
Réacc. This program, given a hypothesis generator, the parameters of a HMM and
an input, unaccented French text, produces an accented version of that text on the
output?.

The hypothesis generator we used was produced from a list of over 250 000 valid
French words, extracted from our French morpho-syntactic electronic dictionary.
Such a large dictionary is probably overkill, and in fact, it may even be the case
that it uselessly slows down processing, by proposing extremely rare (although
probably valid) words. (The only francophones we met that had heard of a Ié were
crossword puzzle addicts.)

For the language model, we used Foster’s implementation of HMMs (Foster, 1991)
to create a 2-tag model, based on a set of approximately 350 morpho-syntactic
tags. The vocabulary and possible POS’s for each word-form were first determined
using the same French morpho-syntactic electronic dictionary as above. Then, the
parameters of the HMM were estimated by direct frequency counts on a 60 000
words, hand-tagged extract of the Canadian Hansard, and finally re-estimated on a
3 million word (untagged) corpus consisting of equal parts of Hansards, Canadian
National Defense documents and French press revues (Radio-France International).

2.3 AAI Evaluation

One of the interesting properties of the AAI problem is that the performance as-
sessment of a given program is a very straightforward affair: all we need is a corpus
of correctly accented French text, and a “de-accentuation” program. Performance
can be measured by counting the number of words that differ in the original text
and its re-accented counterpart.

For the purpose of our evaluation, we used a test corpus made up of three texts:
a 35K-word court transcript, a 59K-word extract of Hansard (distinct from the
extract used to train the HMM) and a novel by Jules Verne (“De la Terre & la Lune”;
53K words). These texts were chosen because they represent types of document
which are respectively highly, moderately and remotely related to the language
model’s training material. Each document was split in two more or less equal parts;
the first halves were kept for various training tasks, while the second halves were
used for testing.

Apart from the hypothesis generator and the language model parameters, a num-
ber of parameters affect the performance of the program. The most important of
these is the maximum number of combinations per subsegment, that is used in the
segmentation heuristic. In what follows, we refer to this parameter as S. The effect
of different values of S on the training portion of our texts is shown in Figure 1.
All tests were done on a Sparc Ultra 1 computer, with 256 MB of memory.

% Réacc is commercially available, through Alis Technologies (http://www.alis.com),
and an on-line demo of is available at http://www-rali.iro.umontreal.ca/Reacc
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Fig. 1. Effect of AAI segment-size on training corpus.

A cursory look at the results reveals that there is much to be gained by allowing
the system to work on longer segments. However, beyond a certain limit, the quality
of the results tends to level off, while the running time increases radically. Depending
on the context of application of the program and the resources available, it would
seem that acceptable results can be obtained with S set at around 16 or 32. In this
setting, the system will process anywhere between 40 000 and 70 000 words per
minute.

Table 2 shows the performance of the system on the test portion of our corpus,
with S = 16. As we can see, the system performs quite differently on different types
of text: the average distance between accentuation errors varies between 120 and
200 words (in these results, as in all that follow, what counts as a “word” is any
contiguous sequence of alphabetic characters). The overall average is 165 words —

this is roughly a dozen sentences®.

Table 2. AAI test results.

Text Total errors Average distance

(words) between errors
(words)
Court transcript 103 167
Hansard 140 208
Jules Verne 233 120
total/avg. 441 165

It is interesting to look at where Réacc goes wrong. Table 3 provides a rough
classification of accent-restoration errors made by the program on our test corpus

3 Here, as in all similar tables, the overall average distance between errors is just the
average of the figures obtained on specific test files; in other words, we compensate for
the fact that some test files are larger than others.
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Table 3. Classification of accent restoration errors.

Type of error  Number of occurrences  Percentage

-e VS. -é ending 155 32.6%
a VS. a 145 30.5%

ou VS. ot 44 9.2%

la VS. la 33 6.9%
Unknown words 25 5.3%
Other 74 15.5%

with S set at 16. The largest category of accentuation errors includes a rather liberal
grouping of errors that have a common feature: they are the result of an incorrect
choice pertaining to an acute accent on a final e. In most cases (although not all),
this corresponds to an ambiguity between a finite and participle forms of a verb,
e.g. aime as opposed to aimé. The next categories concern specific grammatical
words: the preposition d, and a, the third person singular present indicative form
of the verb awvoir; coordination ou and adverb o; and article la and adverb [a.

Finally, a small group of errors stem from inadequacies in the hypothesis gener-
ator — i.e. cases in which the generator simply does not know the correct accented
form. In most cases, proper nouns are involved, but there are also a few cases of
non-French words. In our experience, such a small proportion (5.3%) for this cat-
egory of errors is atypical for real-life texts — the real figure is usually somewhere
around 20-25%. In fact, this is what we observe on the court transcript (20.4%).
How is it then that in the comparatively larger sample of Hansard, we find only
one such error? The explanation is actually simple: at the time these tests were car-
ried out, our lab had been working with the Hansard data for over a decade. Over
the years, most of the vocabulary specific to this corpus (including proper nouns)
had been manually added to our lexical databases. Hence the virtual absence of
unknown words in this text.

As for the Jules Verne novel, being over a hundred years old, most of its vocab-
ulary is standard dictionary stuffing, and because the story is set in the United
States, the few proper names it contains are typically American and devoid of any
accents.

2.4 Related Work

El-Beze et al. (El-Beze et al., 1994) present an AAT method that is very similar to
ours. It also proceeds in two steps: hypothesis generation, which is based on a list
of valid words, and candidate selection, which also relies on a POS-based Hidden
Markov Model. The main difference between their method and ours is how the HMM
is used to score competing hypotheses. While we segment the text into “independent
segments” and maximize the probability of these segments, their program processes
the text from left to right, using a fixed width “sliding window”:
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e For each input word u;, the hypothesis generator produces a list of possible
(word, tag) alternatives: (wi1,ti1),- - ., (Wik, tik);

e Candidate Selection proceeds by selecting a specific pair (w;j,t;;) at each
position; the goal is to find the sequence of (word, tag) pairs whose probability
is maximum according to the model:

n

1 Pws

i=1

tiji )P(tiji

ti1ji_1s ti—jS—z)

e To avoid combinatorial problems, instead of computing this product for all
possible sequences, the system finds at each position i in the sequence the pair
(wsj,ti;) that locally maximizes that part of the global computation within
which it is involved:

P; x Piy1 X Piyo
where 1), = P(wiji tiji)P(tiji ti*lji—17ti*2]‘i—2)'
e These computations proceed from left to right, so that the optimal tag found
for position 4 will be used in the computation of the optimal (word, tag) pairs
at positions ¢ + 1 and ¢ + 2.

The experimental results reported by El-Beze et al. indicate success levels slightly
superior to ours. This may be explained in part by the use of a better language
model (their HMM is three-tag, ours is two-tag). It must be said, however, that
their test-corpus was relatively small (in all, a little over 8000 words), and that
the performances varied widely from text to text, with average distances between
errors varying between 100 and 600 words.

A method which exploits different sources of information in the candidate selec-
tion task is described by Yarowsky (Yarowsky, 1994b): this system relies on local
context (e.g. , words within a 2- or 4-word window around the current word), global
context (e.g. a 40-word window), part-of-speech of surrounding words, etc. These
are combined within a unifying framework known as “decision lists”. Within this
framework, the system bases its decision for each individual candidate selection on
the single most reliable piece of evidence.

Although Yarowsky does address the problem of French automatic accentuation,
his work is centered on the Spanish language. Furthermore, the evaluation focuses
on specific ambiguities, from which it is impossible to get a global performance
measure. As a result, it is unfortunately not currently possible to compare these
findings with ours in a quantitative way.

In a different article (Yarowsky, 1994a), the author compares his method with one
based on the statistical part-of-speech tagger of Church (Church, 1988), a method
which obviously has a number of points in common with ours. In these experiments,
this method is clearly outperformed by the one based on decision lists. This is most
apparent in situations where competing hypotheses are “syntactically interchange-
able”: pairs of words with identical morpho-syntactic features, or with differences
that have no direct syntactic effects, e.g. present/preterit verb tenses. Such am-
biguities are better resolved with non-local context, such as temporal indicators.
As it happens, however, while such situations are very common in Spanish, they
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are rare in French. Furthermore, Yarowsky’s language model was admittedly quite
weak: in the absence of a hand-tagged training corpus, he based his model on an
ad hoc set of tags.

3 Real-time Automatic Accent Insertion (RTAAI)

As mentioned earlier, the existence of unaccented French texts can in part be ex-
plained by the lack of a standard keying convention for French accents: conventions
vary from computer to computer, from keyboard to keyboard, sometimes even from
program to program. Many users type French texts without accents simply because
they are unfamiliar with the conventions in a particular environment, or because
these conventions are too complicated (e.g. hitting three keys in sequence to type
a single accented character).

Clearly, in some situations, automatic accent insertion offers a simple solution to
this problem: type the text without accents, run an AAT program on the text, and
revise the output for accentuation mistakes. Of course, such a solution, if acceptable
for one-time production of short texts, is not very practical in general. If a text is
subjected to a number of editions and re-editions, or if it is produced cooperatively
by several authors working in different environments, then it may need to go through
a series of local re-accentuations. This process, if managed by hand, is error-prone
and, in the end, probably more laborious than typing the accents by hand.

If, however, the accents are automatically inserted on-the-fly, as the user types
the text, then accent revision and corrections can also be done as the text is typed. If
this system is capable of producing acceptable results in real-time, it may become a
realistic alternative to the manual insertion of accents. In what follows, we examine
how this real-time automatic accent insertion (RTAAI) may be done.

3.1 RTAAI Method

How does RTAALI differ from the basic AAI problem? In Section 2, the input was
considered to be a static and (hopefully) complete text. In RTAAI, the text is
dynamic: it changes with every edit operation performed by the user. Therefore, the
RTAAI method that is conceptually the simplest is to re-compute the accentuation
of the whole text after each edit, i.e. repeatedly apply to the entire text an AAI
method such as that proposed in Section 2.1.

Of course, such a method is impractical, mainly because it will likely be compu-
tationally excessively expensive. It is also overkill, because changes in one region of
the text are unlikely to affect the accentuation of the text in more or less distant
regions. In fact, if we use the AAI method of Section 2, changes in one location will
have no effects outside the sentence within which the edit occurs, because sentences
are all treated independently. Because sentences are themselves sub-segmented, it
is tempting to think that the effect of a given edit will be even further restricted,
to the segment of the sentence within which it takes place. This, however, is not
generally true, firstly because an edit is likely to affect the sub-segmentation process
itself, and also because changes in one segment can have cascading effects on the



Real-time Automatic Insertion of Accents in French Text 11

subsequent segments, as the last words of each segment are prefixed to the following
segment as additional context.

So a more practical solution is to process only the sentence within which the latest
edit occurred. There are still problems with this approach, however. While the user
is editing a sentence, chances are that at any given time, this sentence is “incom-
plete”. Furthermore, although modern text-editors allow insertions and deletions to
be performed in any order and at any position of the text, in a normal text-editing
context, given the natural tendency of humans to write in a beginning-to-end fash-
ion, the majority of the edits in a French text will be left-to-right insertions at the
end of sentences. This means that at any given time, the text to the left of the
latest edit is likely to constitute relevant context for the AAT task, while the text
to the right is likely not to be relevant. In fact, taking this text into consideration
could very well mislead the AAT process, as it may belong to a completely different
sentence.

This suggests a further refinement: after each edit, process only that part of the
current sentence that lies to the left of the location where the edit took place.

Also, it seems that there is no real need to take any action while the user is
modifying a given word, and that it would be wiser to wait until all edits on that
particular word are finished before processing it. By doing so, we will not only save
computational time, we will also avoid annoying the user with irrelevant accentua-
tions on “partial” words. Notice, however, that detecting the exact moment when
the user has “finished” typing or modifying a word can be a tricky business. We
will deal with this question in Section 3.2.

One of the potential benefits of performing accentuation on-the-fly, as opposed to
a posteriori AAI, is that the user can correct accent errors as they happen. In turn,
because accentuation errors sometimes cascade, such on-the-fly corrections may
help the AAT “stay on the right track”. If we want to capitalize on user-corrections,
we will need to distinguish “corrections” from other types of edits: the reason is that
we don’t want to override the user’s decisions when performing AAI. This question
will also be dealt with when we discuss implementation details (Section 3.2).

Also, because the user can only correct the error that he sees, we will want to
limit the scope of the AAT to a small number of words around the location of the last
edit. In theory, the effect of AAI after each edit is limited to the current sentence,
but sentences come in all sizes. If a given “round” of AAI affects text too far away
from the site of the last edit, which is usually also the focus of the user’s attention,
then he is likely not to notice that change. For this reason, it seems reasonable to
restrict the actual scope of the AAI process to just a few words: intuitively, three
or four words would be reasonable. Note that this doesn’t imply restricting the
amount of context that we provide the AAI with, but only limiting the size of the
region that it is allowed to modify.

To summarize, the RTAAT method that we propose essentially follows these lines:

e RTAATI is performed by repeatedly applying an AAI method (such as that of
Section 2) on the text.
e AAI rounds are triggered every time the user finishes editing a word.
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e The scope of AAI (which we call the AAT window) is limited to a fixed number
of words to the left of the last word edited.

o If this can be useful to the AAI process, more context can be given, in the
form of additional words belonging to the same sentence to the left of the
AAT window (what we call the context window).

3.2 RTAAI Implementation

As mentioned earlier, the AAI method presented in Section 2 has been implemented
as a program and C function library. Based on this implementation, a prototype
RTAATI system was developed and integrated to the Emacs text-editor. Although
Emacs is not generally viewed as a true word-processing environment, it was a
natural choice for prototyping because of its openness and extendibility.

In our implementation, the user of Emacs can activate a special editing mode
called Réacc-mode (technically speaking, a minor-mode). When in this mode, the
user has access to all the usual editing functions: he can move the cursor around,
insert, delete, etc. The main difference with the normal “fundamental” mode is
that now, accents are automatically inserted as words are typed, without the user
having to explicitly type them.

The implementation follows the general lines of the RTAAI method presented
in Section 3.1: every time a new word is inserted, the system identifies the AAT
window, submits the words that fall within this window to the AAI system, and
replaces the content of the window with the newly accented words.

In practice, Emacs and the AAI program run as separate processes, and commu-
nicate asynchronously: when a new word is typed, Emacs sends the AAT window
to the AAT process, along with other relevant information (context, position, etc.),
and returns the control to the user. The AAT program processes the “accentuation
request” in the background, and sends the results back to Emacs as soon as they are
ready. When this happens, Emacs interrupts whatever it was doing, and replaces
the original contents of the AAI window with the newly arrived words. This way,
user-interaction is not significantly slowed down by the AAT process, because time-
consuming computations typically take place during the editor’s idle time, between
keystrokes.

It is the editing process’ responsibility to initiate AAI rounds, and therefore to
determine when a new word has been typed. After experimenting with various
strategies, we opted for a relatively simple method, based on the possibility to
mark individual characters of the text with specific “properties” in Emacs. When
words are processed by the AAT program and re-inserted into the text, they are
systematically marked as auto-accented. By contrast, characters typed by the user
do not carry this mark. Every time the user types a space or newline character,
we examine the word immediately preceding the cursor: if all its characters are
unmarked, then a new AAI round must be initiated.

We mentioned earlier that it was important for an RTAAT system not to override
the user’s decisions. Two situations are particularly important to consider: when
the user manually types an accent within a new word, and when the user corrects
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the accentuation of a word (detecting user-corrections is also important for taking
user-feedback into account, as will be discussed in Section 4). In both cases, it is
undesirable that the RTAAT modify the words in question. The character marking
capabilities of Emacs are also used to detect these situations. The first case (new
word with accents) will be identified easily by the presence of accented characters
within an unmarked word. The second situation (accent corrections) is more difficult
to detect, but in general, a mix of marked and unmarked characters within a single
word is a good indicator that corrections have taken place.

When these two situations occur, not only do we not initiate an AAI round, we
also inhibit any further re-accentuations on these words, by marking their characters
as user-validated. Words bearing this mark will never be touched by AAI Later on,
when AAI rounds are initiated and the system locates the AAI window, all text
outside this window is also marked as user-validated. This way of proceeding, while
allowing the RTA AT system to do its work during simple text insertions, limits the
possibility of “unpleasant surprises” when more complex interactions take place
(deletions, corrections, cut-and-paste operations, etc.).

3.3 RTAAI Evaluation

The ultimate goal of RTAAT is to facilitate the editing of French texts. Therefore, it
would be logical to evaluate the performance of an RTAAI system in those terms.
Unfortunately, the “ease of typing” is a notion that is hard to quantify. In the-
ory, typing speed would seem to be the most objective criterion. But measuring
performance using such a criterion would obviously require setting up a complex
experimental protocol.

What we can reliably evaluate, however, is the absolute performance of an RTAAT
system, in terms of the number of accentuation errors, for a given editing “session”.
Such a measure gives us an intuitive idea of the impact of the RTAAT system on
the “ease of typing”, because it suggests how often the user will need to correct
accentuation mistakes.

We conducted a number of experiments along this line, to evaluate how an RTAAT
system based on the AAT system of Section 2 would perform. All experiments were
done by simulation, using the same corpus that was used in Section 2.3. The editing
“session” we simulated followed a very simple scenario: the user types the whole
test corpus, from beginning to end, without typing accents, without making errors,
and without correcting those made by the RTAAT system.

As was the case with the Réacc program, several parameters affect the quality of
the results and the computation time required. The only parameter that is specific
to our RTAAI method, however, is the size of the AAI window. This parameter,
which we refer to as W, is measured in words. We conducted distinct experiments
on the training part of the corpus, with various values for W, the results of which
appear in Table 4. In all of these experiments, the segmentation factor S was set
at 16.

The conclusion that we can draw from these results is that there is much to be
gained in using an AAI window of more than two word. Performance quickly levels
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Table 4. RTAAI simulation results on training corpus, for various AAI window
sizes.

AAT window (W) Total errors Average distance

(words) between errors
(words)
1 599 136
2 596 137
3 547 152
4 546 153
8 551 151
16 550 151

off, however, so that near-optimal results are obtained with a three- or four-word
window. This is encouraging, because it seems reasonable to assume that the user
can effectively monitor a window of that size, and therefore detect accentuation
errors when they occur.

Table 5 shows the system’s performance on the test corpus, with W = 3. Another
pleasant surprise awaits us here: the RTAAT system actually performs better than
the basic AAT on which it is based. One possible explanation is that because the
RTAAT works with only a small number of words at each round (i.e. only the
words in the AAT window), the system never has more than S = 16 combinations
to examine, and therefore never needs to segment sentences into smaller pieces.
In the end, both ways of proceeding are probably more or less equivalent. The
major difference, of course, is that since RTAAI recomputes accentuation with
every new word, its computational cost is accordingly higher. However, as seen in
Section 2.3, our AAT system can process 50 000 words per minute. Since very few
typists can enter more than 100 words per minute, even a straightforward RTAAI
implementation should be able to handle the required computations in real-time.

Table 5. RTAAT results on test corpus.

Text Total errors Average distance

(words) between errors
(words)
Court transcript 101 170.6
Hansard 121 241.6
Jules Verne 222 126.9

total/avg. 444 179.7
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Table 6. RTAAI results on test corpus, with user-corrections.

Text Total errors Average distance Improvement

(words) between errors over baseline
(words) (% errors)
Court transcript 99 174.0 2.0%
Hansard 121 241.6 0.0%
Jules Verne 221 127.5 0.5%
total/avg. 441 181.0 0.7%

4 Exploiting User-feedback

One of the expected benefits of RTAAI, as opposed to applying AAI on a text
a posteriori, is that the user can spot accent errors as soon as they happen, and
correct them right away. In fact, we believe that this form of user-feedback can
actually help improve the performance of the system itself. The intuition is that
there must be situations where one accentuation error leads to another, so that we
observe some sort of “domino effect”. This conjecture is easily verified by modifying
the simulated scenario used in Section 3.3 for testing RTAAI: Table 6 shows what
happens when the user systematically corrects words that have accentuation errors
as soon as they leave the AAI window.

While the net result is only a slight reduction in the total number of errors, we
observe on closer examination that the actual errors are not exactly the same. What
this means is that, while correcting accent errors as they happen may not improve
performance, it does affect the behavior of the system. In this section, we describe
our attempts at exploiting the user’s contribution, and the results we obtained.

4.1 Dynamic Lexicalization

As pointed out in Section 2.3, a number of AAT errors are caused by unknown
words, i.e. words in the correctly accented version of the text which are unknown
to the hypothesis generator. This suggests a simple way of exploiting user-feedback:
dynamically augment the contents of the hypothesis generator with user-corrected
words whose form is not already known.

If we add such a mechanism to our RTAAI system, and if the user corrects the
AAT errors as soon as they happen, unknown words will be lexicalized right after
their first appearance. Then, the system shouldn’t make more than one error per
unknown word. With the RTAAI implementation described in Section 3.2, this is
easily done: every time re-accentuation is invoked, we examine the last word-form
of the context window; if it carries an accent and is unknown to the hypothesis
generator, it is automatically added to the system. This way, we not only catch
user-corrections, but also words that were originally accented by the user.
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Table 7. RTAAI with dynamic lexicalization.

Text Total errors Average distance Improvement

(words) between errors over baseline
(words) (% errors)
Court transcript 83 207.6 17.8%
Hansard 121 241.6 0.0%
Jules Verne 220 128.1 0.9%
total/avg. 424 192.4 4.5%

This mechanism was incorporated into our RTA AT system; its impact on the test
corpus can be seen in Table 7, where the last column represents the improvement
relative to standard RTAAI (the “baseline”), in percentage points.

As can be seen, dynamically lexicalizing unknown words has a different impact on
different documents. The most striking improvement is observed on the court tran-
scripts, which contain a lot of repeated proper nouns (individuals, places), initially
unknown to the system. On the Hansard and Jules Verne documents, however, we
get almost no improvement, because both texts contain very few “unknown” words
(see Section 2.3).

Yet, the net effect is always positive, and all other user-feedback strategies de-
scribed in this section are actually built on top of dynamic lexicalization.

4.2 Dynamic Language Models

While dynamic lexicalization can be quite effective for dealing with unknown words,
it does not solve the problem entirely. Lexicalizing new word-forms makes it pos-
sible for the hypothesis generator to propose the correct accentuation when these
word-forms re-appear in the text. However, they remain unknown to the language
model, which is ultimately responsible for selecting the best accentuation among
the proposed hypotheses. For example, suppose the user types in the proper name
René; because this form is unknown, it will be dynamically added to the system,
and will be proposed the next time the unaccented form Rene is encountered. How-
ever, if the hypothesis generator already had an entry for the form Réne (reindeer),
then this be proposed as well. At this point, whether the language model favors an
unknown word-form over a known one depends on many factors, most notably the
training material and the surrounding context?.

Another problem with our RTAAT system is its sometimes annoying tendency to

4 In our HMM implementation, unknown words are matched against a small number
of regular expressions; all words that match the same expression are then viewed as
occurrences of the same “unknown” word, which can be associated to any of a subset
of the possible POS tags.
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systematically select the most frequent alternative when confronted with syntacti-
cally interchangeable words. For example, the two French words cote (quotation,
rating, etc.) and cote (hillside, coast, rib, etc.) have similar morpho-syntactic fea-
tures (common noun, feminine, singular) and so, from a grammatical point of view,
are totally interchangeable. It so happens, however, that in the language model’s
training corpus, the second form is much more frequent. Therefore, the RTAAT will
systematically produce that form rather than the other. If the user of the system
is writing about the stock market for example, he is likely to want to use the first
form cote, and therefore to react negatively to the system’s insistence on putting a
circumflex accent where none should appear.

This is what Church and Gale refer to as the “bunching-up effect” (Church and
Gale, 1995): a word that has appeared once in a text is much more likely to re-
appear in the near vicinity than its average frequency would suggest. Standard
Markovian models are too weak to account for this phenomenon, which calls for
some form of dynamic language modeling. In our case, this means a mechanism
that takes recently encountered text into consideration when computing the prob-
ability of some newly edited segment of text. One approach is to constantly update
the parameters of the language model as new text is encountered. For instance,
Jelinek et al. (Jelinek et al., 1990) describe one such method to deal with unknown
words: every time a new word-form w is encountered, it is added to the language
model, and the relevant parameters (in our case, the P(w|t;)) are estimated from
the parameters of a set of synonyms. This set is computed automatically using
co-occurrence statistics (“Which are the words that appear in a context similar to
the one within which w appears?”). Unfortunately, this type of method is compu-
tationally quite expensive, and would thus be difficult to adapt to our real-time
context.

A more practical approach is to combine local (dynamic) and global (static)
information in real-time, without modifying the parameters of the language model.
For example, Kuhn and De Mori (Kuhn and Mori, 1990) use such an approach to
help a speech recognition application adapt to new context in real-time. Essentially,
they suggest using recent data to estimate the parameters of a local (dynamic)
language model, and to use this model in conjunction with the global (static) model
when decoding new utterances.

To apply this kind of approach to RTAAI, we need to answer two questions:

e What kind of language model is best suited for modeling local phenomena?

¢ How do we combine the information coming from the local and global models?

In our case, we will want to focus on statistical models, because it makes it much
easier to answer the second question. We will also want to restrict ourselves to
very simple models, because by definition, “local” information necessarily comes in
limited quantities, which quickly raises the problem of reliable parameter estimation
if the model is too complex. In the following sections, we describe some variations
on the dynamic modeling scheme proposed by Kuhn and De Mori.
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4.2.1 Dynamic Unigram Models

The simplest statistical language model that comes to mind is what we could call
a “unigram” Markovian model, or a “word-frequency” model, in which the words
that make up a sentence are assumed to be independent of one another:

P(w?) = P(w1)P(ws)...P(wy,)

Implementing a dynamic unigram model is trivial: to estimate P(wj;), simply count
the number of times word-form w; appears in local context, and divide by the size
of the context. To avoid null probabilities for words that do not appear in context,
a simple trick is to count the currently hypothesized content of the AAI window as
if it was part of the context.

The output of this dynamic model can then be linearly combined with that of
the static (HMM) model:

(1) P(w') = aPs(w}') + SPp(w}),

where Pg and Pp denote the static and dynamic models respectively, and a and
(3 are positive values such that o + 3 = 1.

The most straightforward way to integrate this kind of scheme to our RTAAI
implementation is to have the editor provide the AAI system with a “buffer” of
local context at every re-accentuation round. Unfortunately, this is not practical,
because depending on the amount of local context required, it may imply trans-
fering excessively large quantities of information between the two processes. For
this reason, we opted for an implementation based on a “cache” mechanism, as
proposed by Kuhn and de Mori for their speech processing application: every time
re-accentuation is invoked, the last word-form in the context window is appended to
a queue, whose capacity is fixed; when this capacity is exceeded, words are dropped
from the beginning of the queue. This way, the queue always contains the most
recently encountered vocabulary. When the user is typing text in a continuous, left-
to-right fashion, this queue is equivalent to a fixed-size window of context to the
left of the cursor. In a session where the user hops around from place to place, the
content of the queue looks more like a random sampling of words of the text.

Our experiments with this kind of dynamic language model reveal it to be innef-
fective: all runs on the training corpus to determine the optimal parameter values
systematically pointed towards 8 = 0, whatever the quantity of local context con-
sidered. This would indicate that the unigram dynamic model is too weak to be
of any real use to the static HMM: the occasional situation where it does have
something interesting to say (such as accounting for bunching-up effects) does not
compensate for the ill-informed predictions it makes in most other cases. As a result,
it can only degrade the performance of the system.

4.2.2 Improved Unigrams

Clearly, some words are less likely than others to be affected by local factors: this
is particularily true of so-called grammatical words. For instance, an occurrence of
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Table 8. Unigram dynamic modeling with stop-list.

Text Total errors Average distance Improvement

(words) between errors over baseline
(words) (% errors)
Court transcript 84 205.1 16.8%
Hansard 120 243.6 0.8%
Jules Verne 218 129.2 1,8%
total/avg. 422 192.6 5.0%

the French preposition ¢ is probably not an indication that this word is suddenly
more likely to appear in the near future. In a dynamic modeling scheme, this is a
crucial issue, because modifying the behavior of the system for grammatical words
is likely to have catastrophic consequences. One way of compensating for this is to
weight each word’s contribution in the dynamic model according to its likelihood
of being affected by local factors. The dynamic probability of some sequence w?
would then be computed as

Pp(w}) = W(wy)Pp(w)...W (w,,) Pp (w,)

Intuitively, in such a scheme, grammatical words such as ¢ would have weights close
to zero, while syntactically interchangeable words such as cote would have weights
close to 1. Finding the right value for each weight is problematic, however.

An approach that is much simpler, and possibly just as effective, is to filter the
input of the cache with a hand-made list of grammatical and high-frequency words.
This is actually equivalent to starting with all weights equal to one, and then setting
them to zero for all words in the stop-list. We call this the “stop-list” model.

We can also take an opposite approach: use the cache only for words that are
very likely to be affected by local factors. One way of attaining this goal is to cache
only those words whose accentuation was corrected by the user. The intuition here
is that words that do not require user-corrections can be assumed to follow their
“usual” statistical distributions. We call this the “correction-only” model.

We experimented with both strategies. The best results on the training portion
of the corpus for the stop-list model were obtained with a queue of 200 words
and # = 0.16. For the correction-only model, the optimal queue had 300 words
and S = 0.04. As can be seen in Tables 8 and 9, both models produce small
improvements over dynamic lexicalization on the test corpus. However, it is not
clear whether these improvements are significant.
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Table 9. Unigram dynamic modeling of user-corrections.

Text Total errors Average distance Improvement

(words) between errors over baseline
(words) (% errors)
Court transcript 82 210.1 18.8%
Hansard 121 241.6 0.0%
Jules Verne 211 133.5 5.0%
total/avg. 414 195.1 6.8%

4.2.3 Dynamic Hidden Markov Model

To get more out of local context, therefore, it seems that a more elaborate model
is required. An interesting possibility is to replace the unigram model by a hidden
Markov model, modified along the following lines so as to deal with data sparseness:

o It is unlikely that local factors have a major impact on the syntax of the

language; therefore, “grammatical” parameters can be assumed to be the
same locally and globally. In other words, the dynamic model uses the static
Ps(t;|ti—1) parameters.

As was the case with the unigram model, we can assume that the local be-
havior of grammatical words is not significantly different from their global
behavior. With an HMM model, however, there is no need to use a stop-list,
because filtering can be based on part-of-speech information instead. For in-
stance, we can assume that Pp(w|t) &~ Ps(w|t) when t is the Preposition tag;
in other words, the dynamic model can “ignore” prepositions, pronouns and
other grammatical POS’s.

Finally, we can merge tags. For instance, all static tags related to common
nouns (Noun-masc-sing, Noun-masc-plur, etc.) can be merged into a single
tag Noun. We then approximate Pp(w|Noun-masc-sing) = Pp(w|Noun). In
practice, we can select which tags are merged together so as to focus on
distinctions that are likely to matter for the AAI task. For example, it will
probably be interesting to distinguish between past-participles and other ver-
bal forms, but maybe less so between singular and plural forms of adjectives.
In our dynamic HMMs static tags that are not “ignored” by the dynamic
model are merged into only 6 dynamic tags: common nouns, proper nouns,
adjectives, past participles, other verbal forms and unknown words. Some pre-
liminary experiments with more tags did not appear to produce significantly
better results.

Estimating the parameters of such a dynamic HMM is a bit more subtle than

for the unigram, because each word in the local context must be associated with
one of the dynamic model’s tags. In our case, there is an easy way of classifying
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context words: we can use the static language model to compute the most probable
(“Viterbi”) sequence of tags. Once this is done, an estimate of Pp(w|t) is obtained
by dividing the frequency of (w,t) pairs by the total number of words associated
to tag t in the local context.

In practice, if we combine the results of this dynamic model with those of the
static model linearly, as we did with the unigram models, we obtain no significant
improvement. To get the most out of this model, we need a tighter combination,
that uses distinct pairs of coeflicients o; and 3; for each dynamic tag:

n

(2) P(wy) = > [] Ps(tiltiz1) [ [ (o, Ps(wilts) + Br. Po (wilt:)) ,

teT™ i=1 i=1
In other words, rather than combine models, we combine individual parameter
estimates.

Also, following Kuhn and de Mori’s suggestion once again, instead of having a
single queue in the cache, we set each dynamic tag with a separate queue, whose
size is parameterizable. As a consequence, the amount of local context used by
the dynamic model is not necessarily the same for all tags, and actually changes
dynamically as context (and the POS distributions) evolves. This way, we use the
same amount of data to estimate probabilities for all dynamic tags.

To adjust the relative contribution of each model, instead of just two parameters
(cache size and (), we now have a dozen. Kuhn and De Mori suggest that the
values for these parameters can be determined by deleted interpolation (Jelinek and
Mercer, 1981). In practice, we found that the dynamic model was fairly insensitive
to even large variations in cache-size; overall, the best results were obtained with
all queues limited to 200 words. As for the a/f3 parameters, they appeared to
be quasi-orthogonal, so that each could be optimized separately by hill-climbing.
In general, the optimal contribution of the dynamic model varied between 0.0001
(proper nouns) and 0.4 (past-participles).

Table 10 shows the optimal results on the test corpus. The net effect is an im-
provement over dynamic lexicalization alone, which we believe to be significant.
Overall, the number of accentuation errors passed from 424 to 397, and the average
distance between errors from 193 to 206. As a point of reference, this occurrence
of the word consequence and the previous (both in boldface font) are exactly 206
words apart.

5 Conclusions

We have presented a method for automatically inserting accents into French text,
based on a statistical language model. This method was implemented into a C
library of functions and program called Réacc, which are now commercially available
through Alis Technologies®. We have also shown how this method can be used to
do on-the-fly accent insertions in real-time, within a word-processing environment.

5 Alis Technologies: http://wuw.alis.com
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Table 10. HMM dynamic modeling.

Text Total errors Average distance Improvement

(words) between errors over baseline
(words) (% errors)
Court transcript 76 226.7 24.8%
Hansard 115 254.2 5.0%
Jules Verne 206 136.8 7.2%
total/avg,. 397 205.9 10.6%

A prototype RTAAT system was also implemented and integrated into the Emacs
editor. Finally, we have shown how dynamic language modeling techniques could be
used to exploit user-feedback and further improve the performance of the system.

Text processed with our system contains less than one accent error per 180 words
on average, regardless of whether the system is used on its own or within an RTAAI
environment. On a Sun Sparc Ultra 1 computer, with 256 MB, the system will pro-
cess approximately 50 000 words per minute. Within the Emacs RTAAI prototype,
because AAT is performed asynchronously, the performance of the editor itself is
not affected, and accents are inserted faster than any typist that we know of can
type. With dynamic modeling, the error rate is further reduced, to approximately
200 words between errors.

The program has been made available to students and employees of the Université
de Montréal’s computer science department, and initial feedback has been positive.
We are currently examining the possibility of integrating our RTAATI method to a
“real” word-processor, such as Microsoft Word.
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