
IS
S

N
 0

24
9-

63
99

ap por t
de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A New Fast Algorithm for Optimal Register
Allocation in Modulo Scheduled Loops

Sylvain Lelait, Guang R. Gao, Christine Eisenbeis

N ˚ 3337

Janvier 1998

THÈME 1

A New Fast Algorithm for Optimal Register Allocationin Modulo Scheduled LoopsSylvain Lelait�, Guang R. Gaoy, Christine EisenbeiszTh�eme 1 | R�eseaux et syst�emesProjet A3Rapport de recherche n�3337 | Janvier 1998 | 26 pagesAbstract: In this paper, we focus on the register allocation phase of software pipelining.We are interested in optimal register allocation. This means that the number of registersused must be equal to the maximum number of simultaneously alive variables of the loop.Usually two di�erent means are used to achieve this, namely register renaming or loopunrolling. As these methods have both drawbacks, we introduce here a solution which is atrade-o� between inserting move operations and unrolling the loop.We present a new algorithmic framework of optimal register allocation for modulo sched-uled loops. The proposed algorithm, called U&M, is simple and e�cient. We have imple-mented it in MOST (Modulo Scheduling Toolset). An experimental study of our algorithmon more than 1000 loops has been performed and we report a summary of the main re-sults. This new algorithm, that combines loop unrolling and register renaming, performsconsistently better than several other existing methods.Key-words: register allocation, modulo scheduling, loop unrolling (R�esum�e : tsvp)This work was partially supported by a Lise-Meitner Stipendium from the Austrian Science Fund (Fondszur F�orderung der wissenschaftlichen Forschung).� Institut f�ur Computersprachen, Technische Universit�at Wien, Argentinierstra�e 8, A-1040 Wien, Aus-tria, E-mail : sylvain@complang.tuwien.ac.aty Department of Electrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark,DE 19716, USA, E-mail : ggao@eecis.udel.eduz Christine.Eisenbeis@inria.fr
Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : 01 39 63 55 11 - International : +33 1 39 63 55 11

Télécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30

Un nouvel algorithme rapide et optimal d'allocation deregistres pour des boucles ordonnanc�ees moduloR�esum�e : Dans ce papier, nous nous concentrons sur la phase d'allocation de registres dupipeline logiciel. Nous nous int�eressons �a l'allocation de registres optimale. Cela signi�e quele nombre de registres doit être �egal au nombre maximal de variables en vie simultan�ementdans la boucle. Habituellement deux moyens sont employ�es pour atteindre ce but, le renom-mage de registres ou le d�eroulage de boucles. �Etant donn�e que ces m�ethodes ont toutes lesdeux des d�esavantages, nous introduisons une solution qui est un compromis entre ins�ererdes op�erations de copie de registres et d�erouler la boucle.Nous pr�esentons un nouveau cadre algorithmique pour l'allocation optimale de registresde boucles ordonnanc�ees modulo. L'algorithme propos�e, appel�e U&M, est simple et ef-�cace. Nous l'avons impl�ement�e dans MOST (Modulo Scheduling Toolset). Une �etudeexp�erimentale de notre algorithme sur plus de 1000 boucles a �et�e r�ealis�ee et nous en pr�esentonsles r�esultats principaux. Ce nouvel algorithme, qui combine le d�eroulage de boucles et lerenommage de registres, donne de meilleurs r�esultats que plusieurs m�ethodes existantes.Mots-cl�e : allocation de registres, ordonnancement modulo, d�eroulage de boucles

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 31 IntroductionRegister allocation is very important for modulo loop scheduling (software pipelining) inhigh-performance architectures especially when an increasing level of instruction-level pa-rallelism is exploited. Software pipelining is often performed in two phases: (1) �rst derive aschedule with a maximum computation throughput of a loop (i.e. minimize the initiation in-terval) under a given resource constraint, (2) then allocate registers for the derived schedule.In production compilers, the register allocation phase is usually performed using heuristicswhich attempt to minimize the cost of spilling under a given number of registers.Our objectives in this paper are somewhat di�erent: we are interested in optimal registerallocation, i.e. minimize the number of registers required. We argue that this is an importantproblem for situations where information of the smallest number of registers is required. Forexample,� When allocating registers interprocedurally it is bene�cial to allocate a minimal num-ber of registers to each procedure using such a solution. This reduces the amount ofregister saving required at procedure call time, and can also improve interproceduralregister allocation [20].� When performing global register allocation, it is often useful to do the allocationhierarchically, i.e. it is useful to know the minimum register budget needed for aparticular code section (i.e. loops) as an input to the overall register allocation decision.Optimal register allocation for modulo scheduled loops is known to be hard. We havepresented and analyzed the di�culty in Section 2 with the discussion of several existingmethods, e.g. Lam's Modulo Variable Expansion [12], Eisenbeis' method involving loopunrolling [7] (EJL) and the meeting graph heuristic [8] (MTG). A short discussion on relatedwork is also included at the end of the paper and the readers can �nd more information inthe citations in these sections. In short, the optimal solution to this problem often requiresthe insertion of \register moves" or loop unrolling. Brute force searching of the best solutionhas often a prohibitive cost, while existing fast heuristics may either sacri�ce the registeroptimality or incur large unrolling overhead.In this paper, we present a new method of optimal register allocation for modulo schedu-led loops called U&M (for Unroll & Move), as it is a compromise between loop unrolling andthe insertion of move operations. We note that, for a modulo scheduled loop, the lifetime ofa loop variable often spans several iterations, but only at the portion corresponding to thelast iteration | called the \fraction-of-an-iteration-interval" or foai a term coined in Alt-man's Ph.D thesis [1] | is there an opportunity of register sharing. The rest of the lifetimecan be allocated to a \bu�er" | a name coined by Ning and Gao [16] { implemented with anumber of registers moves or with unrolling. A very simple and e�ective heuristic has beenproposed to handle the fraction-of-an-iteration-intervals (foais) with a minimum unrollingdegree.We have implemented our algorithm in MOST (Modulo Scheduling Toolset [1]). Anexperimental study of our algorithm on more than 1000 loops from benchmarks such as theRR n�3337

4 Sylvain Lelait, Guang R. Gao, Christine EisenbeisLivermore loops, Nas, Spec92 or Linpack has been performed and we report a summaryof the main results. For the benchmark programs we tested so far, our method performsconsistently better than Lam's Modulo Variable Expansion method for the number of regis-ters, and than Eisenbeis' method, and the meeting graph method for the unrolling degreeof the loop.The rest of this paper is organized as follows. In Section 2, we present the problem weare dealing with and the existing methods we mentioned. In Section 3, we de�ne the mainnotions, present our method, and the algorithms we designed to compute an unrolling degreeof the loop. In Section 4, we focus on the complexity of our algorithms and show that ourmethod gives an optimal register allocation. In Section 5, we present experimental results,which show the e�ectiveness of our method. In Section 6, we mention some other relatedwork, and �nally we conclude.2 A Motivating ExampleIn this section, we illustrate the problem of loop register allocation using the followingexample. Our discussion is in the context of modulo scheduling since it is most challengingto register allocation when parallelism between loop iterations is exploited.LOOPa[i+2] = b[i] + 1b[i+2] = c[i] + 2c[i+2] = a[i] + 3ENDLOOPIn Section 2.1, we will �rst discuss the basic issues and trade-o�s of loop register allo-cation using register moves or loop unrolling techniques on the running example above. InSection 2.2, we briey compare how the several existing loop register allocation methodsperform on the given example and illustrate where these methods may be subject to impro-vements.2.1 Basic Issues and Trade-o�sThere are two ways to deal with loop register allocation: using special architecture supportsuch as rotating registers, or without using such support. The latter may require the insertionof register move instructions or loop unrolling. Although the focus of this paper is not onspecial architecture support, it may be helpful for understanding the issues and trade-o�sto �rst describe the concept of the rotating register �le using the given example.
INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 52.1.1 Rotating Register FileWe consider the allocation of variable a in registers. Since a[i]1 spans three iterations(de�ned in iteration i � 2 and used in iteration i), at least 3 registers are needed to carrysimultaneously a[i], a[i+1] and a[i+2]. Furthermore, we should ensure that the generatedcode stays the same from iteration to iteration. That is, the register allocation should becyclic over the whole loop { e.g. in this example, the same arithmetic operation on a shouldsee the same register assigned from one iteration to the next. This can be accomplishedthrough hardware mechanism (rotating register �les) or through software means: registermoving or unrolling.The hardware mechanism - named rotating register �le [4, 5] automatically performsthe move operations at each iteration. At each iteration one pointer to the register �le isautomatically moved one location ahead. Below R[k] denotes a register with o�set k fromR. � Iteration iR = b[i]+1b[i+2] = c[i]+2c[i+2] = R[-2]+3 � Iteration i+ 2R[+2] = b[i+2]+1b[i+4] = c[i+2]+2c[i+4] = R + 3Perhaps the e�ect of the rotating register is best illustrated by looking at the datadependence graph of this loop shown in Figure 1, where node Si stands for instructionnumber i of the loop. Imagine that a rotating register R of size 3 is allocated on thearc between S1 and S2, carrying the \ow" of subsequent values of array a between thetwo instructions. R acts as a FIFO \bu�er", and the value in R is automatically shiftedaccordingly. Therefore, the instructions in the generated code will see the same operand R,avoiding the explicit register copying.
S1

S3

S2

+2

+2

+2Figure 1: Data dependence graph of the loopIn this case the code size is not increased by unrolling or insertion of move operations.But you have to rely on this special hardware mechanism which does not exist in conventionalmicroprocessor architectures.1The notation a[i] should not be understood like an array. It just express the fact that some variable agenerated at iteration i is used some iterations later.
RR n�3337

6 Sylvain Lelait, Guang R. Gao, Christine Eisenbeis2.1.2 Register Move InstructionsOne possibility, called register renaming, for allocating a[i] is to use 3 registers and performmove operations at the end of each iteration [3, 15]: a[i] is in register R1, a[i+1] in registerR2, a[i+ 2] in the register R3. Then you must use move operations to shift the registers atevery iteration:LOOPR3 = b[i]+1b[i+2] = c[i]+2c[i+2] = R1+3R1 = R2R2 = R3ENDLOOPHere, only the three registers used for array a are shown. The total registers requirementwill be 9 if both b and c are also allocated to registers this way.It is easy to see that if variable v spans d iterations, then you have to insert d� 1 moveoperations at each iteration, but sometimes you may need one additional register and dmove. This is likely to have a bad impact on the instruction schedule. As a matter of factregister move operations are usually performed by addition to 0. In addition, if adders arepipelined this results in a very bad code.2.1.3 Loop UnrollingAnother option is to perform loop unrolling. Here di�erent registers are used for the di�erentinstances of the variable. In our example shown below, the loop is unrolled three times, anda[i+ 2] is stored in R1, a[i+ 3] in R2, a[i+ 4] in R3, a[i+ 5] in R1, and so on. To expressthis, you have to write di�erent code for each of the original three iterations in the unrolledloop body, since the register assignment scheme changes.LOOPR1 = b[i]+1b[i+2] = c[i]+2c[i+2] = R2+3R2 = b[i+1]+1b[i+3] = c[i+1]+2c[i+3] = R3+3R3 = b[i+2]+1b[i+4] = c[i+2]+2c[i+4] = R1+3ENDLOOPIn this case, we avoid inserting extra move operations. The drawback is that the codesize will be multiplied by 3 in this case, and by the unrolling degree in the general case. ThisINRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 7can have a dramatic impact on performance by causing unnecessary cache misses when thecode size of the loop happens to be larger than the size of the instruction cache. Again, forsimplicity, we did not expand the code to assign registers for b and c.2.1.4 Useful ParametersThe impact of a loop register allocation scheme can be measured by 3 parameters. The�rst one is the number r of registers used. A inescapable lower bound for r is the maximalnumber of simultaneously alive variables, denoted as MaxLive [11]. The register allocationis said to be optimal if it uses MaxLive registers. The second one is the unrolling degreeu. A large unrolling degree implies large code size and may cause instructions cache misses;u should therefore be as small as possible. The third one is the number m of extra moveinstructions per iteration. The impact of this parameter is hard to measure because itmay sometimes be that the move instructions can be performed in parallel with the otheroperations. Analyzing this requires analyzing the loop schedule, which is beyond the scopeof this paper.2.2 Existing Methods: How Do They Perform on This Example ?In this section we present several existing methods and their performance on the runningexample in terms of the three parameters just de�ned. This is in contrast to our approachfor the same example as explained in the next section.2.2.1 Lam's Algorithm for Modulo Variable Expansion: m = 0, min uIn her algorithm, also called Modulo Variable Expansion, Lam [12] �nds the least unrollingdegree that enables coloring. To achieve this purpose she computes the unrolling degreeu by dividing the length of the longest live range by the number of cycles of the loop. Inthis example, the longest live range lasts 8 cycles, and the number of cycles of the loop is3 cycles, so u = d 83e = 3, and we should unroll three times. Then we can assign to eachvariable a number of registers equal to the least integer greater than the span of the variablethat divides u. For our example, each variable a, b, c is assigned 3 registers - R1, R2, R3for a, R4, R5, R6 for b, R7, R8, R9 for c, and the loop is unrolled 3 times.m = 0; r = 9; u = 3LOOPR1 = R5+1R4 = R8+2R7 = R2+3R2 = R6+1R5 = R9+2 R8 = R3+3R3 = R4+1R6 = R7+2R9 = R1+3ENDLOOPOne can verify that it is not possible to allocate on less than 9 registers when unrollingthe loop 3 times. But this method does not ensure a register allocation with MaxLiveRR n�3337

8 Sylvain Lelait, Guang R. Gao, Christine Eisenbeisregisters, and hence is not optimal. That is, as in this example MaxLive = 8, we may beable to use only 8 registers instead of 9. As we will see later, the round up to the nearestinteger for choosing the unrolling degree may miss an opportunity for achieving an optimalregister allocation.2.2.2 Algorithms Minimizing the Register Requirements: m = 0, min rThere are several algorithms proposed to achieve an allocation with a minimum number ofregisters equal to MaxLive. The algorithm of Eisenbeis et al. [7] successfully allocates theminimal number of registers. Their method, however, does not control the unrolling degreeat all. Another relevant approach is by Eisenbeis et al. [8]. This work is based on a newgraph representation called "meeting graph" that accounts in the same framework for r andu. They are also able to allocate on r = MaxLive registers, with a better u than EJL ingeneral. The main drawback of that method is its time complexity [13]. For our examplethe meeting graph method obtains:LOOPR1 = R5+1R4 = R8+2R7 = R2+3R2 = R6+1R5 = R1+2R8 = R3+3R3 = R4+1R6 = R7+2
R1 = R1+3R4 = R5+1R7 = R8+2R2 = R2+3R5 = R6+1R8 = R1+2R3 = R4+3R6 = R7+1R1 = R2+2

R4 = R4+3R7 = R8+1R2 = R3+2R5 = R5+3R8 = R1+1R3 = R4+2R6 = R6+3ENDLOOPu = 8; r = 8;m = 0As you can see the loop unrolling degree u is much bigger in this case than the earliersolutions although the number of registers used is optimal. This can lead to instructioncache misses if the unrolled loop body becomes too big. Hence you can have two extremesolutions. The �rst one is to use move operations without loop unrolling. This may havea dramatic impact on the schedule. The other one is to use only loop unrolling. Thatmay cause spurious instruction cache misses or even be impracticable due to some memoryconstraints, like in embedded processors. Our method combines both alternatives resultingon a lower unrolling degree and generally less move operations executed.3 The U&M MethodThis section presents our new method. In Section 3.1, we introduce it intuitively and showhow it works on our example. Then in Section 3.3, we describe the algorithms more precisely.
INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 93.1 Intuitive Idea of Our methodOur goal is to avoid a large unrolling degree while still achieving the use of a minimal numberof registers. Our approach is based on two observations.1. In the works presented in Section 2.2.1 that minimize the unrolling degree, the loss ofregisters comes from an over-approximation of the actual number of necessary registers.For instance, the loop we deal with is scheduled with II = 3 cycles and each variableis alive during 8 cycles. Under Lam's method 3 registers are allocated to each variable.But it really needs 2 registers for the 2 full II wrap around plus a fraction of 38 ofan iteration which may not actually need to occupy a register during a full iteration.Therefore one very delicate point for saving registers is how to capture and color thesefraction-of-an-iteration intervals.2. In the works that minimize the number of registers, large unrolling degrees are inducedby the fact that a least common multiple { \lcm" { is computed. Roughly speaking,if you must unroll p times for one set of variables and q times for another one, thenyou have to unroll at least lcm(p; q) times. However, it should be obvious that theregisters allocated to the non-foai part of live ranges cannot be shared with others.Only the foai parts should be the candidates for coloring.Based on these observations our register allocation method is performed with threephases:� Phase 1 : Schedule the loop using a software pipelining algorithm.� Phase 2: Allocate the remaining foai parts of the lifetimes into registers. Unrollingmay be required in this step.� Phase 3: Allocate the non-foai parts of all live ranges using an existing e�cient method,interval graph coloring, without unrolling. Register moves may be used in this step.Phase 2 aims at coloring the foais with an optimal number of colors. Thus unrollingmay be necessary to reduce the number of registers, even if each interval spans less thanone \turn" of II cycles, as it is the case in our current example. These intervals are thencolored according to u, the computed unrolling degree. For allocating these foai lifetimeswe have designed a new heuristic that takes advantage of the fact that no interval spansmore than one iteration, and that usually such interval families do not need to be unrolledon more than one iteration to be colored optimally. Our algorithm will aggressively lookfor such an optimal coloring without using unrolling. Since this is a "common case" undercyclic interval graphs for foais derived in practice, our simple heuristic scores surprisinglywell.The bu�ers are then allocated to registers in Phase 3 according to the allocation of thefoais during the second phase. The assignment of each bu�er can be performed as follows.Assume a bu�er b of size d, and the last turn is a fraction-of-an-iteration interval. Then, weRR n�3337

10 Sylvain Lelait, Guang R. Gao, Christine Eisenbeis

(b)

(a)

0 1 2 3

a

b

b’

c

a’

0 1 2 3 4 65

R3

R5

R6

a1

a2
R4

b1
R4

R5
b2

R6

c’
c’

c1

c2

R2

R7
R7

R8

R8

R1
R1c’2

R2c’1

c’2

b’2 R2

R1b’1

a’1

a’2 R1

Figure 2: A lifetimes family and its register allocation with our methodallocate (d � 1) registers for b and his copies in the u-unrolled loop. The last foai and itsinstances from other iterations are assigned the registers derived from Phase 2.So if we apply our method to the same example as the other methods, we obtain thefollowing result. In Figure 2(a), variable lifetimes are depicted by intervals on a circle cut atthe origin. Thus we have a line where the last point is equal to the �rst one. Each variableis alive during 8 cycles, this means 3 iterations as II = 3. Each variable is split into one6 cycles interval and one 2 cycles interval with the latter being the foai. One can see it inFigure 2(a) where lifetime a is cut after 6 cycles and hence gives foai a0. The 3 foais a0,b0 and c0 are allocated on R1 and R2, by unrolling the loop twice. The bu�er part of a,(resp. b and c) are allocated on R3 and R4 (resp. R5 and R6, and R7 and R8). In theory6 move per iteration should be inserted. However since each bu�er is two iterations longand the loop is unrolled twice, this means that each of the corresponding lifetimes do notoverlap with themselves and can be assigned to only one register. Thus we can alternativelyassign the bu�er parts to each register and avoid the extra move instructions. This way weobtain 3 move per iteration. The �nal register allocation is shown in Figure 2(b) and the�nal code is generated as shown below, where 'S1;S2' denotes that S1 and S2 are executedin parallel. m = 3; r = 8; u = 2LOOPR3 = R2 + 1; R2 = R3R5 = R1 + 2; R1 = R5R7 = R2 + 3; R2 = R7R4 = R1 + 1; R1 = R4R6 = R2 + 2; R2 = R6R8 = R1 + 3; R1 = R8ENDLOOP INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 11
c

1 2 3 4 5 6 70

a

b

Figure 3: This interval family must be unrolled twice to be colored optimallyWe can then summarize the results of the di�erent methods as follows:� Lam: m = 0; r = 9; u = 3.� EJL and MTG: m = 0; r = 8; u = 8.� U&M: m = 3; r = 8; u = 2.Thus we can see that our algorithm does better than Lam's regarding the number ofregisters and the unrolling degree, and better than the loop unrolling methods EJL and MTGwith regard to the computed unrolling degree. A reasonable number of move operations areintroduced to achieve this result.In summary, there are two novel aspects of our approach. First, the 3-phases strategyis new, which permits us the separation of the bu�er register allocation from the foais, thusreducing the overall unrolling degree in general. Second, the method of register allocation offoais is itself novel, taking into consideration the features of the circular-arc graphs of foais{ a topic of the next subsection.3.2 Circular-Arc Graph Coloring Problem Is HardWe deal with cyclic interval families of live ranges generating circular-arc graphs as inter-ference graphs [10] for usual register allocation. In the sequel of this paper, the maximalwidth of an interval family I will also be noted rI . It corresponds to the maximum numberof lifetimes overlapping a point and is equal to MaxLive. Circular-arc graph q-coloring isknown to be a polynomial problem, whereas �nding the chromatic number of these graphsis an NP-complete problem [9] like a general coloring problem. Fortunately some e�cientheuristics exist [10]. Below, we only briey review with an example.A typical situation is shown in Figure 3. It is known that although rI = 2, the graphgenerated by I needs 3 colors without unwinding. Finding this 3-coloring is NP-hard ingeneral, and some heuristic methods have been presented in [10]. This interval family mustbe unrolled on two iterations to be allocated with 2 registers.However, we can try to unwind I into a number of u repetitions, and you may get itcolored with rI colors, the optimal you can do. So an interesting question is what is areasonable value of u, i.e. how much do you need to unwind in order to get a minimumcoloring, and how. Furthermore unrolling the loop on rI iterations does not always ensure aregister allocation with rI registers [8]. Eisenbeis et al. [8] managed to give an upper boundRR n�3337

12 Sylvain Lelait, Guang R. Gao, Christine Eisenbeis
1

1 2 3 4 5 6 70

2

7
6

3

4

8 9 10

5

Figure 4: The set of intervals is composed of 2 disjoint interval sets.of unrolling for any cyclic interval family. This bound is equal to lcm(r1; ::rn), where ri isthe number of iterations spanned by a connected component of their meeting graph. Thus,determining the intervals belonging to them is a key in our problem. But we will not usethe meeting graph as it can only be used on families of constant width. This feature obligesthem to enlarge their graph which can lead to excessive computation time.3.3 Coloring of FOAI lifetimes: Our SolutionIn this section, we discuss our main algorithms for coloring interval graphs derived fromfoais. A useful concept used in our method is the tight interval set. The beginning andthe end of an interval i of an interval family I on a circle C are denoted by b(i) and e(i).We have the set of the points which are not covered by interval i, P (i) = fp 2 C; p 62 igand the set of its endpoints E(i) = fb(i); e(i)g. So a tight interval set T is de�ned asT = fi 2 I; 8j 2 T; P (i) \ P (j) 6= ; _ E(i) \ E(j) 6= ;g. It contains intervals which eithershare an endpoint or do not cover at least one common point. Figure 4 shows an intervalfamily composed of two tight interval sets, namely f1; 2; 5g and f3; 4; 6; 7g.In general, it is useful to decompose the tight interval sets further | as much as pos-sible { in order to reduce the total unrolling degree required to achieve an optimal registerallocation. There are many di�erent ways for such decomposing. However, our experimentsindicate that for an overwhelming majority of the interval graphs derived from foais in realloops (98.13% of 1394 real loops), there exists a decomposition with unrolling degree equalto 1 that achieves the optimal register allocation. Based on such an observation, we presenta heuristic to aggressively decompose an interval family into subsets most of which possiblyspan at most one iteration.In the following we assume that I is a set of cyclic intervals, each spanning only a fractionof an iteration. The graph associated to the interval family I will be colored using rI colorswith at most an unwinding factor u equal to the minimum between the lcm of the width ofthe tight interval subsets building I and the lcm of the width of the tight interval sets. Thenumber of iterations spanned by a tight interval set T is noted w(T). A tight interval setT can be decomposed in tight interval subsets t1; :::tn, whose number of iterations spannedare noted w(ti). INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 133.3.1 Greedy HeuristicThe greedy heuristic consists of two algorithms, one to �nd an unrolling degree of the foais,another to color the foais once they are unrolled. The aim of the �rst one is to �nd thegreatest number of tight interval subsets spanning one iteration. This is in contrast to otheralgorithms such as MTG [8] which try to �nd a general optimal solution but do not focuson such special decompositions. The principle of Algorithm 1 is the following. We startwith the �rst interval and take the next interval on the circle. If there is a choice, we takethe one which allows to build a tight interval subset with the intervals already visited, orif it is not possible, the smallest one. Then we check if a tight interval subset t can bebuilt with some of the intervals already visited; if several are possible we choose the onewhich spans the minimum of iterations (w(t) minimum), and we remove t from our listand put its elements aside in the list C. We repeat this process until C contains all theintervals. Then we build the tight interval sets Ti and compute their weight w(Ti). Finallywe can compute the unrolling degree u = min(lcm(w(T1); :::; w(Tm)); lcm(w(t1); :::w(tn)))and apply Algorithm 2 to color the foais.Sometimes, it is not possible to �nd an optimal decomposition with unrolling degreeequal to 1. In this case, our algorithm will still work and try to �nd an optimal solutionat a higher unrolling degree. Example 1 shows how our algorithms work for a foai familywhen there are several tight interval subsets and an optimal decomposition exists with anunrolling degree equal to 1.Example 1 In the case of the example of Figure 4, Algorithm 1 gives the following result:C = f1; 5; 2; 6; 4; 3; 7g and:� T1 = ft1g = f1; 5; 2g with w(t1) = 2� T2 = ft2; t3g = ff7g; f6; 4; 3gg with w(t2) = 1 and w(t3) = 2.Hence the unrolling degree computed is u = lcm(2; 1; 2) = 2. Then we can compute the5-coloring on the 2 iterations. Below ij represents lifetime i at iteration j.� T1{ Color 1: 11; 51; 22{ Color 2: 12; 52; 21 � T2{ Color 3: 71; 72{ Color 4: 61; 42; 31{ Color 5: 62; 41; 32 33.3.2 Hybrid HeuristicIn practice, we found that it is often useful to simplify and reduce the interval family beforethe application of our greedy algorithm. Hence, we have designed the following two-stephybrid method based on our greedy heuristic. This method is the U&M method.RR n�3337

14 Sylvain Lelait, Guang R. Gao, Christine Eisenbeis
Algorithm 1 The Circular Register Relay AlgorithmRequire: a set I of fraction of an iteration intervals of maximal width rIEnsure: a cyclic register relay road-map C: an ordered sequence of nodes in jIj1: Initialize the coloring sequence Cp = ;, C = ;.2: Starting with the smallest leftmost interval x, let I = I � fxg3: while (I 6= ;) do fMain loop which visits each interval onceg4: x0 = Next(x)5: Cp = Cp + fx0g6: if (end(x) 6= begin(x0)) then7: Check if 9 y 2 Cp such that end(x) < begin(y) < begin(x0) and such that w(t(y; :::; x)) =minz(t(z; :::; x)). If so remove fy; :::; xg from Cp and add it to C.8: else fCheck if x0 ends when a visited interval still in Cp beginsg9: if (9 y 2 Cp; end(x0) = begin(y)) then10: Remove fy; :::; x0g from Cp and add it to C.11: end if12: end if13: I = I � fxg14: end while15: if (Cp 6= ;) then16: ii = i17: while (Cp 6= ;) do fLoop which scans the remaining intervals in Cpg18: if (end(Cp(ii� 1)) 6= begin(Cp(ii))) then19: Check if 9 y 2 Cp such that end(Cp(ii � 1)) < begin(y) < begin(Cp(ii)) and such thatw(t(y; ; :::; Cp(ii� 1))) = minz(t(z; :::; Cp(ii� 1))). If so remove fy; :::; Cp(ii� 1))g fromCp and add it to C.20: end if21: ii = ii� 122: end while23: if (Cp 6= ;) then24: Remove fCp(1); :::; Cp(k)g from Cp and add them to C.25: end if26: end if27: Build the tight interval sets and their Ti.28: Return C

INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 15Algorithm 2 Coloring algorithm of the unrolled lifetimesRequire: A cyclic interval family I and a relay map CEnsure: a rI -coloring of the circular-arc graph G associated to I1: Unwind I u = min(lcm(w(T1); :::; w(Tm)); lcm(w(t1); :::; w(tn))) times2: for i = 1 to rI do3: call Relay(i; C) beginning at iteration i4: end for5:6: Procedure Relay(i,C)7: Get color number i8: Relay i in the successive u iterations i.e. i; i+1; ::u; 1; ::i� 1) according to C and the tis (or Tisdepending on the way u is computed) and color the intervals along the way.The hybrid algorithm consists of two steps. First we simplify the interval family bypruning intervals using the �rst step of the so-called fat-cover heuristic of Hendren et al. [10].A fat cover is a set of non-overlapping intervals covering all the \fat points", i.e. pointscovered by MaxLive intervals, of the interval graph in one iteration. Hence each fat coverbuilt corresponds to a tight interval subset which spans one iteration. Then we apply thegreedy heuristic on the remaining intervals. By reducing the size of the interval family, wereduce the number of choices made by the greedy heuristic, hence leading to a better result.We present in Example 2 how the overall method works on a real loop.Example 2 This example shows the complete process on a loop where the foai family needsto be unrolled twice. Figure 5 shows the lifetimes produced from the loop ucbqsort-3 of thebenchmark Nasa7 of Spec92fp.3 bu�ers are occupied entirely. They will be allocated to registers R1 for g, R2 for f andR3 for d. The foai family I is composed of the following intervals: a, b, c, d0 (a piece of d),e, f 0 (a piece of f).Let's describe the way the decomposition is obtained and the unrolling degree is compu-ted according to Algorithm 1. We start with the smallest interval beginning at the origin,that is d0, thus Cp = fd0g. Then we add c which follows immediately d0, b which followsc and e which follows b, so Cp = fd0; c; b; eg. As e ends when d0 begins, we can buildt1 = fd0; c; b; eg, with w(t1) = 2; we update C, C = fd0; c; b; eg and Cp, Cp = ;. Thenwe add a to Cp and f 0, Cp = fa; f 0g. As we had to go over the beginning of a to addf 0, we can build a tight interval subset t2 = fag, with w(t2) = 1. We update C and Cp,C = fd0; c; b; e; ag and Cp = ff 0g. Finally we build the last tight interval subset, t3, andupdate C and Cp. Hence t3 = ff 0g, with w(t3) = 1, C = fd0; c; b; e; a; f 0g and Cp = ;.Thus, we obtained only one tight interval set T with w(T) = 4, which has been dividedin 3 tight interval subsets. We have the following: t1 = fd0, c, b, eg with w(t1) = 2, t2 =fag with w(t2) = 1, t3 = ff 0g with w(t3) = 1.
RR n�3337

16 Sylvain Lelait, Guang R. Gao, Christine EisenbeisHence, we have u = min(lcm(4); lcm(2; 1; 1)) = 2, so we must unroll the foai family on 2iterations to obtain a coloring with 4 colors using the decomposition with the tis as it givesthe lower lcm.The coloring of the bu�ers is made according to the coloring of the pieces belonging tothem. We check if a bu�er and its foai can have the same color in order to lower the numberof move instructions without changing the coloring of the other foais. We just have to insertmove instructions to ensure the validity of the live range d. For f it is obvious that wedon't need to insert this move since we can just allocate the same register for f1, f 01 and f2,f 02 to avoid it. This leads to the �nal allocation shown in Figure 5. The move instructionsare depicted by thick dashes inside a live range. After scheduling, the loop would requirethe following move operations, number of registers and unrolling degree with the indicatedmethod:� Bu�ers and register renaming [16] : m = 2; r = 9; u = 1.� Modulo Variable Expansion [12] : m = 0; r = 8; u = 2.� U&M : m = 1; r = 7; u = 2.� Loop unrolling [7]: m = 0; r = 7; u = 4.� Loop unrolling [8] : m = 0; r = 7; u = 6.
0 1 2 3 4 5

����

����

����

����

����

����

����

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

������

���� ����

����

��
��
��
��

����

��
��
��
��

�� ��

�� ��

�� ��

��

��

��

��

��

��

a

b

c

e

f

g

0 1 2 3 4 5 6 7 9 108

a1

b1

c1

d

a2

b2

c2

d2

R1 R1

R1

R7 R7

R2

R5 R4

R4 R3

R3

R5 R4 R5

R5 R4

R6 R6

d

(b)(a)

f’

d’

g1

g2

f1

f2

e2e1

R5

f’1
f’2

d’2
d’1

Figure 5: Allocation for the loop ucbqsort-3 from the Eqntott benchmark with U&M4 Some Theoretical ResultsWe present in this section some theoretical results about the complexity of our algorithms.These are both polynomial and ensure an optimal allocation for the foai family. INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 17Lemma 1 Algorithm 1 always terminates and returns a list C where each interval of Iappears exactly once.Proof : Let the interval family I has a width rI . We claim that a left-to-right sweepthrough one iteration of the main loop will reduce the maximal width uniformly at least byone. That is we can consider that the visited intervals have been removed from the graphwhen the sweep starts from the next iteration. At the end, all intervals will have been addedto Cp. The last loop removes the remaining intervals from Cp into C. Hence C contains allthe intervals only once. 2Lemma 2 Algorithm 1 has a complexity O(log II(n+ logn)).Proof : The main loop visits each interval only once and at each iteration the circle ispartially scanned. This leads to a complexity of O(log II n) for the main loop. The secondloop visits each remaining interval in Cp once and scans also partially the circle at eachiteration leading to a complexityO(log II logn). Hence the overall complexity of Algorithm 1is O(log II(n+ logn)). 2Now we present some results about the complexity of the coloring algorithm itself. Thisleads us to conclude that our method, which includes Algorithms 1 and 2, is of polynomialcomplexity.Lemma 3 Algorithm 2 will fully color the circular-arc graph G induced by the u-unrolledfamily I, which contains u� jI j intervals, with rI colors.Proof : The interval family is duplicated u = min(lcm(w(T1); :::; w(Tn); lcm(w(t1); :::; w(tm))times. Thus each ti, resp. Ti, will require w(ti), resp. w(Ti) colors for its intervals and theircopies. As we havePni=1 w(Ti) =Pmi=1 w(ti) = rI , we will have a coloring with rI colors. 2Lemma 4 Algorithm 2 has a complexity of O(un).Proof : The unwound interval family has u� jI j intervals. Since it sweeps the family left-to-right exactly once, and at each point in the sweep, the cost of picking the next one isconstant, the total cost is O(u� jI j). 2This is the best one can do since you have to color u� jI j intervals. Note that there isno claim that our method will do the minimum unfolding. Hence the optimal coloring ofany graph associated with a cyclic interval family I , made only of fraction-of-an-iterationintervals, can be determined in polynomial time. Furthermore we are to able to compute thenumber of registers which will be used to allocate the whole loop. The following theoremgives the total number of registers used to allocate the whole loop, foais and bu�ers.
RR n�3337

18 Sylvain Lelait, Guang R. Gao, Christine EisenbeisTheorem 1 The register allocation of any loop without spilling with our method will requirea number of registers equal to: nXi=1 bu�ersi � jI j+ rIThis achieves an allocation with an optimal number of registers.Proof : A bu�er-optimal scheduled loop will needPni=1 bu�ersi for the lifetimes occupyingn bu�ers. In our case, the bu�ers will occupy only rbu�ers = Pni=1 bu�ersi � jI j registerssince we will reallocate jI j fraction-of-an-iteration intervals. As said before, the foais willoccupy rI registers. Hence the whole loop will need Pni=1 bu�ersi � jI j + rI registers for avalid allocation. Furthermore this is equal to MaxLive as MaxLive = rI + rbu�ers. 2Finally the following theorem allows us to compute the maximum number of move ope-rations inserted in the u-unrolled loop.Theorem 2 The number m0 of move instructions inserted in the u-unrolled loop for a va-riable i spanning fully d iterations is at most :m0 = � d� 1 + (fi � u) if d > u(d� 1)(u mod d) + (fi � u) otherwisewhere fi = 1 if i has a foai part, 0 otherwise.Proof : We already know that the number of move operations inserted for a lifetime span-ning d iterations is d�1. When the loop is unrolled u times and d > u, then the lifetime lastlonger than one iteration, and each of them requires bd�1u c move operations. Hence d � 1move instructions are necessary for the u lifetimes of the unrolled loop. Then we have umove for the u foai parts of the lifetimes if there is any. When d � u, the lifetimes does notlast longer than one iteration, and we must allocate the u lifetimes of the unrolled loop withd registers, so u mod d lifetimes have to be allocated to several registers. For each of theselifetimes, (d � 1) move operations are necessary. The same as the previous case occurs forthe foai parts. 2In this case, we havem0 = m�u, wherem is the number of move operations per iterationof the original loop. For instance, if a variable spans 5 iterations and the unrolling degree wefound is 2. Then if the original loop is executed 4 times, with the register renaming method(4� 4) 16 move instructions will be executed, whereas with the U&M method only (2� 4)8 move instructions will be executed. We did not actually make any measurements on thenumber of move operations executed, but in some cases we should execute less and in somecases more instructions than register renaming methods.
INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 195 Experimental ResultsThis section discusses the main experimental results. In Section 5.1, we present the way weconducted the experiments. In Section 5.2, we described the main results we obtain, and�nally the whole results are presented and commented in Section 5.3.5.1 The Experimental TestbedWe have implemented our new algorithm for loop register allocation in the MOST test-bed [19], which was implemented at McGill University. It allows to compare several schedu-ling heuristics and is able to generate optimal pipelined loops. We also implemented outsideMOST the heuristics MTG [8], EJL [7], and of Hendren et al. [10] to use our heuristics forcomputing an unrolling degree and also to test Lam's heuristic [12].In our study, we used more than 1000 loops from several benchmarks, namely Spec92fp,Spec92int, Livermore loops, Linpack and Nas. We scheduled these loops with DESP [21].5.2 Summary of the Main ResultsWe tested the e�ciency of our new approach in terms of unrolling degree of the foai familyand in terms of the total number of registers needed to allocate the loops. The main resultsare summarized as follows:� Our method to compute an unrolling degree is better than the EJL heuristic [7] ingeneral, and is almost always better than MTG [8] for �nding the optimal unrollingdegree when it is equal to 1. The unrolling degree found is always lower than if thewhole loop had to be unrolled.� The overall number of registers needed is always as good as, and sometimes betterthan, Lam's heuristic and achieves the optimal like MTG [8].� Our heuristic to compute an unrolling degree is much faster than the MTG heuristic [8],and as fast as the EJL heuristic [7].In summary, at run time our method will improve the overall register usage and introduceless spill code into loops when it is needed. Due to less unrolling the cache behavior willalso be improved.5.3 Detailed Experiments and Analysis5.3.1 Unrolling degreeWe compared the U&M heuristic with two other methods. The �rst one is the methodof Eisenbeis et al. [7], noted EJL, which computes an unrolling degree by looking for theorder of a permutation on the intervals necessary to obtain a valid coloring. The second one
RR n�3337

20 Sylvain Lelait, Guang R. Gao, Christine Eisenbeisdeveloped by Eisenbeis et al. [8], noted MTG, introduces a new kind of graph and solvesthe problem by looking for a decomposition of this graph.In Figure 6, greedy denotes our greedy heuristic to compute an unrolling degree in thefoais, and U&M our hybrid heuristic. The �rst column represents the test, the second onerepresents the number of loops and the last one represents the percentage over the total ofloops. The same for the second part of the �gure.MTG better than greedy 62 4.48 % MTG better than U&M 5 0.36 %MTG equal to greedy 1323 95.52 % MTG equal to U&M 1378 99.5 %MTG worst than greedy 0 0 % MTG worst than U&M 2 0.14 %greedy better than EJL 72 5.2 % U&M better than EJL 83 5.99 %greedy equal to EJL 1269 91.62 % U&M equal to EJL 1297 93.65 %greedy worst than EJL 44 3.18 % U&M worst than EJL 5 0.36 %U&M better than greedy 58 4.19 %U&M equal to greedy 1327 95.81 %U&M worst than greedy 0 0 %Figure 6: Comparisons between the heuristics MTG, EJL, our greedy and U&M heuristicsFigure 7 shows the related performance of each heuristic for each benchmark. We indicatethe percentage of loops which required to be unrolled once, twice, three times or more.Some observations:� From Figure 6, the meeting graph heuristic gave almost always the best result, in only2 cases over 1385 U&M was better.� Our heuristic gave a better result than EJL in 5.99% of the cases, the same result in93.65 % of the cases and a worst result in only 0.36 % of the cases.� Our heuristic was worse than the meeting graph heuristic in only 5 cases (0.36%),which is a very good result.� From Figure 7, we can see that between 91.84% and 100% of the loops need only tobe unrolled by one iteration, 1.3 % need to be unrolled by 2 iterations. That is, itis always lower than the width of the foai family or the width of the whole intervalfamily.� Our heuristic is more e�cient than the others methods to �nd the optimal unrollingdegree when it is equal to 1. In fact, it gives a worst result than MTG in only onebenchmark, Appsp.This shows once more that our U&M heuristic has overall good performances over EJL,and is a bit less e�cient in general than the meeting graph heuristic. Moreover we can seethat most of the loops do not require to be unrolled (unrolling degree equal to 1). This isan advantage for the U&M heuristic that aggressively tries to �nd a decomposition whichINRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 21Benchmark MTG U&M EJL1 2 1 2 3 > 3 1 2 3 > 3Livermore 96.77% 3.23% 96.77% 3.23% 83.87% 16.13%Linpack 100% 100% 100%Spec92fpAlvinn 100% 100% 94.44% 5.56%Doduc 100% 100% 100%Ear 100% 100% 95.52% 4.08%Fpppp 100% 100% 100%Hydro2d 96.91% 3.09% 97.42% 2.58% 93.3% 3.09% 2.58% 1.03%Mdljdp2 100% 100% 95.12% 4.88%Mdljsp2 100% 100% 75.00% 8.33% 8.33% 8.33%Nasa7 97.87% 2.13% 97.87% 2.13% 85.1% 12.77% 2.13%Ora 100% 100% 100%Spice2g6 97.09% 2.91% 98.06% 1.94% 91.26% 1.94% 2.91% 3.89%Su2cor 100% 100% 100%Tomcatv 100% 100% 77.78% 22.22%Wave 100% 100% 100%Spec92intEqntott 91.18% 8.82% 94.12% 5.88% 82.35% 11.76% 5.88%Espresso 99.5% 0.5% 99.5% 0.5% 95.46% 3.03% 1.51%Gcc 100% 100% 94.78% 4.02% 0.4% 0.8%Li 100% 100% 100%Sc 100% 100% 100%NasApplu 94.81% 5.19% 94.8% 3.9% 1.3% 90.9% 3.9% 1.3% 3.9%Appsp 91.84% 8.16% 90.82% 6.12% 1.02% 2.04% 85.72% 9.18% 1.02% 4.08%Buk 100% 100% 100%Cgm 100% 100% 100%Mgrid 100% 100% 92.68% 2.44% 4.88%Figure 7: Comparison of performances about computing the unrolling degree of the foaisbetween the heuristics EJL, MTG and our U&M heuristicleads to an unrolling degree equal to 1. Hence in this case it is faster and more e�cientthan the meeting graph heuristic which is more "general purpose", it does not try to �ndan unrolling degree equal to 1, but only a low unrolling degree. Furthermore, as the foaisare "sparse", we must enlarge the meeting graph much more than usual, and this degradesits performance. Finally, our method requires a smaller unrolling degree than the heuristicsused previously in [7, 8] where they are applied on the whole live ranges of the loop variables.5.3.2 Total number of registers usedWe computed also the number of registers saved by this new method in comparison withthe method of Lam [12] and MTG [8]. In Figure 8, we computed the average number ofregisters found by each heuristic per loop for each benchmark. We can see that our method,U&M, allocates always with the optimal number of registers like the MTG method. WeRR n�3337

22 Sylvain Lelait, Guang R. Gao, Christine Eisenbeisobtain always as good or better heuristic than Lam's algorithm. The gains are sometimessubstantial like for Fpppp, Applu or Appsp where we gain between 1 and 2 registers in averagefor loops which need 25.72 registers in average.Benchmark # loops average # reg. Lam average # reg. MTG average # reg. U&MLivermore 28 20.61 19.54 19.54Linpack 27 10.15 9.89 9.89Spec92fpAlvinn 19 10.16 10.16 10.16Doduc 22 13.50 13.32 13.32Ear 53 9.47 9.28 9.28Fpppp 17 23.47 22.47 22.47Hydro2d 241 9.86 9.55 9.55Mdljdp2 45 9.04 8.87 8.87Mdljsp2 11 17.00 16.64 16.64Nasa7 38 16.03 15.32 15.32Ora 6 7.00 7.00 7.00Spice2g6 98 9.41 9.18 9.18Su2cor 9 5.78 5.78 5.78Tomcatv 14 13.14 13.00 13.00Wave 2 13.00 13.00 13.00Spec92intEqntott 35 8.69 8.46 8.46Espresso 173 5.72 5.64 5.64Gcc 256 6.80 6.74 6.74Li 22 5.64 5.64 5.64Sc 72 5.82 5.82 5.82NasApplu 75 27.19 25.49 25.49Appsp 84 28.24 26.58 26.58Buk 34 4.74 4.74 4.74Cgm 20 5.10 5.10 5.10Mgrid 51 6.76 6.76 6.76Figure 8: Gains in registers with respect to Lam's heuristic and MTG5.3.3 Execution Time of Our MethodWe made also some execution time comparison in order to verify the timing of our approach.We chose to compare our timing result with EJL and the meeting graph method since thesealso try to minimize the loop unrolling degree. In Figure 9, the heuristics are labeled thesame way as before, the execution times are given in seconds. For each benchmark, we onlycomputed the average execution time for loops where it was measurable with the timing
INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 23routine we used on the experimental system. Only the time required for computing theunrolling degree has been measured, as the coloring time itself is the same in the threeheuristics. As expected the meeting graph heuristic is more time consuming because of theunit intervals added to have a constant width. In some cases these new intervals slow downthe heuristic dramatically. In comparison with EJL, ours is also as fast or even faster, andwe are quite encouraged by this result, since hers is known to be very time e�cient. Theexamples presented in Figure 9 are the biggest in term of lifetimes handled by MOST in thevarious benchmarks, and have between 30 and 55 lifetimes.Benchmark greedy EJL MTG Benchmark greedy EJL MTGLivermore 0.003 0.027 100.2 Nasa7 0.005 0.067 770.54Linpack 0.01 0.01 25.27 Spice2g6 0.00 0.043 5.18Spec92fp Spec92intFpppp 0.005 0.05 7.04 Eqntott 0.00 0.03 19.32Doduc 0.005 0.015 6.63 Gcc 0.00 0.04 2.26Ear 0.005 0.015 11.74 NasHydro2d 0.005 0.04 26.53 Applu 0.005 0.06 0.9Mdljdp2 0.005 0.075 287.42 Appsp 0.00 0.05 83.84Figure 9: Execution times of the three heuristic on some examples6 Related WorkIn Section 2 we have already discussed several important contemporary works which aremost related to this paper. These are works about Modulo Variable Expansion [12] andmethods involving loop unrolling [7, 8].Ning and Gao [16] only consider bu�ers to allocate the loop. Hendren et al. [10] can nothandle lifetimes which are longer than one iteration.Mangione-Smith et al. [14], Rau [18], Eichenberger and Davidson [6] presented somework related to register allocation and instruction scheduling, but they do not perform theallocation e�ectively and only predict the register requirements for a given schedule.Rau et al. [17]also present some interesting work with some heuristics which work verywell, but they mainly use hardware features like predicated execution and rotating register�le [5], which are beyond the scope of this paper. Furthermore the only method presentedwhich do not use these features is the Modulo Variable Expansion method. Bod��k andGupta [2] also present a method to do the register allocation for arrays that can also lowerthe number of move instructions inserted.
RR n�3337

24 Sylvain Lelait, Guang R. Gao, Christine Eisenbeis7 ConclusionIn this paper we proposed a novel way to optimize register allocation in loops, when a bu�eroptimal schedule has already been found. The original bu�ers are to greedy in registers, sowe coalesce pieces of bu�ers into the same registers, after a possible step of loop unrolling, tominimize register use. Loop unrolling, another alternative to reduce register requirements,may decrease performance due to instruction cache misses. Our method is a trade-o� bet-ween unrolling the scheduled loop body and register renaming, which still optimizes thenumber of registers needed.We designed a heuristic for this purpose, and compared it with two others heuristicsaimed at computing a loop unrolling degree. Our method combines the advantages of bothloop unrolling and register renaming. Compared to unrolling the whole loop, the unrollingdegree computed is lower, so we will have less problems with instruction cache management.In comparison with register renaming [3, 15], we will use less or as many move instructionsbetween live range pieces as the loop will be unrolled to get an allocation with an optimalnumber of registers. The experimental results we obtained with MOST show that ourheuristic is almost as e�cient as MTG and is faster than the others heuristics. Furthermorethe number of registers used is always equal to MaxLive like other methods dealing withloop unrolling [7, 8]. we showed that our method is e�ective and gets an optimal result.We plan to extend the method to compute the unrolling degree for general loops, wherelive ranges are alive during several iterations, we also intend to study the possibility ofminimizing spill cost using our method. In addition we will measure the number of moveoperation executed.References[1] Erik R. Altman. Optimal Software Pipelining with Function Unit Register Constraints.PhD thesis, McGill University, Montr�eal, Canada, October 1995.[2] Rastislav Bod��k and Rajiv Gupta. Array Data-Flow Analysis for Load-Store Optimiza-tions in Superscalar Architectures. In Proceedings of the Eighth Annual Workshop onLanguages and Compilers for Parallel Computing, number 1033 in LNCS, pages 1{15,Columbus, Ohio, August 1995. Springer Verlag.[3] Ron Cytron and Jeanne Ferrante. What's in a Name ? or the Value of Renaming forParallelism Detection and Storage Allocation. In Sartaj K. Sahni, editor, Proceedingsof the 1987 International Conference on Parallel Processing, pages 19{27, UniversityPark, Pennsylvanie, August 1987. London : Penn State press.[4] James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt. Overlapped Loop Supportin the Cydra 5. In Proceedings of the Third International Conference on ArchitecturalSupport for Programming Languages and Operating Systems, pages 26{38, Boston,Massachusetts, 1989.
INRIA

A New Fast Algorithm for Optimal Register Allocation in Modulo Scheduled Loops 25[5] J.C. Dehnert and R.A. Towle. Compiling for the Cydra 5. Journal of Supercomputing,7(1/2), January 1993.[6] Alexandre E. Eichenberger, Edward S. Davidson, and Santosh G. Abraham. MinimumRegister Requirements for a Modulo Schedule. In Proceedings of the 27th Annual Inter-national Symposium on Microarchitecture, pages 75{84, San Jose, California, November30{December 2, 1994. ACM SIGMICRO and IEEE Computer Society TC-MICRO.[7] Christine Eisenbeis, William Jalby, and Alain Lichnewsky. Compiler techniques foroptimizing memory and register usage on the Cray-2. International Journal on HighSpeed Computing, 2(2), June 1990.[8] Christine Eisenbeis, Sylvain Lelait, and Bruno Marmol. The Meeting Graph : a NewModel for Loop Cyclic Register Allocation. In Lubomir Bic, Wim B�ohm, ParaskevasEvripidou, and Jean-Luc Gaudiot, editors, Proceedings of the IFIP WG 10.3 WorkingConference on Parallel Architectures and Compilation Techniques, PACT'95, pages264{267, Limassol, Cyprus, June 27{29 1995. ACM Press.[9] M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The complexity ofcoloring circular arcs and chords. SIAM J. Alg. Disc. Meth., 1(2):216{227, June 1980.[10] Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and Chandrika Mukerji. A regis-ter allocation framework based on hierarchical cyclic interval graphs. The Journal ofProgramming Languages, 1(3):155{185, September 1993.[11] Richard A. Hu�. Lifetime-Sensitive Modulo Scheduling. SIGPLAN Notices, 28(6):258{267, June 1993. Proceedings of the ACM SIGPLAN '93 Conference on ProgrammingLanguage Design and Implementation.[12] Monica S. Lam. Software Pipelining : An E�ective Scheduling Technique for vliwMachines. SIGPLAN Notices, 23(7):318{328, July 1988. Proceedings of the ACM SIG-PLAN '88 Conference on Programming Language Design and Implementation.[13] Sylvain Lelait. Contribution �a l'allocation de registres dans les boucles. Th�ese de Doc-torat, Universit�e d'Orl�eans, January 1996.[14] W. Mangione-Smith, S. G. Abraham, and E. S. Davidson. Register Requirements ofPipelined Processors. In Conference proceedings / 1992 International Conference onSupercomputing, pages 260{271, Washington, DC, USA, July 19{23 1992. ACM Press.[15] A. Nicolau, R. Potasman, and H. Wang. Register Allocation, Renaming and Their Im-pact on Fine-Grain Parallelism. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,editors, Proceedings of the Fourth international workshop on Languages and Compilersfor Parallel Computing, number 589 in LNCS, Santa Clara, California, August 7-9 1991.Springer Verlag.
RR n�3337

26 Sylvain Lelait, Guang R. Gao, Christine Eisenbeis[16] Qi Ning and Guang R. Gao. A Novel Framework of Register Allocation for SoftwarePipelining. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages, pages 29{42, Charleston, SouthCarolina, January 1993.[17] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register Allocation forSoftware Pipelined Loops. SIGPLAN Notices, 27(7):283{299, July 1992. Proceedingsof the ACM SIGPLAN '92 Conference on Programming Language Design and Imple-mentation.[18] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipeliningloops. In Proceedings of the 27th Annual International Symposium on Microarchitecture,pages 63{74, San Jose, California, November 30{December 2, 1994. ACM SIGMICROand IEEE Computer Society TC-MICRO.[19] John Ruttenberg, G. R. Gao, A. Stouchinin, and W. Lichtenstein. Software pipeliningshowdown: Optimal vs. heuristic methods in a production compiler. In Proceedings ofthe ACM SIGPLAN '96 Conference on Programming Language Design and Implemen-tation, pages 1{11, Philadelphia, Pennsylvania, May 22{24, 1996.[20] Peter A. Steenkiste and John L. Hennessy. A simple interprocedural register allocationalgorithm and its e�ectiveness for Lisp. ACM Transactions on Programming Languagesand Systems, 11(1):1{32, January 1989.[21] Jian Wang, Christine Eisenbeis, Martin Jourdan, and Bogong Su. DEcomposed Soft-ware Pipelining : a New Perspective and a New Approach. International Journal onParallel Processing, 22(3):357{379, 1994. Special Issue on Compilers and Architecturesfor Instruction Level Parallel Processing.

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route desLucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)http://www.inria.fr

ISSN 0249-6399

