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Abstract The vast literature on the wireless sensor research community contains many
valuable proposals for managing energy consumption, the most important factor that deter-
mines sensors lifetime. Interesting researches have been facing this requirement by focusing
on the extension of the entire network lifetime: either by switching between node states
(active, sleep), or by using energy efficient routing. We argue that a better extension of the
network lifetime can be obtained if an efficient combination of management mechanisms
can be performed at the energy of each single sensor and at the load distribution over the
network. Considering these two accuracy levels (i.e., node and network), this paper presents
a new approach that uses cost functions to choose energy efficient routes. In particular, by
making different energy considerations at a node level, our approach distributes routing
load, avoiding thus, energy-compromised hotspots that may cause network disconnections.
The proposed cost functions have completely decentralized and adaptive behavior, and take
into consideration: the end-to-end energy consumption, the remaining energy of nodes, and
the number of transmissions a node can make before its energy depletion. Our simulation
results show that, though slightly increasing path lengths from sensor to sink nodes, some
proposed cost funtions (1) improves significantly the network lifetime for different neigh-
borhood densities degrees, while (2) preserves network connectivity for a longer period of
time.

Keywords Static wireless sensor networks - Load distribution - Energy management

1 Introduction

Context. Self-configuring wireless sensors are revolutionizing the way to integrate comput-
ing in our daily environment. This is mainly due the fact that they make possible to gather
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and to process information in ways not previously possible [7]. Beside this feature, they in-
clude data accuracy, flexibility, cost effectiveness, and ease deployment characteristics. As
a consequence, sensor-based networks play an important role in the design of applications
whose aim is surveillance, data-gathering, or monitoring. It consists in deploying a large
number of sensors to execute a determined task in a specified geographic area. The task
can be the monitoring of specific events or the tracking of targets within the area of inter-
est. Sensor-based networks have thus, attracted the attention of civil, medical, and military
domains, justifying the numerous research in the wireless sensor area.

It is usual to consider application scenarios where sensors are deployed in regions of
difficult access, and/or human intervention is not feasible. In this scenarios, self-organization
is a particularly important attribute for the autonomy dimension of the network. This requires
the network to be able to organize/configure by its own self in order to solve problems such
as routing, load balancing, or energy consumption.

Motivation. Despite the recent advances in electronics, numerous constraints are still im-
posed on sensors devices and especially on their energy. This fact makes the proposal of
energy optimization mechanisms an important requirement. In this context, an important
question raises: how energy consumption can be managed in order to increase network life-
time? This is the topic addressed in the paper.

The vast literature on the wireless sensor research community contains many valuable
proposals for managing energy consumption. Recently, interesting researches have been
facing this requirement by focusing on the extension of the entire network lifetime. In a
global point of view, these researches :

— switch nodes’ energy level between sleep and awake states [2,4,6,14,17,18,21] or
— by keeping nodes in the active state, perform power control [1,3,11] or energy-aware
routing [5,9,13,19,20,22].

Despite having clearly defined outlines and presented good solutions, those works deal
with the network lifetime’s extension problem (/) by reducing the energy consumption at
each single sensor (i.e., at a node accuracy level) or (2) by assuring a homogeneous load
distribution over the network (i.e., at a network accuracy level). Section 5 gives a detailed
review of these works.

Contributions. Instead, our approach takes into account both: the overall energy consump-
tion and the load distribution over the network. By considering those two accuracy levels
(i-e., at the node and at the network scope), this paper discusses different self-configuring
and adaptive approaches that uses cost functions to determine energy efficient routes. By
making different energy considerations at a node level, our approaches distribute routing
load, avoiding thus, energy-compromised hotspots that may cause network disconnections.
In addition, the end-to-end energy consumed when sending a packet is minimized. So, differ-
ent from the previous approaches, cost functions englobe what is needed to increase network
lifetime.
In summary, the contributions of this paper are twofold:

— a set of self-configuring cost functions used to determine energy efficient routes and to
optimize energy consumption;

— a method allowing to distribute routing load over the network and to avoid energy-
compromised hotspots nodes.



The proposed cost functions have completely decentralized and adaptive behaviors and
take into consideration: the end-to-end energy consumption, the remaining energy of nodes,
and/or the number of transmissions a node can make before its energy depletion. We per-
form exhaustive comparison between the proposed cost functions and the Dijkastra shortest
path algorithm. In particular, by using two different scenarios and simulation stop crite-
ria, our simulation results show that, though slightly increasing path lengths from sensor to
sink nodes, some cost functions (1) improves significantly the network lifetime for differ-
ent neighborhood densities degrees, while (2) preserves network connectivity for a longer
period of time.

Outline. The paper is organized as follows. Section 2 introduces our system model. We
present our proposal by introducing the cost functions in Section 3. Performance results
are presented in Section 4. In Section 5, we present a review of the main related works by
providing a general classification of existent approaches. Finally, Section 6 concludes this
paper and discusses future works.

2 System Model

We will target a general application scenario where the n sensor nodes are randomly de-
ployed in a zone of interest of difficult access and/or where human intervention is not feasi-
ble. The considered scenario has then, a finite set of n nodes, each uniquely identified. We
consider that sensors form at the beginning, a connected network.

Nodes are all equal, in the sense that they have the same attributes, i.e. computational,
memory, and communication capabilities. We do not consider Byzantine failures, so nodes
may only go out of the system when their battery goes off. Regarding energy, a node may
only be in the active state. That is all the nodes in the network are active until their depletion
and they all have the same energy when they are deployed.

Each node has the same radio communication range r that allows it to communicate
by broadcasting messages. Thus, a node i is able to directly communicate wirelessly with
a subset of nodes that are located in the transmission range r;, and no obstacles interfere
with the communication — we refer to that subset as the neighbors of the node i. We assume
bidirectional communications: for any nodes i and j, if i can communicate with j, then j
can communicate with i. We consider that sensing and communication ranges are equal. No
synchronization is required.

Table 1 Parameters summary.

Parameter | Description
Erx Energy consumed at a packet’s transmission by source nodes.
Egx Energy consumed at a packet’s reception by 1-hop neighbors.
E; Energy consumed due the interference caused by a 2-hop neighbor
transmission.
E, (i) Remaining energy at the node i.

We consider a simplified MAC layer where neither messages losses, nor collisions, nor
duplications are considered.

Our energy model uses the parameters described at the Table 1. In particular, we consider
a 2-hop interference model. When a node i transmits a packet, it consumes an energy Erx



to code and transmit the packet. All the nodes existing 1-hop away from the emitting node
i, i.e. neighbors;, receive the packet and decode it. The nodes in neighbors; that are not
the destination, receive the packet, consume Egy energy to decode it, and then, discard the
packet. The 2-hop neighbors of the transmitting node receive an non-intelligible signal. This
reception makes these nodes to consumes Ej energy.

3 Our proposal

In sensor network, the nodes use batteries as their source of energy. Batteries, however, con-
stitute a limited source of energy. In large-scale sensor networks, nodes are often deployed in
hostile environment. If nodes batteries deplete, the possibility of their replacement is almost
impossible. Moreover, in case the nodes are accessible, replacing their battery is not always
feasible if large networks are considered. In this case, the optimization of nodes’ energy
consumption is essential to extend network’s lifetime. The switch of node state between ac-
tive and sleep seems an interesting approach but presents a major challenge in decentralized
systems like WSNis:

How to determine the duty cycle of nodes and still guarantee connectivity without requiring
a global knowledge of the network or a centralized management?

Instead, our proposal considers that nodes are always in the active state. In addition, to
optimize the energy consumption in the network, our proposal implements an energy effi-
cient routing that chooses routes based on energy-based weights associated to links. At the
following, we briefly describe this routing mechanism and then provide a detailed descrip-
tion of how links are associated to energy-based weights.

3.1 Energy efficient routing

We propose using a Modified Shortest Path algorithm to determine energy efficient routes
among nodes in the network. Energy efficiency is gotten through energy-based cost func-
tions. In particular, the proposed cost functions assign weights to links between a node and
its 1-hop neighbors. Routing is then performed by selecting links that better optimize the
locally computed link weights. This optimization will depend on the kind of cost function
used. For instance, considering a cost function that only consider the energy consumed by
nodes after a transmission, the routing protocol will select the route that minimize the total
energy consumed by links between a source and a destination.

The next sections introduce the different cost functions to associate weights to links and
detail how energy efficient routing is performed. Each of them considers distinct but de-
pendent nodes’ energy-related parameters. Since the links’ weights are updated each time
a transmission is performed, routing load is adaptively distributed among links that present
better energy levels. In addition, energy-compromised hot spots are detected and conse-
quently avoided, before packet transmissions.

3.2 Energy-based cost functions

This section presents and discusses the proposed cost functions, named:

1- Eg, (i): considers the amount of energy consumed by a emitting node i and its 1- and
2-hop neighbors, when i performs a packet’s transmission.



2- Eg, (i): considers the remaining energy of node i and its 1- and 2-hop neighbors.

3- (i): considers the maximal number of transmissions that node i can perform before
node i, or one of its 1- or 2-hop neighbors dies.

4- Eg,(i): considers the amount of energy consumed due to node i’s transmission, while
taking into account the remaining energy of intermediate nodes forming the route.

For each proposed cost function, we will describe its characteristics by analyzing its
advantages and constraints. It will be easily to observe that, after the description of the 1st
cost function Eg, (i), each new introduced function in fact proposes new improvements to
better distribute routing load. As will be shown in Section 4, the selection of the best cost
function will indeed depend on the considered network lifetime assumptions and application
requirements.

3.2.1 Regarding energy consumption — 1st cost function:

According to the 2-hop interference model described in the Section 2, when a node trans-
mits, all its 1-hop neighbors consume energy to decode the packet. Therefore, energy con-
sumption for a transmission is proportional to the number of neighbors. Having this in mind,
we introduces the cost function Eg,, which prevents nodes with a lot of neighbors to par-
ticipate in the routing procedure. This is due the fact that their energy consumption after
a transmission, may represent a significant amount for the network lifetime. Eg, is thus,
used to assign weights between a node and its 1-hop neighbors: the weight of the link (k, i)
between k and any 1-hop neighbor i is equal to Eg, of node k. Eg, (k,i) is defined as:

Eo (k,i)=Erx+ Y. Exx+ Y Ef ey
njeNy (k) n2€N2(k)

, where

— Ni(k) is the set of 1-hop neighbors of node k;
— N, (k) is the set of 2-hop neighbors of node k;
— and E7x, Erx, and E; are described at the Table 1.

In fact, cost function Eg, calculates the impact a node’s transmission will have on the
energy of the network, i.e., the amount of energy consumed by the emitting node and its 1-
and 2-hop neighbors.

One important point to remark here is that the total energy consumed for routing a
packet p from a source to a final destination is additive, representing the amount of energy
consumed by the network to route the packet p. Thus, since Ep, is the energy consumed for a
packet’s transmission, the whole energy consumed to route the packet to its final destination
is the sum of the link weights (Eg,) forming the route. Therefore, a simple shortest path
algorithm using Ep, as a metric, can easily find an energy efficient route. In particular, the
weight of a route between two nodes exchanging packets is the sum of intermediate links’
weight forming this route. The route having a minimal sum of weights is then, the selected
optimal route given by the modified shortest path algorithm described in Section 5.1.

Moreover, Eg, enables the shortest path algorithm to avoid nodes in the network that,
if used for routing, will waste a lot of energy. Looking at the formula of Eg , it is evident
that Eg, gives a high weight for the nodes with a lot of neighbors, which can be seen in the
following parts of the formula: }.,, cn, (x) Erx and }¥,,,cn, (k) Er- In a dense area, the value of
these two parts will be high, which will contribute to the assignment of a high weight to



the node k. Hence, nodes with high neighborhood densities will have a low probability of
participating to the route determined by the routing protocol.

Despite having the interesting property of minimizing network disconnections, the pre-
sented cost function does not consider the remaining energy of nodes. In particular, Eg,
only considers the energy consumed for transmission E7yx. This means that a node with few
neighbors and a remaining energy that is insufficient for performing one packet’s transmis-
sion can still be selected as next-hop.

3.2.2 Regarding remaining energy — 2nd cost function:

The second cost function Eg, takes into account the remaining energy of a node and of its
1- and 2-hop neighbors. The cost function Ej, is as follows:

E92 (k, i) = min{(E,(k) — ETx),
min,, ey, (k) (Er(m) — Erx) 2
miny, ey, (o) (Er(n2) — Er) }

, where

— E,(k) is the remaining energy of node k;

- E,.(m), Ex(ny) are the remaining energy of the 1-hop and 2-hop neighbors affected by
the transmission of node k, if k is the selected next-hop;

— Erx, Egx, and Ej are the consumed energy as described at the Table 1.

The function Eg, is thus used to calculate links” weights between a node k, which has the
packet to transmit, and its 1-hop neighbors. Thus, for a link (k,7) where i can represent any
1-hop neighbor of k, the weight is equal to Eg, (k,i). By considering the remaining energy
of node k after its transmission, i.e., (E,(k) — Erx), node k avoids selecting a next-hop node
with a minimum remaining energy to participate in the routing of a packet. By consequence,
only links with the highest weights (i.e., nodes with highest level of remaining energy) will
compose the determined route. The others parts of the cost function described in (2) gives
the minimum remaining energy at 1— and 2 — hop neighbors after a transmission, for each
possible next-hop.

In summary, the use of Eg, to assign a weight for a link between two nodes, allows
us to find a route that uses nodes with a high level of remaining energy. This insures an
homogeneous consumption of nodes energy, preventing the case where some nodes deplete
their batteries before others. Nevertheless, Eg, does not consider neither the overall energy
consumption of the route selected by the algorithm nor the number of hops. In this way, it
may result in longer routes, which by consequence, makes more nodes in the network to
consume energy in the routing procedure.

Since the remaining energy is not an additive metric, routes that maximizes the sum of
the weights resulted from E¢g, can not be considered at the energy efficient route’s computa-
tion. Therefore, a shortest-widest routing algorithm (widest in term of remaining energy) is
considered.

The shortest widest algorithm chooses among all the routes between a source and a des-
tination, the one where the minimum remaining energies of intermediate nodes is maximal.
More specifically, the weight of a route is the minimum weight among intermediate links
connecting the source to the destination and the shortest-widest route is the route with the
maximum weight. If multiple routes have the same maximum weight, the shortest-widest
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Fig. 1 Example of the selected shortest widest route, represented by the dashed links.

routing algorithm chooses the one with the minimum number of hops. In this way, the algo-
rithm tries to minimize the number of hops from the source to the destination and still keeps
a maximal gain in remaining energy.

Despite this, the number of hops is not considered at the weight computation of Eg,,
which still results in long routes being determined by the shortest-widest routing algorithm,
even if the nodes’ remaining energy is decreased. As an example, consider the Figure 1. In
this figure, the weight of each link is calculated using Eg,. The dashed links constitute the
route determined by the shortest-widest routing algorithm. In the example, this route has the
maximum minimum weight among the two considered routes between the source and the
destination. In particular, the route represented by weights {2,5,5} in the example, has 2
as minimum weight, and the route represented by weights {3,3,6,4,5} has 3 as minimum
weight, which represents the maximum minimum weight among these routes.

The next section introduces a third cost function that tries to solve the problem of long
routes.

3.2.3 Regarding number of transmissions — 3rd cost function:

Despite to also consider the remaining energy of nodes, the third cost function (i) uses
a strategy different from the previous functions. (i) calculates the weight of a link (i, j)
between node i and any 1-hop neighbor j, as following:

E/(K)
ETXE’ (1)
minn] EN; (k) = RXI (3)

Er(”Z) }

My eNs (k) ~E;

o(k,i) = min{

, where E,(x), Erx, Egx, and EJ represent the energy level as previously explained for the

Equation 2.
Er(k)

o(k,i) uses the ratio to determine the remaining energy level of node k. Thus,

Erx
besides indicating the energy of the node, the ratio %(? also represents the maximal number

of transmissions that the node can perform. For example, a ratio equal to n means that the

node remaining energy is n X Erx and that it can still transmit n packets before having
Er(n1)
Eg

its battery off. In the same way, the ratio

indicates the number of packets a node

can receive before its depletion. And finally, the ratio E%(Ii) determines the number of non-

intelligible packets a node can receive before depleting all its energy.




Combining these three ratios and computing their minimum will result in the w(k,i)
metric. In particular, this metric describes the minimum number of transmissions node k can
execute before it or a node in its 1- or 2-hop neighborhood looses all their energy.

Finally, as described in Section 3.2.2, to find an energy efficient route between a source
and a destination, we use the modified shortest-widest route algorithm with w(k, i) as the
cost function. Thus, the weight of a route between two nodes is the minimum weight among
intermediate nodes forming this route, being the resulted shortest widest route the route with
that maximum weight.

The use of w(k,i) allows an homogeneous load distribution over the network by avoid-
ing nodes with low remaining energy. Nevertheless, like the previous cost function Eg,,
@(k,i) will result in routes with a significant remaining energy without to consider their
consumed energy for routing packets from the source to the destination.

3.2.4 Regarding consumed and residual energy — 4th cost function:

As discussed in Sections 3.2.2 and 3.2.3, the nodes’ energy consumption, as well as their
remaining energy are important parameters to be considered in route selection. This section
introduces thus, the cost function Eg, that considers both of these parameters.

The first cost function Eg, reduces the end-to-end energy when used in packets routing
and thus increases network’s lifetime. But, this method cannot prevent the participation of
nodes with low remaining energy in the routing process. Hence, intermediate nodes with low
remaining energy but that generate less energy consumption can be selected to participate
in the routing procedure.

The source and the destination of a flow are the only nodes that even though they don’t
have high residual energy, must participate in the routing process when searching for an
energy efficient route. So, the method that takes into account the residual energy of nodes in
the routing process must operate on intermediate nodes.

Another intrinsic characteristic of Eg, (k, ) is the assignment of the same weight for links
between a node k and any of its 1-hop neighbors, since the energy consumption model is the
same.

By considering all these factors, the proposed cost function Eg, uses a weighting func-
tion to differentiate between neighbors with low and high residual energies. This weighting
function have the following form:

E,(i)
, where cy is a weighting factor, corresponding here to the total remaining energy of nodes,
and E, (i) is the remaining energy of the k’s 1-hop neighbor i.

This approach permits to distinguish between two nodes with different energy remaining
and the same neighborhood density (same Ep, ): the node with greater energy remaining will
participate in the routing of a packet. In addition, it allows to avoid the nodes with high
neighbors density and low remaining energy. The packet may then be routed through links
that min{Eg, }.

As described in Section 4, simulation results using functions Eg, , Eg,, and @ show the
number of hops is directly related to the energy consumed by routes. Thus, combining Eg,
with a constraint based on the number of hops seems very crucial to further extend network’s
lifetime. In this way, besides of considering the route that minimizes Eg,, we plan to also
reduce the number of hops of the selected route. This condition on the number of hops

E94(k,i) =cf X ,ViENl(k) 4)



allows to reduce the data delivery delay in the case where two interesting routes with the
same weight cost are found. Our problem will then have the following form:

min Eg,

s.t. min (#hop) ©)

Problem : {

It is expected a route selection that minimizes the energy consumption, preserves the

nodes’ residual energy, and still limit the number of hops. By preserving the residual energy

of nodes in routes, that approach also allows to avoid shortest paths in terms of number of
hops, and by consequence, the generation of hot spots.

4 Performance evaluation

The section describes the experiments we have conducted to assess both the performance
and the accuracy of the proposed approaches.

4.1 Experimental design and metrics

We have performed experiments by simulation in order to better evaluate the proposed cost
functions. In our experiments, we used a homemade C++ simulator. Note that, as we are
mostly interested in the energy consumption and connectivity evaluation, our simulator de-
liberately does not model all the details of a realistic MAC protocol. Instead, we considered
a simplified MAC layer where neither messages losses, nor collisions, nor duplications are
considered'.

Nevertheless, as described in Section 2, besides to consider the energy consumed for
message transmission and reception, our simulator also consider the energy consumed by a
node due to interferences, in particular, the energy consumed by the 2-hop neighbors of an
emitting node. For every experiment, the network is composed of 20, 50, 70, 100, 200, 300
and 400 static nodes randomly distributed over a square area of 100 meters on a side. For
each network size and in order to guarantee connectivity, we consider the range r of nodes as
given by Gupta and Kumar in [8]. In particular, for n nodes uniformly placed at random in a
rectangular area [a,b] and 71> > abw, the resulting network graph is asymptotically
connected with probability one, if and only if c(n) — oo as n — oo. We have used c(n) = %
in our simulations.

Our simulator, is a discrete time-based engine in which the network lifetime is consid-
ered as a series of rounds. A round represents the arrival of an event in the network which
is implemented by the routing of the packet generated by a source to a destination. Thus,
the network lifetime is described here by the number of routes determined during the total
simulation time. We consider that at any time, only one event can occur in the network (i.e.,
no parallel transmission is performed).

We consider that all nodes have the same initial remaining energy estimated to 5000
unities (#). The power consumption for each node state is shown in Table 2. The model of
interference is the one described in Section 2. The energy of the nodes in the network is
updated after the routing of each packet.

We believe that, even if these issues may cause longer convergence time, they will not affect the correct
execution of the proposed algorithms. A detailed study of their impact on our approaches constitutes a future
work.
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Table 2 Energy consumption

Node state Energy consumption
Transmission 1.3u
Reception 0.9u
Interference 0.4u

In order to better evaluate the characteristics of each proposed cost function, we have
considered two criteria to compute the network lifetime, and by consequence, two simulation
stop conditions:

— Ist stop condition: when the first node in the network depletes its energy [10] ;
— 2nd stop condition: when the 1-hop neighbors of all the sinks are depleted.

In the 1st condition, two communication scenarios are considered. In the communica-
tion scenario 1, sources and destinations are randomly chosen among sensor nodes in the
network, being no special node selected as sink. In the communication scenario 2, sources
send packets to determined sinks in the network. For this, we consider that the network area
is divided into two zones, where one randomly positioned sink exists per zone. Nodes route
packets to the closet sink, and if no more routes exist to it, the second sink is then consid-
ered as destination. For both communication scenario, the simulation is stopped when the
first node in the network dies. Network lifetime is then determined based on the number of
determined routes (i) for arbitrarily selected pairs of sources and destinations (in scenario
1), and (ii) for arbitrarily selected sources and their corresponding sinks.

Otherwise, in the 2nd simulation stop condition, only the communication scenario where
sources send packets to one of the sinks positioned in the network, is considered (see pre-
vious description of the communication scenario 2). The simulation is stopped when all the
1-hop neighbors of both sinks are depleted.

The results obtained for each one of the simulation stop conditions and the respectively
communication scenarios, are described in the following sections.

4.2 When the 1st node dies
4.2.1 Communication scenario 1

Figure 2 compares the different cost functions with Dijkstra’s algorithm. The figure shows
for different network sizes, the number of rounds a network can support before the depletion
of the first node. At every round, only one event can happen, and parallel transmissions are
not considered. Therefore, the network lifetime can be considered as the number of routes
successfully determined before the depletion of a node in the network. We vary the number
of nodes in the network, which also imposes different nodes densities.

The results show that for all node densities, the shortest path algorithm gives low per-
formance compared to the results obtained with Eg, . This is expected because Eg, finds the
route that consumes the minimum energy in contradiction with Dijkstra. Since Dijkstra’s
algorithm uses the minimal number of hops to attend a destination, it tends to put the major
load on the nodes situated at the center of the network. Consequently, this depletes the en-
ergy of nodes located in dense regions, violating the homogeneous distribution of the energy
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and the 1st simulation stop condition are used.

consumption and increasing the probability of network partitioning. Instead, Eg, increases
the lifetime of the network by:

— avoiding nodes that generate a high energy consumption in the network (nodes with
large number of neighbors);
— minimizing the sum of the energy used to route the packet from source to destination.

For low node density (N = 20,50,70,100,200), it can also be observed that Eg, and
(i) slightly increase the lifetime of the network when compared to Dijkstra. In addition,
for a very low node density (i.e., for N = 20), Eg, and @(i) surpass Eg, .

Since Eg, and w(i) use the remaining energy in the calculation of links’” weights, the
network load is distributed over nodes with high remaining energies. This only increases the
lifetime in low dense networks because the extend in routes length is not significant. For high
node density (i.e., for N = 100,200, 300,400) the route length increases dramatically (as
shown in Figure 4.2.1), which impacts the energy consumption in the network and decreases
the network lifetime.

Figures 4.2.1 and 4 respectively show the average number of hops and the average con-
sumed energy per route for different nodes densities. The figure shows high values for Eg,
and ®(i) when the network size increases. More specifically, in Figure 4.2.1, for N = 400,
the number of hops for Eg, and @(i) is very high compared to Dijkstra. This consequently
explains the high consumed energy showed in Figure 4 and the network lifetime decreasing
showed in Figure 2. It is however, interesting to observe the strong load balancing charac-
teristics of these cost functions. Considering again the 400-node network case, Eg, and o (i)
result in almost the same network lifetime compared to Dijkstra, even using routes with the
double of the Dijkstra size and consuming the double of the Dijkstra consumed energy.

Since Eg, gives the best performance compared to the other cost functions, we only
provide comparison between E¢g, and Eg, .

In Figure 5, we notice that for N =20 and 50, the network lifetime using the first and the
fourth cost function is approximately the same. This result is expected since the number of
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nodes is limited and the routing algorithm do not have many alternative nodes to be use. For
this reason, the average hop by route shown in Figure 6, and the average energy consumed
per route, shown in Figure 7, are also similar. This shows that the two cost functions use
almost the same routes.

Nevertheless, we can clearly see that Eg, outperforms the first cost function for dense

networks, since the weighting part of the function % forces the routing to choose nodes
with higher remaining energies.

In fact, E, uses the same routes as Eg, but avoids the nodes with low remaining energy.
In dense networks, this will slightly increase the average number of hops per route (see Fig-
ure 6) resulting in an increase in the energy consumed by route (see Figure 7). In summary,
with a little increase in energy consumed per route, the fourth cost function dramatically in-
creases the network lifetime. This makes Eg, the best cost function to be implemented when
the 1st simulation stop condition and the communication scenario 1 are considered. We will

see in the following that the same is valid for the 2nd communication scenario too.
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Fig. 8 Network lifetime as a function of the network size, when communication scenario 2 and the Ist
simulation stop condition are used.

4.2.2 Communication scenario 2

We now consider scenario where the network area is divided into two zones, being one sink
randomly positioned in each zone. The simulation is stopped when the first node depletes in
the network.

Figure 8 represents the lifetime of the network using the different cost functions. Since
we consider that route can be determined in parallel, network lifetime can be represented
as the number of routes before the depletion of the first node in the network. We observe
that the fourth cost function outperforms all the other cost functions for all network sizes.
Since Eg, uses the same cost function as Eg,, it reduces the end to end energy consumed
in addition to avoiding the nodes with low residual energy. Again, this is mainly due to the
weighting part of the function %{i), which increases the weight of a given link (i,j) if the
1-hop neighbor j of i is energy limited. As a result, links with high weights will be omitted
from the calculated route.
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Fig. 10 Average consumed energy per route as a function of the network size, when communication scenario
2 and the 1st simulation stop condition are used.

Figure 9 shows the average hop number per route as a function of the network size.
As previously observed in communication scenario 1 (see Figures 6 and 7), E¢, increases
slightly the number of hops compared to Eg,, also resulting in a little increase in the average
energy consumed per route (see Figure 10).

We have, however, verified that contrarily to Dijkstra where the first node to died is in
the center of the network (consequently, in a dense region), for those two cost functions,
the first depleted node is closer to the border or is on the border of the topology. This is an
interesting property to be considered, specially in cases where network lifetime is considered
as the maximum network operational time before the first disconnection with any sink node
happens (as defined for the 2nd simulation stop condition).
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4.3 When the 1-hop neighbors of all the sinks dies

In this section, we consider the second scenario where the network possesses two sinks and
nodes’ collected information is sent to their closest sink. We simulate the case where all
nodes have information to send in a given period: all the nodes send packets in a sequential
way in this period. If there is no route from a node to its closest sink because all the sink’s 1-
hop neighbors are depleted, the sensor routes the packet to the other sink. The simulation is
stopped when the 1-hop neighbors of both sinks are depleted which means that the network
is partitioned.

Figure 11 shows the lifetime of the network using the four cost functions and Dijkstra.
We can notice that Dijkstra algorithm increases network lifetime compared to the fourth cost
function. This result can be explained as follows. It is easy to understand that the neighbors
of the sink are the most used nodes because they always participate in relaying the packets
to the sink. As a result, they are the first nodes to deplete in the network. Since Eg, avoids
nodes with a lot of neighbors and low remaining energies, when the sink’s neighbors begins
to deplete, the length of the routes increases because the routed packets have to bypass the
nodes with limited energy to reach the sink. This depletion can be seen in Figure 12 between
round 11778 (first node dies) and round 13337 (30 nodes are depleted), which generates a
semi-partition of the network. After the corresponding peak between round 11778 and round
13337 in Figure 13, the number of hops becomes stable again, since another partition of the
network close to the sink can still send packets.

If we compare Dijkstra algorithm to Eg,, the first node to die happens earlier as can be
noticed in Figure 12 because Dijkstra do not use any energy metric. But, even if Dijkstra
algorithm uses the shortest path, when the major number of sink neighbors are depleted (as
seen in Figure 12, between round 12000 and 15000), this immediately increases the number
of hops per route (as observed in Figure 13), resulting in more energy consumption.

To continue the analysis of the Figure 11, we can conclude from Figure 12 that the
first cost function distribute the charge better that the three others, since the curve is on
the convex hull of the others. Moreover, Figure 13 shows that this cost function do not
increase the average number of hops per route. Since Eg, only considers the end-to-end
energy consumed, it will avoid the nodes with a lot of neighbors without increasing the
length of the routes when the neighbors of the sink begins to deplete as the fourth cost
function does.

5 Related Work

This section discusses the works in the literature related to the energy management in wire-
less sensor networks. Moreover, at the following sub-sections, we provide a general clas-
sification of these works into three different categories. These categories are the follow-
ing: energy efficient routing, power control, and the management of nodes activity by state
switching.

5.1 Energy efficient routing
We discuss here the works that, in order to increase the network lifetime, proposes to perform

routing by considering the energy consumed by nodes in the network. In particular, they
intend to determine paths that optimize that energy.
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In [13], Kwon et al. propose a routing protocol to find a route that minimizes the energy
consumption of a flow. They thus, calculate for each link in the network, the increment AE
in energy dissipation resulting from the routing of a flow. A route between two nodes is
calculated using a shortest path algorithm with the increment AE as the weight of the links.
This proposal, however, does not guarantee an end-to-end energy optimization, as one of our
cost functions do (presented in Section 3.2.1), and does not take into account the remaining
energy of nodes (described in Section 3.2.2).

Authors in [19,5], propose a reactive and multi-routing protocol that uses the remaining
energy in the node to improve network lifetime. In [19], routes are selected using a cost that
depends on the remaining energy of intermediate nodes. The probability of using a route
for a flow is inversely proportional to its cost. Thus, contrarily to our approach, authors do
not take into account the energy dissipated by interferences, which makes it not realistic.
In [5], each node constructs a vector containing the remaining energy of every intermediate
node. A route is then considered shorter than another if it contains a node with minimal
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Fig. 13 Number of hops per route as a function of the simulation time.

remaining energy. An energy efficient route is the longest route that avoids using nodes
with low energy. This method requires, however, a centralized management in order to be
properly implemented, which is not always feasible in wireless sensor networks.

In [22], authors introduce a query-based protocol that searches for the route with nodes
having maximal remaining energy. Therefore, a source node sends a route request with an
energy threshold, all intermediate nodes with higher energy reply then, to this request. If no
route is found, the threshold is decreased and the same procedure is repeated until a route is
found. This protocol presents a problem when the threshold is not properly chosen, which
consequently generates multiple flooding.

5.2 Power control

Some approaches deal with the problem of increasing the network lifetime by changing each
node transmission power. They then, look for the decrease of the consumed energy in data
transmission, while assuring network connectivity.

In [11], authors show that reducing the transmission power of nodes will not necessarily
minimize the energy consumption, since it will increase the number of hops. They proved
that at a certain radius range, the energy consumed for communication is minimal. Never-
theless, the optimal radius for global diffusion differs from the optimal radius for point to
point communications. Changing the radius for each communication type makes this solu-
tion difficult to implement.

In [3] the paper presents an algorithm to obtain a strongly connected topology by ad-
justing the transmission power of every node in the network. Being this solution NP-hard,
authors have proposed a distributed solution that used the Hitch-Hiking mechanism. This
approach enables every node to locally choose its transmission power by using the available
information about its 1- and 2-hop neighbors.

In [1] the authors use a closed loop for power control. For this, the destination node
embeds in each answer (CTS for RTS or Acks for DATA) the reception power and the
minimal threshold required for a good reception. The source receiving the response can then
adjust its transmission power. This approach presents a problem when the MAC layer does
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not receive a response for a CTS or Ack due to an interference: the transmission power of
the source will be incremented without any real need.

5.3 Management of nodes activity by state switching

The approaches in this category propose to alternate the activity level of nodes into sleep or
awake modes.

In [2], the approach divides the network into disjoint set of sensors such that every
set covers all the monitored targets. These sets are activated successively such that at any
instant, only one set is active and all sensors of the others sets are in the sleep mode. The
network lifetime is then proportional to the number of disjoint sets. In this way, the goal is
to maximize this number of sets, which constitutes a NP-hard problem. A heuristic was then
proposed as a solution. Nevertheless, although to significantly improve network’s lifetime,
it requires a centralized management.

In [4] the authors use a localized method to switch the nodes state between active and
sleep. For this, the proposed method chooses a dominant set of nodes that are not energy
constrained to stay active and all the other nodes are in the sleep state. This set must keep
the network connected and the surveillance zone covered. The periodic execution of the
algorithm makes the dominant set dynamic and avoids that certain nodes loose their energy
early. This methods requires however, a good knowledge of the overall network. In a similar
way, authors in [14] propose to switch nodes energy state into sleep, forwarding, or sensing-
only. The proposed method relies on a distributed probing approach and on the redundancy
resolution of sensors for getting energy optimizations. Contrarily to [4], this method does not
require any global network knowledge, but, for some particular cases, it fails to guarantee
network connectivity.

In [15] every node detecting that two of its neighbors cannot communicate using an
active node, becomes active. The duration of the active state is subject to the remaining
energy of the node and the number of nodes it can connect together. This rule permits the
node to switch between the active and the sleep state and optimizes the energy consumption.
This method requires nodes to change their neighborhood lists in order to correctly activate
nodes. Decisions are then based on 2-hop neighborhood knowledge.

In [21] the network is divided into virtual grids using node positions given by a GPS.
All nodes in a grid are equivalent in terms of routing and packet forwarding. A node in the
active or discovery state becomes inactive when it determines that another node in the same
grid can do the routing. The lifetime of the network is optimized by activating one node in
each grid. The choice of this node is based on its remaining energy. This method requires a
GPS imbedded in every node which is unfeasible in large scale networks.

In [17,18], authors presents the TITAN management technique. TITAN provides a on-
demand topology management for determining nodes that will participate of a forwarding
backbone composed of active nodes. Nodes that are not required for forwarding are then al-
lowed to stay in power-saved mode. TITAN, however, is designed to work with on-demand
routing protocols, like DSR [12] or AODV [16]. Nodes in the power-save mode receive
Route Requests messages (RREQs) but defer their forwarding. Although to avoid any ex-
plicit forwarding backbone maintenance, TITAN has no load balancing, being routing load
not distributed among nodes.
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6 Conclusion and future work

This paper presented an approach to distribute routing load in the network, avoiding thus,
the use of energy-compromised hotspots that may cause network disconnections. A modified
shortest path algorithm is proposed, where energy efficiency is gotten through energy-based
cost functions that assigns energy-related weights to links in the network.

Four cost functions were presented and evaluated by simulations. Simulation analysis
lead us to the following conclusion: Eg, gives good results for any communication scenario
or simulation stop condition, but does not explicitly take into account the remaining energy
of nodes. Adding the remaining energy of the node in the cost function avoids nodes de-
pletion. This was considered in the definition of cost functions Eg, and @(i). These cost
functions have strongly load balancing properties, but result in long routes that dramatically
increase the energy consumption. In particular, in order to choose the route with the maxi-
mum of the minimum Ejg, (or ®(i)) among all routes, this algorithm tends to choose longer
routes consuming more energy.

By benefiting from results obtained from the analysis of Eg, , Eg,, and (i), we could
verify that insuring a minimal of hops per route is crucial for extending the lifetime of the
network. The cost function Eg, was then proposed to optimize both energy consumption
and number of hops. The results given by this cost function in Section 4.2, show that despite
lightly increasing the number of hops and the consumed energy per route, the network life-
time is highly extended compared to E¢, . In the 2nd simulation stop condition, Eg, generates
good network lifetime results when all nodes are still alive. In addition, the 1st node to be
depleted with E¢, arrives after the one with Eg,, which clearly shows the E¢, lifetime exten-
sion capability. Longer routes are however, generated by Eg, after the 1st node depletion,
which impacts the network lifetime and the consumed energy per route.

Future work includes considering more realistic MAC layer models and explores the
proposed cost function in well known wireless network routing protocols.
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