
A Colored Petri Nets Model for Diagnosing
Semantic Faults of BPEL Services ?

Yingmin LI, ∗ Tarek MELLITI ∗∗ Philippe DAGUE ∗

∗ LRI, Univ. Paris-Sud, CNRS, and INRIA Saclay-Île de France
F-91893, France (Tel: 33 1 69 72 92 59 93; e-mail:

firstname.lastname@lri.fr).
∗∗ IBISC, Univ. d’Evry Val d’Essonne, CNRS, F-91025, France

(e-mail: Tarek.Melliti@ibisc.fr)

Abstract: The paper contributes to modeling an orchestrated complex Web Service (BPEL)
with Colored Petri Nets (CPNs) for diagnosis. In the CPNs model, colored tokens are used to
represent the faults in a BPEL process. A uniform fault model is introduced to represent both the
faulty input data and external faulty Web services called by the BPEL activities. We use three
I/O data dependency relations for each BPEL activity. To represent the fault propagation in
colored Petri nets, we define the color propagation functions for each data dependency relation.
We give a concrete translation from a BPEL service to a CPNs model. Model-based diagnosis
framework is then used. Based on the evolution equation in Petri nets theory, we construct an
inequations system as a diagnosis problem and solve it with an algebra algorithm.

Keywords: Model-based diagnosis, BPEL, Web service, Colored Petri Nets

1. INTRODUCTION

Self-healing software is one of the important challenges for
Information Society Technologies research. Our paper pro-
poses a centralized diagnosis approach for BPEL (OASIS
[2006]) services, whose goal is to design a framework for
self-healing Web services by adopting artificial intelligence
methodologies to solve the diagnosis problem by support-
ing online detection and identification of faults.

A Web service (WS) is a set of distributed message ori-
ented interacting components. We can construct complex
WS systems by composing basic WSs in two ways: orches-
tration and choreography (P2P). An orchestrated BPEL
service is a central process to organize (basic or complex)
WSs to finish complex tasks. A choreographed WS has not
a central process while all the involved WSs are aware of
their partners but none has the global view of the whole
WS application. Distributed WS applications make B2B
engineering more convenient but raise more challenges for
handling dysfunctions. For example, how to locate the
source and reason of faults when they occur somewhere
in a distributed WS application? As orchestration is the
basic of the WS composition, we focus on single BPEL
service diagnosis based on CPN (Diaz [2001]) model which
can be easily extended to a distributed environment.

During the interaction of distributed WS components,
subtle faults can come from corrupted data or some
functional errors. Due to the message oriented nature of
WS applications, faulty data is propagated through the
execution trace and is used to elaborate other faulty data
? This research is supported by EU through the FP6 IST project
516933, WS-DIAMOND (Web Services DIAgnosability, MONitoring
and Diagnosis) and national ANR project WEBMOV (Web services
Modeling and Verification).

and control decisions. In this way the subtle faults become
large ones. A typical example is a misunderstanding of
date format in different languages. 06/03/2009, in English,
is June 3, 2009; but in French, is March 6, 2009. If a
travel agency WS misinterprets the date format, all the
date related reservations will be faulty. Another example
is the inconsistent data in data base because of the delay
of the WS invocation. Those faults are named as semantic
faults.

In this paper, we address the semantic fault by using the
model based diagnosis approach, and more specially, the
discrete event model based approach (Benveniste et al.
[2003], Ardissono et al. [2005], Yan and Dague [2007], Ye
and Dague [2008], Li et al. [2007], Chatain and Jard [2005],
Zhang et al. [2008], Boukadi et al. [2006]). Among the
usual discrete event model, we use colored Petri nets to
define the diagnoser. Many works use the Petri nets to do
diagnosis (Benveniste et al. [2003], S.Genc and S.Lafortune
[2005],Yan and Dague [2007], Ye and Dague [2008], Li et al.
[2007]), some of them use high level Petri nets (Chatain
and Jard [2005]).

The main originality of this work is a natural use of the
colored Petri nets; the color domain is used to model data
(states) status and transitions are used to define transition
status. The model presented here can be generalized to a
very large software domain besides Web services. Another
originality is the diagnosis methods: unlike most of other
works based on Petri nets, we don’t use an unfolding
approach (Benveniste et al. [2003], Yan and Dague [2007],
Ye and Dague [2008], S.Genc and S.Lafortune [2005]), we
use the incidence matrix and the characteristic vector of
the observed trace in order to transform the diagnosis
problem to an inequations system, and then we propose an

algorithm to solve an inequation and then the inequations
system.

The paper is organized as follows: in section 2, we in-
troduce CPN model for the BPEL services and define
their firing rules. We define CPN model for typical basic
activities and structural operators of BPEL in section 3; in
section 4, we define the diagnosis problem and its solution
and illustrate it with a concrete example; in section 5,
we introduce some related work, compare the different
methods, and give some directions for future research.

1.1 Example: flight agent

Before the theoretical part, we describe an orchestrated
BPEL example which will be used as an illustration
example along this paper.

A BPEL service flightAgent calculates a series of business
flight costs. The flightAgent starts with a receive activity
C to receive a request string of the series of departure
cities and dates, for example, from Paris to London on
01/03/2008, and from London to Madrid on 03/03/2008,
from Madrid to Rome on 05/03/2008, and from Rome
to Paris on 09/03/2008, all the dates are in French for-
mat. FlightAgent iteratively (by using While activity W)
invokes an invoke activity S to split the request string
to get the information for one flight: the departure city,
a departure date, and an arriving city (which is also
the departure city of next flight). Whereafter an invoke
activity O reserves the flight tickets and cumulatively
calculates the flight fees. As to different date formats in
English and French, 01/03/2008, 03/03/2008, 05/03/2008,
and 09/03/2008 are misinterpreted as January 03, 2008,
March 03, 2008, May 03, 2008, and September 03, 2008.
In the next, reply activity P returns the total ticket price
of the whole trip (in figure 3a). If the client (or other Web
service which invokes flightAgent) finds the dates on the
flight tickets are not correct, or the travel fees are too huge,
an exception occurs due to a semantic fault.

2. COLORED PETRI NET

A Petri net is a Colored Petri Net if its tokens can be
distinguished by colors. Here we restrict the definition of
Colored Petri Net that we use in this paper.

Let E be a set, a multiset on E is an application m from
E to Z (a multiset is denoted as m = q0e0 + + qnen

where qi = m(ei)). We use M(E) to define the set of finite
multisets from E to Z, and M+(E) if we restrict it to
N. Sum and subtract operators between two multisets are
defined as in Jensen [1997]. For two given value domains
D, D′, we denote by [D → D′] the set of possible functions
from D to D′.
Definition 1. A Colored Petri Net graph (CPN graph) is
a tuple N=〈Σ,X ,F ,P ,T ,cd,Pre,Post〉, where: Σ is a set of
colors (see Jensen [1997]). X is set of variables that range
over Σ. F is a set of color functions, F ⊆ ⋃

n
[Σn → Σ].

P is a set of labeled places, and there are two types of
places exists: AP , the activation places which contains
the CPN execution control, DP , which contains the data
used during the execution of CPN, especially, we denote
the constant data places set as CP ; Formally, this is

represented as follows: P : AP ∪ DP and CP ⊆ DP ,
AP ∩DP = ∅. T is a set of labeled transitions, we denote
Type : T ′ → T ′′ with T ′, T ′′ ⊂ T and T ′ ∩ T ′′=∅ is a type
function of T . Cd : P → 2Σ, is a function that associates to
each place a color domain 1 . Pre, Post : are forward and
backward matrices such that Pre : P × T →M+(Σ∪X),
are input arc expressions. And Post : P × T → M+(E),
are output arc expressions.

E represents a color expression which can be a color
constant, a variable, or a color function of F (completely
or partially instantiated). Given an expression e ∈ E , we
use V ar(e) to denote the set of variables which appear in
e, and Eval(e), the evaluation of e in Σ.

We denote •t and t• as the input and output places set of
transition t, •p and p• as the input and output transitions
set of place p.
Definition 2. A CPN graph N = 〈Σ,X ,F ,P ,T ,cd,Pre,
Post〉 is well formed iff: ∀t ∈ T, ∀p ∈ t•, we have
V ar(Post(p, t)) ⊆ V ar(Pre(., t)) with V ar(Pre(., t)) =⋃
p′∈•t

var(Pre(p′, t)).

In a well formed CPN graph, we restrict that for each
transition, the output arc expressions must be composed
by the variables which are in the input arcs expressions.

To each CPN graph, we associate its terms incidence
Matrix C (P × T →M(E)) with C = Post− Pre.

In the following, we define the behaviors (the dynamics)
of a CPN System.
Definition 3. A marking M of a CPN graph is a multiset
vector indexed by P , where ∀p ∈ P,M(p) ∈M+(cd(p)).

Operators + and − on multisets are extended to markings
in an obvious way.
Definition 4. A Colored Petri Net system (CPN system)
is a pair S=〈N,M0〉 where N is a CPN graph and M0 is
an initial marking.
Definition 5. A transition t is enabled in a CPN system
S with present marking M , iff ∃u, with M ≥ Pre(., t)u,
V ar(Pre(., t)) → Σ, which is a binding of the input arcs
variables. 2

We use M [t〉u to denote that t is enabled in M by the
use of u, and we use the classic notation M [t〉 if u is not
important (e.g. when u is unique).
Definition 6. Let M be a marking and t a transition, with
M [t〉u for some u. The firing of the transition t changes
the marking of CPN from M to M ′ = M + C(., t)u. We
note the firing as M [t〉uM ′.
Definition 7. We extend the definition 6 to a sequence of
transitions δ ∈ T ∗ as: M [δ〉M if δ is the empty sequence;
M [ωt〉M ′ iff ∃M ′′ such that M [ω〉M ′′ and M ′′[t〉uM ′.

3. FROM BPEL TO CPN MODEL

There exist already many works dedicate to translate
BPEL services into CPN model for verifying (Tan et al.
1 In this definition, a transition has no color domain. This restriction
will be explained in section 3.2.
2 u must respect the color domain of the places, i.e., ∀p ∈• t,
x ∈ var(Pre(p, t)), we have u(x) ∈ cd(p).

[2009],Boukadi et al. [2006]), composing (Zhang et al.
[2008]), supervising (Chatain and Jard [2005]), etc.. In this
section, we construct our own CPN model by introducing
the faulty behaviors into Petri nets model which is suit-
able not only for diagnosing BPEL services, but also for
diagnosing other large software systems.

A BPEL process consists of basic activities and structured
operators. The idea of modeling BPEL to CPN is: to map
each primitive data to a place, each basic activity to a
transition. To each basic activity, input and output activa-
tion places ain ∈ P and aout ∈ P are associated to identify
the execution order. To include the fault model, additional
transitions are added to represent the unobservable faulty
activities either in basic WSs or in BPEL services. The
structured operators are modeled as CPNs which sew
the structured sub-processes by combining, disjointing, or
generating the local activation places. Once a red token
is generated by a faulty transition in a basic activity,
the fault is passed along the execution trace through the
arc expressions which are represented in Pre and Post
matrices. In the following, we define how to translate the
static and dynamic features into CPN models.

3.1 BPEL data Variables and constants

BPEL data variables and constants
To catch maximally the dependency between data (vari-
ables, constants, etc.), we decompose the structured data
types into their elementary parts, denoted by the leaves
of their XML tree structure. For a variable X of type m
(resp. an Xpath expression), we use xi to range over the
Leaves(m) (resp. Leaves(X)) and denote the xi part of
X by a couple (X,xi). In our mapping, each data variable
and constant is represented by a unique place in CPNs.

Color Domain
In our CPN model, three colors are used: red (r) marks
a place with faulty data value; black (b), not faulty data
value; and unknown color (∗), unknown correctness of data
value.

Data dependency within BPEL v.s. color functions
To specify the effect of each activity on data, we give
each activity a data dependency signature in term of three
dependency relations (Ardissono et al. [2005]): forward
(FW), if the activity just copies the value from the
input to the output; source (SRC), if the output data is
generated by the activity; and elaboration (EL), if the
output data is elaborated from the set of input data.
To each of this dependency relation, we associate a color
propagation function to represent the data status (faulty,
correct, or unknown status) production.
Definition 8. Given the data relations set D = {FW ,
SRC, EL}, ∀d ∈ D, the associated color propagation
function dc is defined as: ∀c,c′∈Σ,∀C⊆Σ,

FW c ∈ [Σ → Σ], FW c(c)=c
SRCc ∈ [∅ → Σ], SRCc=∗
ELc ∈ [2Σ → Σ], ELc(C)=c′, with c′={

b, iff ∀c ∈ C, c=b
r, iff ∃c ∈ C, c=r
∗, iff ∃c ∈ C, c=∗ ∧ @c′′ ∈ C, c′′=r

In the following sections, we model dynamic features,
the basic BPEL activities and structured operators with
CPNs.

3.2 Translate basic BPEL activities into CPNs

BPEL service is composed with a series of basic activities.
We map each basic activity to its CPN model. Due to
space limitation, we restrict our definitions to four main
basic activities (Receive,Assign,Invoke, and Reply) while
the other similar activities can be easily translated in the
same way.

The main idea in mapping BPEL basic activities to CPNs
is: each primitive data is mapped to a place, each basic
activity is mapped to a transition, and Pre and Post
matrices are defined based on semantical data dependency.
In order to distinguish the activities execution order and
the traces among different branches, to each basic activity,
we associate an input activation place ain and an output
activation place aout.

As we focus on the semantic fault diagnosis of one BPEL
service, the BPEL service code is assumed to be correct.
Possible faults can be faulty data received by Receive
activities, or faulty activities which come from other WS
called by Invoke activities. So we must introduce fault
models for Receive and Invoke activities to localize the
faulty data or external WS. Our approach is to introduce
additional transitions to represent the unobservable faulty
activities and to define the color functions in Pre and Post
matrices which represent the propagation of faults.

r r

r

(C
XF = E L

c), C
i 1 X i 2

c

F
C

T y p e () =t
f i

t
i n vType () =Type () =tf 0 t

r e ct
f i

m i

X i

C
ix

F W (Cc)
i na

F W (Cc)
im

C i na C im

C i na ai n C im

tr e c

ao u t ao u t

ai n x
i 2x

i 1

C i na

C i na

t i n v

y i

F W (Cc)
i na

C
X i 2

C
X i 1

Cy i
Cy i

Cao u t

t
f 0

t
f i

t
f i

Fig. 1. receive and invoke CPN

Receive(m,X): an activity simply copies the values from
a message m to a local variable X. In order to model the
receiving of a set of faulty parts from a message value,
we add for each part of the message an internal transition
(fault) before the firing of the receive transition in figure 1
(left). Note that data places (m,mi), (x, xi) are simplified
as mi, xi.

The CPN model of Receive contains two kinds of fault
transitions: the activation fault transition tf0 , and the
data fault transitions tfi , we define their types as:
Type(tf0)=Type(tfi)=trec. The execution of tfi is trig-
gered by the consummation of the token in the input
activation place. Once tf0 (or tfi) is executed, we can
deduce that there is a faulty control (or data) input. The
transmission of the fault (red token) is illustrated on the
arc expressions. Each arc expression represents the colored
token consumed (on an arc (p, t)) or produced (on an arc
(t, p)). To keep the liveness of the CPNs, we add an arc
from the output place xi to the receive transition trec and

its associated color function Cxi is the color of the output
data place xi.

Reply(Y,m): an activity that copies values from a vari-
able Y to a message m for returning the response of the
BPEL service to its invoker. So Reply can be the ending
of BPEL and simply forwards (FW) values. There is no
fault model in its CPN and we simply fill Post with FW
functions.

Assign(X,Y): an activity that reorganizes local variable
parts inside a BPEL process without changing the values.
So its model is similar to Reply activity. Similar operators:
Throw and Rethrow. The Wait, Empty, and Exit activ-
ities do not have relation with the variables, so their CPN
model only have the input and output activation places.

Invoke(X,Y): an activity that calls another basic or
composite Web service. It takes the value of the variable
X as input and stores the output in the variable Y . The
data dependency can be FW , EL, and/or SRC. As Y can
be infected by external faulty WS which is unobservable,
we introduce a series of unobservable faulty transitions
after the invoke transition to model the faults caused by
external WS as is illustrated in figure 1 (right).

The CPN model of Invoke only contains the data fault
transitions tfi , which are triggered by the consummation
of the token in the output activation place. Once tfi is
executed, there should be a fault in its output data place
and it can be passed to the other activities along the BPEL
process execution trace. Again, we define Type(tfi) = tinv.

3.3 Translate structured BPEL activities into CPNs

In this section, we show how to obtain BPEL process CPN
by a modular combination of a set of CPNs. We formally
define four main structural operators (Sequence, Switch,
While, and Flow) while the other similar operators can
be easily translated in the same way.

Sequence operator sequence(S1, S2)
Sequence connects different activities, and the execution
order of these activities is the same as their appearance
order in the constructor. So we can generate the resulting
sequence CPN by simply merging the local intermediate
output and input activation places of contractive CPNs
(in figure 2(a)).

Conditional operator Switch({(coni(Xi, Vi),Si)}i∈I)
Switch represents an alternative execution of the activities
Si under the conditions coni(Xi, Vi). Xi and Vi are respec-
tively the variables and constants. For each subprocess
Si, we add a transition coni to generate its activation
place. Each coni takes the common activation input place
of Switch, Xi, and Vi as inputs to elaborate an input
activation place ain

i for subprocess Si. A new aout is added
to replace all the aouti of subprocess Si (in figure 2(c)).
Similar operators: Scope together with the compensation
handlers, event handlers, and fault handlers, Pick together
with OnMessage, IF , Link.

Iterative operator while(con(X, V), S1)
While iterates the activity S1 execution until the breaking
off of the conditions con(X). The CPN graph of While is
similar to Switch in which the activation input place of the
subprocess S1 is elaborated by the activation input place

of While, X, and V . But in While, the aout of iterative
subprocess is also ain of tcon. Note that tcon represents the
transition if condition con is true and tcon represents the
transition if condition con is false (in figure 2(b)). Similar
operators: RepeatUntil, ForEach.

Parallel operator flow({Si}i∈I)
Flow executes the activities Si in parallel. It terminates
when all the activities are finished (fork-join). So we
add ain, aout, tin, and tout to compose the subprocesses
together in parallel (in figure 2(d)).

a

a : S e q u e n c e (S 1 , S 2)

aC

a i n
1 a i n

2

i naC
1

ao u t
1

ao u t
2

C o n

i naC
i

CX

C
iV

a i n X i V i

a i n
1

ao u t
1

C o n
_ _ _ _

j
E L i na

c(C , CX , C
iV)

j
E L i na

c(C , CX , C
iV)

i naC
i

CX

C
iV

a i n
iX V i

C o n n

a i n
1

a i n
n

ao u t
1

ao u t
n

i naC
1

i naC
n

C o n 1

o u ta

j
E L i na

c(C , CX , C
iV) a i n

1
a i n

n
i naC
1

i naC
n

ao u t
n

ao u t
1

F W i na
c(C)

o u ta

i naC

ai n

E L o u ta
c
(C , C)o u ta

1 n

F W i na
c(C)

 b : W h i l e (c o n (X , V) , S)
1

 c : S w i t c h ({ (c o n (X , V) , S) } , i i i i i I) d :F low ({S i } , i I)

Fig. 2. CPN models of the structural operators

3.4 Some remarks on the BPEL model

Observable vs unobservable transitions
To distinguish the BPEL activities transitions which are
observable and the fault transitions which are not, we
divide T into observable transitions Tobs and fault transi-
tions TF (T=Tobs∪TF and Tobs∩TF =∅). Remember a type
function over faults has been defined, that associates to a
fault its observable transition Type: TF→Tobs.

Initial and symptom markings of BPEL model net
The initial marking is obtained by marking P . CP are
marked as unknown as they cannot be changed by any
transition; DP are marked as black; a ap ∈ AP which
activate the first execution of CPN is marked as black
and the other AP are marked as 0. The final marking is
retrieved from the thrown exception. When fault(s) occurs,
an exception will be thrown to specify on which activity,
there is a faulty part(s), which corresponds to the places in
DP . Specially, un matched or uninitiated data (variable)
refers the BPEL process may chose fault execution branch.
In this case, the input activation place of the activity
will be marked as r. All the other places are marked as
unknown because there is no information of their marking.

One-boundness of the BPEL model nets
The resulted CPNs are one-bounded (or safe, means one

place can at most contain one token, proof is omitted
because of space limitation), in which places represent
either data or activation variables.

3.5 Example (cont’d):

Now we can construct the CPN of the BPEL service
flightAgent as in figure 3. Note that place d0 represents
the request string, d1 is a null flight schedule variable,
and invoke activity to will fill it with data during the
execution of process flightAgent. Place d5 is the output
flight schedule list variable. To keep the visibility of the
graph, the color functions which do not concern the data
dependency are omitted, for example, color function Cain

on the arc (ain, tc) is omitted.

F l i g h t A g e n t (a)

: R e c e i v e

: I n v o k e

: I n v o k eot

: R e p l ypt

r

r

r

r

a i n

t f 0 f 1t

t c

F W
C()a i nC

()F W
C Cd1

E LC ()Cd2

F W
C()aC

4

r

f
3

t

t p

t o

t s

d0

t f a

d1

a o u t

d4

d5

E LC ()Cd3

E LC ()dC
4

()F W
C Cd0

d3

F W
C(a)

5

a5

W
t

d2a2

Wt

f 2
t

F W
C()aC

3
a3

a4

E L
C(,)Cd 2

Ca 2
E L

C(,)Cd 2
Ca 2

Type() = t f3 t s

Type() = t f2 t o

Type() = Type() t fa t f0

= Type() = t f1 t c

: W h i l e

ct

wt

st

Fig. 3. BPEL (a) and CPN model of flightAgent

4. DIAGNOSIS OF BPEL SERVICE USING CPN

4.1 Diagnosis problem

During the execution of a BPEL service instance, we
can record the sequence of activities executed within this
instance, that we call the trace. This trace belongs to
(Tobs)∗. When a fault occurs at some moment of the
instance execution, an exception is thrown, what we call
in diagnosis literature, a symptom. Exceptions are thrown
due to some inconsistency of a part of the services state.
The inconsistency can concern either data variables values
or activation data (e.g receiving a bad message, or not
receiving an expected message). In both cases, a thrown
exception can be represented as a marking where the faulty
data (or activation) places are marked with a red token and
the others can be marked either as black or unknown.
Definition 9. Let M be a marking, M is a symptom
(exception) marking iff ∃p, M(p)(r)6=0. We denote the
symptom markings by M̂ .

We can now give the definition of a diagnosis problem as
follows:

Definition 10. A diagnosis problem is a tuple D=<
N, δo, M̂ >:

• N is a CPN system that represents the model of a BPEL
service;

• δo is an observable trace δo ∈ (Tobs)
∗;

• M̂ is a symptom marking.

Before giving a definition of a solution to a diagnosis
problem, we introduce a covering relation as follows:
Definition 11. A covering relation ¹ between colors of
Σ={r, b, ∗} is a partial ordered relation where any color
covers itself and the ∗ color covers all colors (i.e ¹={(r, r),
(b, b),(∗, ∗),(r, ∗),(b, ∗)}). We extend the color covering
relation to multisets and markings as follows:

• let m, m′ ∈M+(Σ), we have m ¹ m′ iff
∑
c∈Σ

m(c)=
∑
c∈Σ

m′(c)∧

∀c 6= ∗, m′(c) > 0 ⇒ m(c) ≥ m′(c)
• let M, M ′ be two markings, we have M ¹ M ′ iff ∀p ∈ P ,

M(p) ¹ M ′(p)

We give now a definition of a diagnosis:

Definition 12. Let D=〈N ,δo,M̂〉 be a diagnosis problem,
a diagnosis Sol⊆TF and Sol 6=∅ such that: M0+C×−⇀δ ¹M̂

with
−⇀
δ is a characteristic vector defined as follows:

• ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t), where

−⇀
δo(t) is the occurrence number

of t in δo;

• ∀tf ∈ Sol,
−⇀
δ (tf)=1;

• ∀tf ∈ (TF \ Sol),
−⇀
δ (tf)=0.

Note that we restrict the value of a fault transition to 1.
This is due to the fact that a fault transition only changes
the color of token to red and has no effect on the activation
places marking. Even if a fault happens more than once
we consider only the occurrence of the fault transition that
can explain the symptom (the red token). Thus we restrict
the value of the characteristic vector of a fault transition
to one or zero (happened and explains the symptom or did
not happen).

Definition 13. Let D=〈N ,δo,M̂〉 be a diagnosis problem
and Sol be a diagnosis, Sol is minimal iff ∀Sol′ ⊂ Sol,
Sol′ is not a diagnosis.

Definition 14. Let D=〈N ,δo,M̂〉 be a diagnosis problem,
the diagnosis solution DS ⊆ 2F is the set of all possible
minimal diagnoses.

4.2 Diagnosis of CPN by inequations system solving

Let D=〈N ,δo,M̂〉 be a diagnosis problem and let ni be
variables ranging over {0, 1}, we construct the character-
istic vector δ as follows:

• ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t);

• ∀tfi
∈ TF ∧ −⇀δo(Type(tfi

)) 6= 0,
−⇀
δ (tfi

)=ni;

• ∀tf ∈ TF ∧ −⇀δo(Type(tf))=0,
−⇀
δ (tf)=0;

We can then construct an inequations system (one inequa-
tion for each place) for the diagnosis problem as follows:

QM̂=

Eqp1 : M̂(p1) º M0(p1) + C(p1, .)
−⇀
δ

· · ·
Eqpi : M̂(pi) º M0(pi) + C(pi, .)

−⇀
δ

· · ·

To each place p, we associate an inequation Eqp where
the left part is l(Eqp)=M̂(p) and the right part is
r(Eqp)=M0(p)+C(p, .)

−⇀
δ . We divide the set of inequations

QM̂ into three subsets:

• Qr
M̂

={Eqp|l(Eqp)=r}
• Qb

M̂
={Eqp|l(Eqp)=b}

• Q∗
M̂

={Eqp|l(Eqp)=∗ ∨ l(Eqp)=0}

The diagnosis algorithm executes backward reasoning re-
cursively (algorithm 2) for each inequation Eqp ∈ Qr

M̂
within QM̂ and then combines all the diagnosis results
(algorithm 3). In the following, we give first the solution
of one inequation and then that of an inequations system.

One inequation Qr
M̂

solving
The part on the right side of an inequation is a multi

set composed by color functions, constants, and the cor-
responding place variables which may have positive or
negative coefficients. Solving the inequation consists in
canceling the negative terms in the right part, keeping
the positive color functions, and evaluating the positive
coefficient ni red tokens to 1 (algorithm 1). Algorithm 1
looks for the possible minimal diagnosis Nr

p corresponding
to one symptom place p in a symptom marking. And at
the same time, it looks for the candidate inequations Cr

p
which can explain the symptom place but should be solved
further. So to completely solve an inequation, we need to
recursively solve Cr

p until getting a final diagnosis solution
for one symptom place. The idea is to recursively solve
each inequation in Qr

M̂
by getting the diagnosis solution

Solp for one symptom place (algorithm 2).

Algorithm 1 Algorithm partially solving a Qr
M̂

inequation:

solvAnEqu(Eqp)

Input: Eqp: a Qr
M̂

inequation concerns a place p;

Output: < Cr
p , Nr

p > {Cr
p :a set of color functions which generate

red tokens; Nr
p : a set of faulty transitions;}

1: Cr
p=∅; Nr

p=∅;
2: ForEach ni × ci ∈ r(Eqp)+=

∑
i∈I

ni × ci do
3: if ni is not a constant and ci = r then
4: Nr

p=Nr
p ∪ {tfi

}; {records the faulty transition tfi
in Nr

p}
5: else if ci is a color function concerning place p′ then
6: Cr

p=Cr
p ∪ {cp′};{records the place cp′ if its color ci is

unknown for further solving}
7: else if ci is a color propagation function dc

i then
8: Cr

p={Cr
p} ∪ {cpi ∈ V ar(ci)};{records all the input places

of ci for further solving}
9: end if

10: end for
11: return < Cr

p , Nr
p >;

An inequations system QM̂ solving
By solving each inequation in Qr

M̂
, we get the diagnosis

for a inequations system QM̂ (algorithm 3). The union set
of all the Solp is the diagnosis solution for QM̂ which can
contain multiple symptoms (faults).

4.3 Example (cont’): incidence matrix of flight agent

In the example of CPN of flight agent, we can see that
flight agent CPN contains 12 places and 11 transitions (5

3
∪
× is an operator that applies the union operator on couples

resulting from the Cartesian product.

Algorithm 2 Diagnosis solution algorithm for completely solving
a Qr

M̂
inequation: CSD(QM̂ , Eqp)

Input: QM̂=Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Eqp ∈ Qr
M̂

: an inequation to solve;

Output: Solp: a diagnosis solution concerning a symptom place p;
1: Solp=∅;
2: 〈Cr

p ,Nr
p 〉=solvAnEqu(Eqp);{get the first back reasoning result,

Cr
p need to be resolve further}

3: Solp=Solp ∪Nr
p ;{record the current diagnosis}

4: if Cr
p 6= ∅ then

5: ForEach cp′ ∈ Cr
p do

6: if ∃Eqp′ ∈ Q∗
M̂

then

7: if l(Eqp′)=∗ then

8: Solp = Solp ∪ CSD(Qr
M̂
∪ {r º r(Eqp′)} ∪ (Qb

M̂
∪

Q∗
M̂

) \ {Eqp, Eqp′}, r º r(Eqp′)); {evaluates the

l(Eqp′) as r, reconstructs the inequations system and
recursively back reasoning until solved all the related
places}

9: else if l(Eqp′)=0 then

10: Solp=Solp∪CSD(Qr
M̂
∪{r º r(Eqp′)+cp′}∪ (Qb

M̂
∪

Q∗
M̂

) \ {Eqp, Eqp′}, r º r(Eqp′) + cp′);{evaluates the

l(Eqp′) as r and add a red token on the right side
of the inequation to balance Eqp′ , reconstructs the
inequations system, and recursively back reasoning
until solved all the related places}

11: end if
12: end if
13: end for
14: end if
15: return Solp;

Algorithm 3 Diagnosis solution algorithm for QM̂

Input: QM̂=Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Solp=∅: a diagnosis solution concerning a symptom place p;
Output: D: a diagnosis solution of QM̂ ;
1: D=∅;
2: ForEach Eqp ∈ Qr

M̂
do

3: Solp=CSD(QM̂ , Eqp); {resolve each inequation in Qr
M̂

by

back reasoning}
4: D=D

∪
× Solp; 3

5: end for
6: return D;

Table 1. C−: backward matrix of flight agent

C− tfa tf0 tf1 tC tW t
W

tS tf3 tO tf2 tP

ain ain ain ain ain

a2 a2 a2
a3 a3 a3
a4 a4 a4
a5 a5

aout

d0 d0 d0
d1 d1 d1
d2 d2 d2 d2 d2 d2
d3 d3 d3 d3
d4 d4 d4 d4
d5 d5

of them are unobservable, and 6 are observable). Table
2 is the forward matrix, table 1 is the backward matrix,
and table 3 is the incidence matrix of flight agent got
by C=C+ − C−. As to space limitation, in the incidence
matrices, we use the name of places to represent the colors
of the places, for example, ain represents Cain . Transitions
tfa , tf0 , tf1 , tf2 , and tf3 are unobservable activities (in gray
columns). Especially tfa , tf0 , and tf1 generate the input

Table 2. C+: forward matrix of flight agent

C+ tfa tf0 tf1 tC tW t
W

tS tf3 tO tf2 tP

ain r ain ain

a2 FW c(ain) FW c(a4)

a3 ELc(a2, d2) a3
a4 FW c(a3) a4
a5 ELc(a2, d2)

aout FW c(a5)

d0 r d0
d1 r d0
d2 FW c(d0) d2 d2 d2 r

d3 FW c(d1) ELc(d4) d3
d4 ELc(d2) r d4
d5 ELc(d3)

Table 3. C = C+ − C−: incidence matrix of flight agent

C+ − C− tfa tf0 tf1 tC tW t
W

tS tf3 tO tf2 tP

ain r − ain −ain

a2 FW c(ain) −a2 −a2 FW c(a4)

a3 ELc(a2 , d2) −a3
a4 FW c(a3) −a4
a5 ELc(a2 , d2) −a5

aout FW c(a5)

d0 r − d0
d1 r − d1
d2 FW c(d0)-d2 r − d2
d3 FW c(d1)-d3 ELc(d4)-d3 −d3
d4 ELc(d2)-d4 r- d4
d5 ELc(d3)-d5

fault data of flight agent, tf3 represents the external fault
in the WS which is invoked by tS , and tf2 represents the
external fault in the WS which is invoked by tO.

4.4 Example (cont’): diagnosis solution of flight agent

In our diagnosis scenario, each BPEL process is associated
with a monitoring platform, which dedicates to record the
status of the activities and variables of each execution
instance, and a diagnosis WS, which contains the initialed
(all DP are marked as black and AP are marked as 0
excepts the first input activation) CPN model of the BPEL
and acknowledge the diagnosis WS. The diagnosis WS
can be triggered by the BPEL executer (BPEL execution
engine) or invoker (WS, application, etc). Once a symptom
is thrown by the executer or invoker, the (activation or
data) places which correspond to the symptom is marked
as r while the other data places are marked as ∗, and
activation places are marked as 0. Now suppose we get a
series of observed activities σ0: C, W , S, O, W , S, O, W ,
and P , which means the while iteration is processed twice.
Then we construct a characteristic vector

−⇀
δ T : (tfa tf0 tf1

tC tW tW tS tf3 tO tf2 tP)=(n0 n1 n2 1 2 1 2 n4 2 n3 1).
Given an initial marking M0 =(ain a2 a3 a4 a5 aout d0 d1

d2 d3 d4 d5)=(b 0 0 0 0 0 b b b b b b), we suppose that,
in two diagnosis scenarios, we got two symptom markings
Mn1 = (ain a2 a3 a4 a5 aout d0 d1 d2 d3 d4 d5)=(0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ r), and Mn2 = (ain a2 a3 a4 a5 aout d0 d1 d2

d3 d4 d5)=(0 0 0 0 0 r ∗ ∗ ∗ ∗ ∗ r). For symptom marking
Mn1 , we can construct an inequations system as in (1).

Note that for final marking Mn2 , we can construct a
similar inequations system except Eqaout is different (r º
FW c(Ca5) + 0) from the one in equation system (1).
By applying the diagnosis algorithms, the diagnosis that
concerns the symptom marking Mn1 is illustrated in figure

4 while the diagnosis that concerns Mn2 is the
∪× product

of the diagnosis illustrated in figures 4 as the inequations

system for symptom marking Mn2 contains one more red
token in the activation output place aout. In figure 4, we
illustrate the diagnosis solving process in structured trees.
The nodes represent the inequations needed to be solved
and each leaf represents a diagnosis and the union of all
leaves is a diagnosis solution.

Eqain : 0 º (r − Cain)× n0 − Cain + b
Eqa2 : 0 º FW c(Cain)− Ca2 × 2− Ca2 + FW c(Ca4)× 2 + 0
Eqa3 : 0 º ELc(Ca2 , Cd2)× 2− Ca3 × 2 + 0
Eqa4 : 0 º FW c(Ca3)× 2− Ca4 × 2 + 0
Eqa5 : 0 º ELc(Ca2 , Cd2)− Ca5 + 0
Eqaout : ∗ º FW c(Ca5) + 0
Eqd0 : ∗ º (r − Cd0)× n1 + b
Eqd1 : ∗ º (r − Cd1)× n2 + b
Eqd2 : ∗ º FW c(Cd0)− Cd2 + (r − Cd2)× n3 + b
Eqd3 : ∗ º FW c(Cd1) + (ELc(Cd4)− Cd3)× 2− Cd3 + b
Eqd4 : ∗ º (ELc(Cd2)− Cd4)× 2 + (r − Cd3)× n4 + b
Eqd5 : r º ELc(Cd3)− Cd5 + b

(1)

E q
d 5

E q
d 3

E q
d 4

E q
d 1

E q
d 2

E q
d 0

E q
a o u t

E q
a 5

E q
a 2

E q
d 2

E q
d 0

E q
a i n E q

a 4

E q
a 3

t f3t f1

t f2

t f0

t f2

t f0 t fa

Fig. 4. Diag: Mn1 and Diag: Eqaout in Mn2

As a result, for symptom marking Mn1 , we have the di-
agnosis: D1={{tf0}, {tf1}, {tf2}, {tf3}} represents 4 single
faults. Either the input data fault d0, or the input data
fault d1, or the transition fault on invoke activity S,

or the transition fault on invoke activity O. Concerning
the symptom marking Mn2 , the diagnosis is extended

as: D=D1

∪× D2, where D2 concerns the red token in
activation place aout. As illustrated in figure 4 (right),
D2={{tfa

}, {tf0}, {tf2}}. So, we get diagnosis D={{tf0},{tf2}, {tfa
, tf1}, {tfa

, tf3}}, i.e., the fault is on input data
place d0, or on transition O, or on input activation place fa

and invoke activity C, or on input activation place fa and
invoke activity S. And these results can be used further
for the study of diagnosability.

5. RELATED WORK AND CONCLUSION

A BPEL process can be considered as a discrete event
system (DES). Automata, process algebra, and Petri nets
are the most popular models. We refer the reader to Yan
[2008] for the surveys of formal methods of Web services
modeling. The major method for diagnosing a DES is
trajectory unfolding. Unfolding method is used on the
observable trajectory of system evolution to find the faulty
states as the diagnosis. For example, Ye and Dague [2008]
proposes a decentralized model-based diagnosis algorithm
based on the PNs model (Li et al. [2007]) by inversely
unfolding the trajectory. But in Ye and Dague [2008], local
diagnoser does not support iteration in BPEL processes.

We can also adapt the flightagent example according
to the modeling methods of Benveniste et al. [2003] by
modeling the states of the BPEL service as places and
activities as transitions. As this modeling approach loses
the data dependency which cannot ensure the diagnosis is
as minimal as ours. S.Genc and S.Lafortune [2005] models
a modular interacting system as a set of place-bordered
Petri nets and proposes a distributed online diagnosis
which applies algebra calculations from the local models
and the communicating messages between them. But the
fact that S.Genc and S.Lafortune [2005] models the state
of a model as a transition which causes the combinatorial
explosion of the state space, and its simple Petri nets
definition are too limited to deal with the data aspects.

There are some works that model the WS system with
other types of models. In Console et al. [2002], a system is
modeled with process algebra containing faulty behavior
models. The diagnosis is done by comparing all possible
action traces with the observations. All the faulty actions
of the matched traces are the diagnosed faults. But Con-
sole et al. [2002] models and diagnosis the general WS
applications but not a concrete WS specification language.
Yan and Dague [2007] models BPEL services as enriched
synchronized automata pieces and diagnose by trajectory
reconstruction from observation while the algorithm is
incapable for the control fault in the process.

This CPN modeling approach addresses diagnosis of se-
mantic fault(s) of orchestrated Web services. The paper
constructs a model for the faulty data and faulty activities
in a BPEL process. We construct an inequations system
for the diagnosis of a BPEL service. And a concrete in-
equations solving algorithm is proposed. The diagnosis
takes advantage of the matrix calculation, which helps to
improve the effectiveness of the diagnosis. The interpre-
tation of happened (1) or not happened (0) status of the
fault transitions avoids the unfolding of Petri nets. So the

iterative structure in BPEL services does not increase the
complexity of the diagnosis.

Our diagnosis approach can be easily extended into the dis-
tributed environments according to the approach proposed
in S.Genc and S.Lafortune [2005] by defining a proper
composition protocol of the CPNs. And we believe that
the diagnosability analysis can also be done using algebra
analysis based on the incidence matrix, which is another
ongoing work.

REFERENCES

L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi,
M. Segnan, and D. T. Dupré. Enhancing web services
with diagnostic capabilities. In ECOWS, pages 182–191,
2005.

A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis
of asynchronous discrete event systems, a net unfolding
approach. AC, 48:714–727, 2003.

K. Boukadi, C. Ghedira, Z. Maamar, and H. Boucheneb.
Specification and verification of views over composite
web services using high level petri-nets. Technical
report, 2006.

T. Chatain and C. Jard. Models for the supervision of
web services orchestration with dynamic changes. In
AICT/SAPIR/ELETE, pages 446–451. IEEE CS, 2005.

L. Console, C. Picardi, and M. Ribaudo. Process algebras
for systems diagnosis. AI, 142(1):19–51, November 2002.

M. Diaz. Les réseaux de Petri de haut niveau. Hermes
Science Publications, Paris, France, 2001.

K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis
Methods and Practical Use. Springer, USA, 1997.

Y. Li, T. Melliti, and P. Dague. Modeling bpel ws for
diagnosis: towards self-healing ws. In WEBIST, pages
795–803. IEEE C.S., 2007.

OASIS. Bpel 2.0 specification. http:
//docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.html, August 2006.

S.Genc and S.Lafortune. Distributed diagnosis of place-
bordered petri nets. ASE, 4(2):206–219, April 2005.

W. Tan, Y. Fan, and M. Zhou. A petri net-based method
for compatibility analysis and composition of web ser-
vices in business process execution language. ASE, 6:
94–106, 2009.

Y. Yan. Description Language and Formal Methods for
Web Service Process Modeling. M.E Sharpe Inc., Ar-
monk USA, 2008.

Y. Yan and P. Dague. Modeling and diagnosing orches-
trated web service process web services. In ICWS IEEE
International Conference, pages 9–13. IEEE C.S., 2007.

L. Ye and P. Dague. Decentralized diagnosis for bpel
web services (poster). In WEBIST, pages 283–287.
INSTICC, 2008.

Z. Zhang, F. Hong, and H. Xiao. A colored petri net-based
model for web service composition. Journal of Shanghai
University (English Edition), 105(4):323–329, 2008.

