
Diagnosability of Input Output Symbolic Transition Systems

Gauvain Bourgne∗, Philippe Dague†, Farid Nouioua‡ and Nicolas Rapin§
∗NII, Tokyo, Japan, Email: bourgne@nii.ac.jp

†LRI - Univ Paris 11, Orsay, France, Email: philippe.dague@lri.fr
‡LSIS - Univ Paul Ćezanne, Aix-Marseille 3, France, Email: farid.nouioua@univ-cezanne.fr

§CEA LIST, Laboratory of Model driven engineering for embedded systems
Point Courier 94, Gif-sur-Yvette, F-91191 France, Email: nicolas.rapin@cea.fr

Abstract

Diagnosability checking of discrete-event systems has
been extensively studied in the framework of classical non
symbolic models such as Labeled Transition Systems. It
happens that in practice such models tend to need too much
space to be efficiently processed. By opposition, symbolic ap-
proaches offer an expressive, easy and concise way to model
systems, and checking diagnosability from such symbolic
models can benefit from this reduction of space complexity.
Indeed, though this will generally translate into time com-
plexity, such a tradeoff is advantageous, as diagnosability
checking is something that is usually done at design stage.
This is why this paper proposes a theoretical framework
to check diagnosability of Input Output Symbolic Transition
Systems (IOSTS) by adapting the twin plant approach to the
symbolic case and relying on the use of a symbolic model
checker. This theoretical work is being currently applied to
embedded functions inside a vehicle in the context of an
industrial project and a simplified version of this problem
will serve as a running example throughout the presentation.

Index Terms

Diagnosability checking, Input Output Symbolic Transi-
tion Systems, Symbolic Execution.

1. Introduction

Diagnosabilty checking is the problem of determining
whether a faulty mode in a given system can be distinguished
from normal mode through a finite number of observations.
To determine this, we need some model of the system’s
behavior. Most classical discrete event models are based on
the so-called Labeled Transition System (LTS). An LTS is
a finite graph whose nodes represent states of the system,
and edges are events leading from one state to another.
Only some of the events are defined as observable, and
diagnosability is then defined using observable traces of
paths in the graph.

However, when the system is complex, this kind of models
can sometimes become very large and the space complexity
thus becomes problematic. One way to deal with this, is to
divide the models into smaller components, and define local
diagnosability, before deriving global diagnosability ofthe
system through distributed mechanisms (cf [1], [2]). Another
approach, which is presented here, is to use more expressive
transition systems using variables and symbolic contents.
We will thus present here diagnosability for Input Output
Symbolic Transition System (IOSTS), which is a more
concise and expressive way to model systems’ behavior. This
symbolic approach will reduce space complexity, though it
will be done at the cost of higher time complexity. Moreover,
IOSTSs are also especially appropriate to describe a compo-
nent interacting with an environment and other components.
Though we will focus here on symbolic content, future
works will address distributed systems.

We will first, in Section 2 present our symbolic model of
the system. Then, Section 3 will deal with faults represen-
tation and observability, before defining diagnosability for
IOSTS. On this basis, we will give in Section 4 our method
to automatically check the diagnosability of an IOSTS. At
last, we will conclude in Section 7.

2. Input Output Symbolic Transition Systems

IOSTSs represent IOLTSs in a concise and more expres-
sive manner by usingvariables. An IOSTS is composed
of graph part and data part. The data part is given by a
decidable first-order theoryT of first order langageL both
with a structureM being a model of this theory. In the
sequelvariables refers to the variablesV of L. TA (resp.
FA) denotes the set of terms (resp. formulae) ofL containing
only variables ofA. A map ν ∈ MA (resp.ρ ∈ (TA)A)
whereA ⊆ V is called an interpretation (resp. a substitution)
of variables ofA. It is canonically extended to terms and
formulae.

2.1. Definition

To define an IOSTS, we first specify itsstate variables
A and communication channelsC = Co ∪ Cu, whereCo



is the set ofobservablecommunication channels, andCu

represents theunobservableones. IOSTSs interact with their
environment through actions.

Definition 1 (Actions) The set of actions, denoted
Act(A,C) = Input(A,C) ∪ Output(A,C) ∪ Internal,
where Input(A,C) = {c?y | c ∈ C, y ∈ A} and
Output(A,C = {c!t | c ∈ C, t ∈ TA}.

Elements ofInput(A,C) are stimulations of the system
from the environment:c?x represents the reception of a
value through channelc which is assigned tox wherex is a
state variable.Output(A,C) are responses of the system to
the environment:c!t is the emission of the valuet through
the channelc. Internal = Σo ∪ Σu is a set of symbolsτi
used to characterize internal transitions.Σo and Σu ∪ Σf

contains respectivelyobservableand unobservable actions.
Especially,Σf ⊆ Σu is a subset of (unobservable)faulty
actions.

Definition 2 (IOSTS) An IOSTS over(A,C) is a triple
G = (Q, q0, T rans) whereQ is a finite a set oflocations,
q0 ∈ Q is the initial location and Trans ⊆ Q × FA ×
Act(Σ) × (TA)A × Q. A transition tr := (q, ϕ, act, ρ, q′)

of Trans, also denoted byq
ϕ[act]ρ
−−−−→ q′, is composed of a

source locationq, denoted bysrc(tr), a guardϕ denoted by
grd(tr), an actionact denoted byact(tr), a substitution of
variablesρ and a target locationq′ denoted bytgt(tr). For
each locationq ∈ Q, there is a finite number of transitions
of source locationq.

We consider IOSTSs generating alive language, that
is, IOSTSs without sink states: for allq ∈ Q,
∨

tr∈T,src(tr)=q grd(tr) is a tautology.

Example 1 Figure 1 represents an IOSTS modeling a sim-
plified SDK (Smart Distance Keeping) system that enables
a truck to regulate its speed according to its distance to the
next vehicle, given by a GPS.

q0 q1 q2
[gps?D] ϕok[spd!0]a := 0

ϕacc[spd!5]a := 5

ϕslow[spd! − 5]a := −5
[τ ]v := v + a

[τf ]

Figure 1. Simplified SDK with error on speed adjust-
ment. ϕok = DS−10 ≤ D ≤ DS +10, ϕacc = (D > DS +
10)∧(V ≤ Vmax), ϕslow = (D < DS −10)∨(V > Vmax).

2.2. Paths and runs of an IOSTS

A path of an IOSTS(Q, q0, T rans) is any mapp :
N → Trans such thatsrc(p(0)) = q0 and for all i ∈ N,
tgt(p(i)) = src(p(i + 1)). Before defining a run of an
IOSTS, let us first give some preliminary definitions. All
are given with respect to an IOSTSG = (Q, q0, T rans)
over (A,C).
Act(M) = (C × {?, !} × M) ∪ Internal is the set of

concrete actions. An interpretationν ∈ MA of variables
is called aconcrete stateof G. A concrete transitionis a
triple (ν, actM , ν′) ∈ MA × Act(M) × MA. A concrete
path r is a sequence of concrete transitionsN → (MA ×
Act(M)×MA), such that for alli, if r(i) = (νi, ai, ν

′
i) and

r(i+ 1) = (νi+1, ai+1, ν
′
i+1) thenν′i = νi+1.

Now, we define a transition run, that is the interpretation
of one transition, saytr, of G.

Definition 3 (Transition run) Let tr = q
ϕ[act]ρ
−−−−→ q′ ∈

Trans. The setTruns(tr) ⊆MA×Act(M)×MA of tran-
sition runsof tr is such that(ν, actM , ν′) ∈ Truns(tr) iff
〈M, ν〉 |= ϕ and:

(i) if act = c!t (resp.act ∈ Internal) thenν′ = ν ◦ρ and
actM = (c, !, ν(t)) (resp.actM = act) or

(ii) if act is of the formc?y then there existsν′′ such that
ν′′(z) = ν(z) for all z 6= y, ν′ = ν′′ ◦ ρ and actM =
(c, ?, ν′′(y)).

For a transition runr = (ν, actM , ν′), also denoted by
ν

actM−−−→ ν′, src(r), act(r) and tgt(r) denote respectively
ν, actM andν′. A run is at last defined as:

Definition 4 (Runs of an IOSTS) A concrete pathr of an
IOSTSG is a run ofG if there exists a pathp of G, such
that r(i) ∈ Truns(p(i)) for all i ∈ N. Runs(G) is the set
of runs ofG. Runs(G) is the semantics ofG.

We shall say that a concrete pathr fitsa sequence of concrete
actionss = act0 . . . actn ∈ act(M)N (denoted bys < r) iff
∀i ∈ {0, . . . , n}, act(r(i)) = acti. Then,L(G) = {s ∈
act(M)N|∃r ∈ Runs(G), s < r}.

Example 2 [ν0
gps?70
−−−−→ ν1

spd!−5
−−−−→ ν2

τ
−→ ν3] is the

beginning of a run of the IOSTS of Fig. 1, withDS = 100,
ν0(v) = 80, ν3(v) = 75.

In the general case, there is no restriction on the initial
values of the state variables, and any interpretationMA

of the variable can a priori be the source of the first
concrete transition of a run ofG. In practice, however,
knowing the initial values of the variables, or at least of
some of them does not seems unrealistic. We thus define
an initialization domain of an IOSTSas a (possible infinite)
set of interpretationsD ⊆ MA. Then, a concrete pathr



is a run of G with respect toD iff r is a run ofG such
that src(r(0)) ∈ D. RunsD(G) denotes the set of all runs
of G wrt D. The associated language isLD(G) = {s ∈
act(M)N|∃r ∈ RunsD(G), s < r}.

3. Diagnosability of IOSTS

Our aim is to check the diagnosability of a component
modeled with an IOSTS, that is, to determine if it is
possible or not to build a local diagnoser that can detect
faults in the system by observing its behavior. We suppose
that the system modeled by the IOSTS is a component
communicating with a non-descript environment. A local
diagnoser, considered as an addition to the component,
would observe its input and output on its observable com-
munication channels as well as observable internal actions,
and deliver a diagnostic regarding the state of the system,
possibly leading to some automated repairs. Such a problem
has been studied a lot for finite discrete-event models [3]–
[5], but IOSTS add a symbolic dimension that forces some
adaptation of those classical definitions of diagnosability.
In [6], diagnosability is studied and defined for another
compact symbolic representation: succinct transition graphs,
which use boolean formulas to represent the effects of events
on a set of state variables. This is close to IOSTS, and the
analysis on space and time complexity provided in [7] give
strong support to symbolic method. However, IOSTS offers
a more procedural view which allows to easily translate
problems and gives a natural way to model interacting
components, which would make extension to distributed
diagnosability problem easier.

Projection and trace. The diagnosability property of an
IOSTS is defined according to the corresponding LTS.
Intuitively, an IOSTS is said to be diagnosable if and only
if the occurrence of any fault is detectable after a finite
number of observations of the concrete unfolding of an LTS
corresponding to a possible instantiation of the IOSTS. This
unfolding consists in a trace of observable elements.

Thus we define a projection functionP associating to each
sequences = act0 . . . actn ∈ L(G) (whereacti ∈ Act(M)
is a concrete action andL(G) ⊆ Act(M)∗) an observable
tracew = P (s) defined as follows:

• P (ǫ) = ǫ, whereǫ is the empty trace.
• P (act) = ǫ if act ∈ Σf ∪ Σu ∪ Input(A,Cu) ∪
Output(A,Cu).

• P (act) = act if act ∈ Σo.
• if act = c Mod v, wherec ∈ Co, Mod ∈ {?, !} andv

is a concrete value, thenP (c Mod v) = c Mod v.
• P (αW ) = P (α)P (W ), where α ∈ Act(M) is an

arbitrary action andW is an arbitrary trace.

The inverse projection provides for each observable trace
w of an IOSTS, the set of traces whose projection isw.

It is defined for anyw ∈ P (L(G)) by P−1(w) = {s ∈
L(G)|P (s) = w}. However, this inverse projection might
sometimes be too general. Indeed, to one sequence of actions
s = act1 . . . actn ∈ L(G) might correspond several concrete
runs, depending on the initial interpretationν0. Indeed, one
may have some clue about the initialization of the system.
If ν0 ∈ MA is an interpretation of all state variables, we
define the inverse projection ofw ∈ P (L(G)) with respect to
initializationν0 byP−1

ν0
(w) = {s ∈ L(G)|P (s) = w∧(∃r ∈

Runs(G), s < r ∧ src(r(0)) = ν0)}

Definition of diagnosability. We denote byΨ(τf ) the set
of traces ofL(G) ending in a fault actionτf ∈ Σf :
Ψ(τf ) = {s ∈ L(G) | s = s0 . . . sn−1τf}. The postlanguage
of L(G) afters is denoted byL(G)/s = {t ∈ Act(M)∗|st ∈
L(G)}. An IOSTS G will be said to betraceable if it
generates alive language and there is no runs inRuns(G)
containing an infinite sequence of concrete transitions whose
action is not observable. Then, following [3], we definefull
diagnosabilityof a system by:

Definition 5 LetG = (Q, q0, T rans) be a traceable IOSTS
over (A,C). L(G) is fully diagnosableiff:

∀τf ∈ Σf , ∃ni ∈ N, ∀s ∈ Ψ(τf ), ∀t ∈ L(G)/s

‖t‖ ≥ n⇒ [w ∈ P−1[P (st)] ⇒ τf ∈ w]

This definition means that for any fault mode, it is possible
to detect the occurrence of a fault of this kind after at most a
bounded number of actions, by only knowing the observable
trace since the beginning, regardless of the initial valuesof
the state variables. Since knowing the initialization domains
of a system does not seem unrealistic, we provide a less
demanding definition of diagnosability with respect to an
initialization domainD.

Definition 6 LetG = (Q, q0, T rans) be a traceable IOSTS
over (A,C), andD ⊆ MA an initialization domain. L(G)
is diagnosable forD iff:

∀τf ∈ Σf , ∃ni ∈ N, ∀s ∈ Ψ(τf ), ∀t ∈ L(G)/s

[(‖t‖ ≥ n∧st ∈ LD(G)) ⇒ (w ∈ P−1
D (P (st)) ⇒ τf ∈ w)]

It means that a diagnoser can be built for diagnosing the
system if it is initialized by any interpretation inD. Note
that if L(G) is diagnosable forD1 andL(G) is diagnosable
for D2, we do not necessarily haveL(G) diagnosable for
D1∪D2. Indeed, if two diagnosers can be build forD1 and
D2, one diagnosing a fault for an observable tracew1 when
the other does not,the system would not be diagnosable for
D1∪D2 sincew1 leads to an ambiguity. On the other hand,
if a system is diagnosable for the domainD, it is diagnosable
for any subset ofD. Full diagnosability is equivalent to
diagnosability forMA, and implies diagnosability for any
domain.



4. Checking diagnosability

We propose here an adaptation of the twin-plant method
[4], where a synchronized product is built in order to check
diagnosability. Then, we use a symbolic model checker to
check some property on this product equivalent to diagnos-
ability of the initial graph. Translation of a diagnosability
problem into a model checking one has also been done in
other works such as [5] and [8], which also uses a twin plant
before model checking. In this last reference, however, only
zero-delay diagnosability is studied.

4.1. The IOSTS based twin plant

Let G = (Q, q0, T rans) be a traceable IOSTS over the
signatureΣ = (A,C) and Act(Σ) be the set of actions
(Act(Σ) = Input(Σ)∪Output(Σ)∪ {τ, τf}). For the sake
of simplicity and without loss of generality, we will focus
our study on the assumption that only one kind of fault
(denoted hereafter byτf ) can occur in the system. Indeed,
to prove that a system is diagnosable for all faults, it suffices
to prove that it is diagnosable for each kind of fault taken
alone.

We shall define the IOSTSGd, which results from the
symbolic synchronization of two identical copies ofG
on their concrete observables, beginning by specifying its
variables and actions.

4.1.1. State variables and actions ofGd. The state vari-
ables ofGd is given byAd = A1 ∪A2 ∪{R,F 1, F 2, Amb}
which is a finite set of variables such that to each variable
a ∈ A correspond two variables inAd: a1 ∈ A1 and
a2 ∈ A2. R is a new state variable that will be used to
receive and dispatch values to variables ofA1 andA2. F 1

andF 2 are specific boolean state variables which indicate
if a fault action τf has been executed before reaching a
given state.Amb is a boolean variable indicating whether a
valuation overA is ambiguous or not. Intuitively, a valuation
over A is said to be ambiguous if it is formed of two
valuations overA1 and A2 with different values of the
instancesF 1 and F 2 indicating the occurrences of fault
actions :Amb = F 1⊕F 2. As for communications channels,
Gd usesCd = Co ∪ C1

u ∪ C2
u, cp ∈ Cp

u represents the
unobservable channelc of the copyp.

The set of actions in the synchronized IOSTS is
Actd(Ad, C) = Input(Ad, C) ∪ Output(Ad, Cd) ∪
Internald, where Input(Ad, Cd) = {c?R | c ∈ Cd},
Output(Ad, Cd) = {c!t | c ∈ Cd, t ∈ TA1 ∪ TA2},
Internald = Σo ∪ {τ1} ∪ {τ2} ∪ {τ1

f }. An element
c?R of Input(Ad, Co) represents a synchronization of two
receptions of a same valuev through the communication
channelc. This value is then assigned to eithery1

i ∈ A1

or y2
j ∈ A2 in the substitution of variables, simulating

the two synchronized actionsc?y1
i and c?y2

j that both give

rise to the same observationc?v. Likewise, an element
c!t of Output(Ad, Co) represents a synchronization of the
emission of a termt1 by the first copy and of another term
t′2 by the second copy through the same channelc, both
terms having the same valuev as ensured by(t1 = t′2)
in the guard. Both actions have the same tracec!v. The
symbol τp (resp.τp

f ) is used to characterize unobservable
internal transitions (resp. fault transitions) of one of the two
synchronized copies of the system (the first ifp = 1 or
the second ifp = 2). Likewise cp?R or cp!t with c ∈ Cp

u

represents unobservable communications of one of the two
copies. All these transitions have the same traceǫ. At last,
elements ofΣo represents the synchronization of the same
observable internal transitiono ∈ Σo, made by each one of
the two synchronized copies of the system, the trace of both
transitions beingo.

4.1.2. Synchronized productGd. The synchronized IOSTS
over Σd is the tripleGd = (Qd, (q0, q0), T ransd) where
Qd = Q × Q is the set oflocations, (q0, q0) is the initial
location andTransd ⊆ Qd × (FA1 ∪ FA2) × Actd(Σd) ×
((TA1)A1

∪ (TA2)A2

) ×Qd. Let (qi, qj) and (q′i, q
′
j) be two

states ofGd. There will three kinds of transition inGd:
• Synchronized transitionscorresponding to two transi-

tionsqi
ϕ1

i [acti]ρ
1
i−−−−−−→ q′i in the first copy andqj

ϕ2
j [actj]ρ

2
j

−−−−−−→
q′j in the second copy with the same observable trace.

We have inGd the transition(qi, qj)
ϕd[actd]ρd
−−−−−−−→ (q′i, q

′
j)

where:
– if acti = actj ∈ Σo, actd = acti, ϕd = ϕT =
ϕ1

i ∧ ϕ
2
j andρd = ρT defined as:

ρT (x) =















ρ1

i (x) if x ∈ A1

ρ2

j(x) if x ∈ A2

x if x ∈ {F 1, F 2}
ρT (F 1) ⊕ ρT (F 2) if x = Amb

– if acti = c?x1
i andactj = c?x2

j with c ∈ Co, then
actd = c?R, ϕd = ϕT andρd = ρT ◦ (x1

i , x
2
j :=

R,R) (ϕT , ρT defined above)
– if acti = c!t1i and actj = c!t2j with c ∈ Co, then
actd = c!t1i , ϕd = ϕT ∧ (t1i = t2j) and ρd = ρT

(ϕT , ρT defined above)
• Non-synchronized transitionsof the first copy corre-

sponding to a transitionqi
ϕ1

i [acti]ρ
1
i−−−−−−→ q′i in the first copy

with an unobservable action. Then, if(qi, qj) is a state

of Gd, we have inGd the transition(qi, qj)
ϕ1

i [actU ]ρU

−−−−−−−→
(q′i, qj) where

– if acti ∈ Σu ∪Output(A,Cu), thenactU = τ1 or
c1!T 1

i andρU is defined asρU = ρ1 ◦ρAmb where
ρ1(x) = ρ1

i if x ∈ A1, x otherwise, andρAmb =
ρU (F 1) ⊕ ρU (F 2) if x = Amb, x otherwise.

– if acti = c?x1
i withc ∈ Cu, then actU = c1?R

andρU is defined asρU = ρ1 ◦ (x1
i := R) ◦ ρAmb

whereρ1, ρAmb are defined above.



– if acti = τf thenactU = τ1
f andρU is defined as

ρU = ρ1 ◦ (F 1 := 1) ◦ ρAmb whereρ1, ρAmb are
defined above.

• Non-synchronized transitions of the second copy are
defined in a symmetric manner, though we can omit
faulty transitions to benefit from the symmetry.

Example 3 Figure 2 shows the synchronized product of two
copies of the IOSTS depicted in figure 1. We did not represent
Amb in the substitution of variables as it is alwaysF 1⊕F 2.

q0, q0 q1, q1 q2, q2

q0, q2

q2, q0

[gps?R]D1, D2 := R, R ϕ1
ok

∧ ϕ2
ok

[spd!0]a1, a2 := 0, 0

ϕ1
acc ∧ ϕ2

acc[spd!5]a1, a2 := 5, 5

ϕ1
slow

∧ ϕ2
slow

[spd! − 5]a1, a2 := −5, −5

[τ2]v2 := v2 + a2

[τ1]v1 := v1 + a1

[τ1
f
]F1 := 1

[τ1]v1 := v1 + a1

[τ1
f
]F1 := 1

[τ2]v2 := v2 + a2

Figure 2. Synchronized product.

In this example product, the path

p = (q0 , q0)
[gps?R]D1,D2:=R,R
−−−−−−−−−−−−−−−−−→ (q1, q1)

ϕ1
ok

∧ϕ2
ok

[spd!0]a1,a2:=0,0
−−−−−−−−−−−−−−−−−−−−−−−→

(q2, q2)
[τ1

f
]F1:=1

−−−−−−−−−→ (q0, q2)
[τ2]v2:=v2+a2
−−−−−−−−−−−−−→ (q0, q0)

leading back to the state(q0, q0) corresponds to the observ-
able behavior[gps?d][spd!0]. At the end of its execution,
Amb equals 1 and keeps this value as long as it is possible
to continue without any occurrence of a fault in the second
copy. This path corresponds to the synchronisation, in the
original IOSTS, of the two paths

p1 = q0
[gps?D]
−−−−−→ q1

ϕok [spd!0]a:=0
−−−−−−−−−−−→ q2

[τf ]
−−−→ q0

p2 = q0
[gps?D]
−−−−−→ q1

ϕok [spd!0]a:=0
−−−−−−−−−−−→ q2

[τ]v:=v+a
−−−−−−−→ q0

having the same observable trace[gps?d][spd!0] but where
the fault eventτf occurs only in the pathp1 but not inp2.
If we prove (using a model checker) that the pathp can be
infinite (without introducing a fault inp2), then we deduce
that the system is not diagnosable.

5. Symbolic execution and model checking

As seen above, an IOSTSG is not diagnosable if there
exists pairs of different infinite runs sharing the same ob-
servable events, one being affected by a considered fault
and not the other. It is equivalent to say that there exists an
unfolding of the twin plant where theAmb variable remains
true forever after a given step. This latter formulation can
be easily formalized into an LTL expression, which is:

FG(Amb) (whereF states for Finally andG for Globally).
Indeed this is how we check diagnosability of an IOSTS.
We use an LTL model checker dedicated to IOSTS models
which as been developed by the CEA LIST in France [9].
The whole technique is explained below.

5.1. Symbolic Execution

Symbolic execution, which has been first defined for
programs [10], allows to explore executions of a program
without enumerating all possible values of all variables.
Symbolic execution produces a concise representation of
executions like, in set theory, comprehensive definitions
are concise for defining huge sets. The main idea of this
technique is to use a new fresh symbol of variable instead of
a value, each time that a reception (including initialization)
occurs. The role of this new fresh variable is to represent
any value of the input. This technique can naturally be
adapted to the framework of IOSTS. In the sequel, the set of
symbolic inputsis the countable setF of new fresh variables
(F ∩ A = ∅). Consequently state variables register terms
and the guard of a transition specifies a condition on those
terms for the transition to be executable. Along a path, the
conjunction of those conditions is the necessary condition
(over symbolic inputs) under which a symbolic state can be
reached from the initial state: it is called apath-condition.
Using these, asymbolic stateis defined by:

Definition 7 (Symbolic state) A symbolic state overF of
G is a triple η = (q, π, σ) whereq ∈ Q, π ∈ FF is called a
path-conditionandσ ∈ T A

F is called asymbolic assignment.
η = (q, π, σ) is said to be consistent ifπ is satisfiable.1

The following definition shows the construction of one
step of a symbolic execution, that is the symbolic transition,
or transition between symbolic states, associated with a
transition ofG. Note that if the communication action of
the transition is an input message affecting a variable, then
a new fresh symbol is introduced.

Definition 8 (Symbolic transition) A symbolic transition
overF is a triple (η, sa, η′), whereη, η′ are symbolic states,

and sa is an action over(F,Ch). Let tr = q
ϕ[act]ρ
−−−−→ q′ be

a transition ofG. Let η = (q, π, σ) be a symbolic state over
F ofG. Let z be a variable inF such thatz is used neither
in π nor in σ(v) for all variablev ∈ A (z is a fresh variable
not used inη). Then thesymbolic transition associated with
tr andη is (η, sa, η′), whereη′ and sa are defined by:

if act = c!t, thensa = c!σ(t) andη′ = (q′, π∧σ(ϕ), σ◦
ρ),
if act = c?x with x in A then sa = c?z, and η′ =
(q′, π ∧ σ(ϕ), σ ◦ [z/x] ◦ ρ),

1. Let us recall that here,π is satisfiableif and only if there existsµ ∈
MF such that〈M, µ〉 |= π since variables ofπ are inF by construction.



if act = τ thensa = τ , andη′ = (q′, π ∧ σ(ϕ), σ ◦ ρ).

A symbolic transitionsp = (η, sa, η′) is denoted byη
sa
−→

η′; source(sp) = η and target(sp) = η′.

Definition 9 (Symbolic path) A symbolic path is a
countable infinite sequence of symbolic transitions
[st0, . . . , stn, . . . ] associated with an IOSTS such that for
all i ∈ N, target(sti) = source(sti+1). It is saidconsistent
if all of its symbolic states are consistent.

The following definition shows how a symbolic path can
be interpreted as a concrete path of the IOSTS.

Definition 10 (Interpretation of a symbolic path) Let
sp = [(q0, π0, σ0)

sa0−−→ · · · (qn, πn, σn)
san−−→ · · · ] be a

symbolic path. Ifµ ∈ MF is an interpretation of variables
of F such that 〈M,µ〉 � πi for all i ∈ N, then the
interpretation ofsp by µ is r = [ν0

act0−−−→ · · · νn
actn−−−→ · · · ]

such that for alli ∈ N:

• νi(x) = µ(σi(x))
• acti = c@µ(t) if sai = c@t elseacti = τ .

Then, as we defined runs from concrete path, we want
to define symbolic execution path as symbolic path whose
interpretations will be runs ofG.

Definition 11 (Symbolic execution path)A symbolic path
[η0

sa0−−→ . . . ηn−1
san−1
−−−−→ . . . ] is called a symbolic exe-

cution pathof G iff η0 = (q0, π0, σ0), where q0 is the
initial location and σ0 is an injective substitution inFA,
π0 =

∧

a∈T σ0(a) = fdef (a) is the initial path condition
ensuring that every tool variable is initialized with its default
value and each symbolic transition is associated with a
transition ofG.

Symbolic execution is correct and complete i.e. the union
of all interpretations of all symbolic paths of an IOSTS G
is exactlyRuns(G).

Then, at last, a symbolic execution path with respect to
an initialization domainD would be symbolic path whose
interpretations are runs ofG wrt D. An interpretation of a
symbolic execution pathsp by µ would be a run ofG with
respect to an initialization domainD if µoσ0 ∈ D. Sinceµ
is such that〈M,µ〉 � πi for all i ∈ N, we can integrate this
initialization condition in the symbolic path itself by defining
π0 asπD =

∨

ν0∈D(
∧

x∈A(σ0(x) = ν0(x))), that is∃ν0 ∈
D, ∀x ∈ A, σ0(x) = ν0(x). Thus asymbolic execution path
with respect toD ⊆MA is a symbolic execution path whose
first symbolic stateη0 has a path-conditionπD instead of
the path-condition

∧

a∈T σ0(a) = fdef(a).

5.2. Unfolding rules

Our model-checking algorithm, as usual, unfold the model
in order to prove that there exists at least a run satisfying
the negation (¬g) of the expected propertyg to be checked.
In our case, we have¬g = FG(Amb). We describe here
unfolding rules, used to compute symbolic paths of the
IOSTS being such that any of their numerical interpretation
satisfies the formula. Those rules are inspired from tableau
unfolding of LTL formulas whose principle consists in the
decomposition of a formula into (i) atomic formulas to be
verified in the current state and (ii) formulas to be verified in
the next state. They are linked to symbolic execution by the
fact that a rule transforms acontextwhich is a couple whose
first component is a symbolic stateη and whose second
component is a tuple of three sets of LTL formulas(Φ,Γ,Υ).
The setΦ, called Finally Set, contains finally formulas of
the form Fψ, such thatψ has to be checked in the future;
Γ, calledCurrent Set, is the set of formulas to be checked
in the current state;Υ, calledNext Setis the set of formulas
to be checked in the next state.

LetG be an IOSTS whose initial location isq0 and whose
set of state variables isA. The initial symbolic stateis
init = (q0, π0, σ0) where σ0 is an injective substitution
in FA (whereF is the set of fresh variables, see Section
5.1) andπ0 is either

∧

a∈T σ0(a) = fdef (a) if checking
full diagnosability, orπTwin(D) if checking diagnosability
with respect to initialization domainD. If f is the temporal
formula given as an input to our set of rules, the first context
is [init, (Φinit, {f}, ∅)] whereΦinit is the set containing all
finally sub-formulas off (i.e of the formFψ).

5.2.1. Rules related to Current Set.First, the rules related
to Current SetΓ are applied untilΓ = ∅. A fraction style
rule denotes a substitution: the upper context vanishes and
is replaced by the lower context of the fraction bar. If the
rule [Finally1] can be applied, it is also the case of the rule
[Finally2]: then the algorithm forks in two avatars; on each
avatar is applied one of the two rules.

[Atom] p ∈ FA

(q, π, σ), (Φ, {p} ∪ Γ, Υ)

(q, π ∧ σ(p), σ), (Φ, Γ, Υ)

[Finally1]

η, (Φ, {Fg} ∪ Γ, Υ)

η, (Φ, {g} ∪ Γ, Υ)

[Finally2]

η, (Φ, {Fg} ∪ Γ, Υ)

η, (Φ, {f} ∪ Γ, Υ ∪ {Fg}})

[Globally]

η, (Φ, {Gg} ∪ Γ, Θ, Υ)

η, (Φ, {g} ∪ Γ, Θ, Υ ∪ {Gg}})

By applying these rules, the formulas in Current set are
decomposed in atomic formulas and next formulas of the
form Xg that are put in Next setΥ. When an atomic
formula inFA is reached, it is added to the path condition
after substitution of variables by the terms defined by the
symbolic assignment (rule[Atom]): its consistency will be
checked when the Transition rule will be applied. Rules



[Finally] are explained by the equivalence betweenFg and
g∨(X(Fg)). Rule[Globally] is explained by the equivalence
betweenGg andg ∧ X(Gg).

5.2.2. Transition rules. OnceΓ is empty, the next step is
to construct symbolic transitions using the transition rules.
Let η

sa
−→ η′ be a symbolic transition associated withG

(see definition 8), such thatη and η′ are consistent. Then
the transition rule is the following:

• If the last context of the path is[η, (Φ, ∅,Υ)] andΦ 6= ∅
then construct

η, (Φ, ∅,Υ)
sa
−→ η′, (Φ ∩ Υ,Υ, ∅)

• When Finally set is empty (i.e all finally formulas have
been checked), the new Finally set isΦinit, the set of
all finally sub-formulas. So the rule is:

η, (∅, ∅,Υ)
sa
−→ η′, (ΦInit ∩ Υ,Υ, ∅)

[(η, C)
sa
−→ (η′, C′)] is a symbolic transition extended to

contexts. The formulas in Next SetΥ have to be checked in
the new state, so they are put in Current SetΓ. Moreover
the new Finally set is the intersection of the old Finally
(or Φinit if it was empty) set with this new current set: so
Finally set will contain Finally formulas that still have tobe
checked. After Transition rule has been applied, the context
at the source of the transition will remain unchanged by the
following rules. Then, the other rules (related to Current Set)
can be applied in the new state.

5.2.3. f -unfoldings. An f -unfolding of an IOSTSG is
a finite or infinite sequence of transitions[(η0, C0)

sa0−−→
(η1, C1)

sa1−−→ (η2, C2) . . . ] resulting from the applica-
tion of rules defined above (i.e for all i, (ηi, Ci)

sai−−→
(ηi+1, Ci+1) can be obtained by unfolding rules), starting
at [init, (Φinit, {f}, ∅, ∅)]. A matchingf -unfolding of an
IOSTSG is then an infinitef -unfolding such that the Finally
set is empty infinitely often. Thesymbolic projectionof
an unfolding is the sequence[η0

sa0−−→ η1
sa1−−→ η2 . . . ]

obtained by ignoring the second coordinate of contexts.
Rule unfolding iscorrect and complete: the union of all
interpretations of symbolic projections of all matchingf -
unfoldings ofG is exactly the set of all runs ofG satisfying
f .

5.3. Termination criteria

There exist an ambiguous run ofG (satisfying f =
FG(Amb)) iff there exists a matchingf -unfolding of G.
Since such unfolding are infinite, we need some criterion
to stop the unfolding when we know that current finite
unfolding can be used to build one, or that it cannot evolve
into one. These criteria will be based on the notion ofomega
sets.

5.3.1. Omega sets.Intuitively the omega set of a symbolic
stateη relatively to δ ⊆ F , denoted byΩδ

η, characterizes
the relation existing between possible concrete assignations
of the system variablesA and interpretations of a given set
δ of the symbolic inputs they depend on. For example with
M = (Z,+, <), A = {x} and η = (q, a > 0, x 7→ a + 1)

the omega set ofη relatively to{a}, notedΩ
{a}
η , is {(x 7→

2, a 7→ 1), (x 7→ 3, a 7→ 2), (x 7→ 4, a 7→ 3) . . .}. The
couple(x 7→ 2, a 7→ 1) expresses the fact thatx is assigned
by 2 when the interpretation ofa is 1.

In the following definitionSI(π) denotes the set (included
in F ) of symbols of variables having at least an occurrence
in the path-conditionπ. MoreoverSI(Ran(σ)), whereσ
is a symbolic assignment, denotes the union of the sets of
symbols of variables having at least an occurrence in a term
σ(x) for x ∈ A.

Definition 12 (Omega set of a symbolic state)Let η =
(q, π, σ) be a symbolic state overF . Let us noteδ a finite
subset of symbols of variables ofF and γ = [SI(π) ∪
SI(Ran(σ))] \ δ. The omega set ofη relatively toδ, noted
Ωδ

η is {(ν, µ) ∈MA ×M δ/∃β ∈Mγ , 〈M, ν, µ, β〉 � (π ∧
∧

x∈A

(x = σ(x)))}

An omega set ofη = (q, π, σ) is thus a couple of interpreta-
tion ν, µ of A andδ such that there exists an interpretation
β of the other relevant variables ofF ensuring thatη is
consistent (that isπ is satisfied) and that variables ofF and
A are indeed linked by the assignmentσ.

5.3.2. Theorems. Let ct = [η, C] and ct′ = [η′, C′]
be two contexts associated to the same IOSTS, such that
η = (q, π, σ), η′ = (q′, π′, σ′), C = (Φ, ∅,Υ) and
C′ = (Φ′, ∅,Υ′).

• ct′ is said to bestrongly related toct if C = C′, q = q′

andΩ
SI(Ran(σ))
η ∩ Ω

SI(Ran(σ))
η′ 6= ∅.

• ct′ is said to beincluded inct if C = C′, q = q′ and
Ω∅

η′ ⊆ Ω∅
η.

Let us now consider an IOSTSG and af -unfoldingP =
[ct0

sa0−−→ ct1
sa1−−→ · · · ctn] of G.

1) If for somei ∈ {0, . . . , n− 1}, ctn is strongly related
to cti, thenP is said to verify thelasso criterion.

2) If for somei ∈ {0, . . . , n− 1}, ctn is included incti,
thenP is said to verify theinclusion criterion.

3) If P satisfies (1) or (2) and is such that there is an
empty Finally set amongΦi, . . . ,Φn of the contexts
cti, . . . , ctn, thenP is said to verify theFinally crite-
rion.

Theorem 1 If a f -unfolding ofG verifies the lasso criterion
and the Finally criterion, then there is a run in the semantics
of G verifying f .



Theorem 2 If all f -unfoldings ofG are finite or verify the
inclusion criterion but not the finally criterion, then there is
no run inRuns(G) verifying f .

These two theorems give sufficient conditions for re-
spectively non-diagnosability and diagnosability (withf =
FG(Amb)).

6. Experimental results and implementation
issues

The diagnosability checking technique described in the
previous sections has been implemented as an extension of
the AGATHA tool [11]–[13] which provides a symbolic
execution engine for the IOSTS formalism and supports
Presburger arithmetics for the data part (thanks to the Omega
Library [14]). In practice the twin-plant is not computed
in advance but on-the-fly by AGATHA which provides
facilities to deal with systems described by several compo-
nents and some interaction rules. This aspect contributes to
tackle some space complexity difficulties (in some favorable
cases non-diagnosability is proved while not all transitions
of the twin-plant have been built so far). This work was
supported by the french projet DIAFORE [15]. The first
experiment of the technique were conducted during the
DIAFORE project on a full industrial version of the SDK
which was provided by Renault Trucks (the industrial partner
of this project). This full version combines a classical speed
regulation function with an anti-collision function which
adjust the distant and the speed relatively to a vehicle
running front. A significant aspect of the whole technique
is that path conditions associated with witnesses bring some
good intuitions to understand and explain the highlighted
cases of non-diagnosability. This is very usefull to decide
whether or not non-diagnosibility should be solved and if
so, how to solve it. This was particularly appreciated by the
end user, Renault Trucks.

7. Conclusion

We presented here IOSTS, a symbolic way to repre-
sent a system’s behavior, and defined full diagnosability
and diagnosability over an initialization domain for such
a representation. An adaptation of the twin plant method
for checking diagnosability, combined with a LTL model-
checking, was also detailed. Future works include studying
more complex industrial case to propose a full methodology,
and generalizing this framework for distributed systems.

References

[1] W. Qiu and R. Kumar, “Decentralized failure diagnosis of
discrete-event systems,”IEEE Trans. on Systems, Man and
Cybernetics - Part A, vol. 36, no. 2, pp. 384–395, 2006.

[2] A. Schumann and Y. Pencolé, “Scalable diagnosability
checking of event-driven systems.” inProc. of IJCAI07,
2007, pp. 575–580. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ijcai/ijcai2007.html/SchumannP07

[3] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,
and D. Teneketzis, “Diagnosability of discrete-event systems,”
IEEE Trans. on Aut. Contr., vol. 40, no. 9, pp. 1555–1575,
1995. [Online]. Available: http://dx.doi.org/10.1109/9.412626

[4] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial
algorithm for testing diagnosability of discrete event systems,”
IEEE Trans. on Aut. Contr., vol. 46, pp. 1318–1321, 2001.

[5] S. Jiang and R. Kumar, “Failure diagnosis of discrete event
systems with linear-time temporal logic fault specifications,”
IEEE Trans. on Aut. Contr., vol. 49, no. 8, pp. 934–945, 2004.

[6] J. Rintanen and A. Grastien, “Diagnosability testing with
satisfiability algorithms,” inProceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, M. Veloso,
Ed. AAAI Press, 2007.

[7] J. Rintanen, “Diagnosers and diagnosability of succinct tran-
sition systems,” inProceedings of the 20th International Joint
Conference on Artificial Intelligence. AAAI Press, 2007.

[8] A. Cimatti, C. Pecheur, and R. Cavada, “Formal verification
of diagnosability via symbolic model checking,” inProc. of
IJCAI03), 2003, pp. 363–369.

[9] N. Rapin, “Symbolic execution based model checking of open
systems with unbounded variables,” inTAP, International
Conference on Tests And Proofs, Zurich, Switzerland, 2009.

[10] J. C. King, “A new approach to program testing,” inProc.
of the international conference on Reliable software. New
York, NY, USA: ACM Press, 1975, pp. 228–233.

[11] N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois, “Be-
havioural unfolding of formal specifications based on commu-
nicating automata,” inProceedings of the first Workshop on
Automated technology for verification and analysis, Taiwan,
2003.

[12] C. Gaston, P. LeGall, N. Rapin, and A. Touil, “Symbolic
execution techniques for test purpose definition,” inTestCom,
New York, USA, 2006.

[13] P. LeGall, N. Rapin, and A. Touil, “Symbolic execution
techniques for refinement testing,” inTAP, International Con-
ference on Tests And Proofs, 2007, pp. 131–148.

[14] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
D. Wonnacott, “The omega library interface guide,” College
Park, MD, USA, Tech. Rep., 1995.

[15] “DIAFORE project (DIAgnostic de FOnctions REparties),
SYSTEM@TIC, ANR.”


