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ABSTRACT

As the complexity of distributed computing systems increases,
systems management tasks require significantly higher lev-
els of automation; examples include diagnosis and predic-
tion based on real-time streams of computer events, setting
alarms, and performing continuous monitoring. The core of
autonomic computing, a recently proposed initiative towards
next-generation IT-systems capable of ‘self-healing’, is the
ability to analyze data in real-time and to predict potential
problems. The goal is to avoid catastrophic failures through
prompt execution of remedial actions.

This paper describes an attempt to build a proactive pre-
diction and control system for large clusters. We collected
event logs containing various system reliability, availability
and serviceability (RAS) events, and system activity reports
(SARs) from a 350-node cluster system for a period of one
year. The ‘raw’ system health measurements contain a great
deal of redundant event data, which is either repetitive in
nature or misaligned with respect to time. We applied a
filtering technique and modeled the data into a set of pri-
mary and derived variables. These variables used probabilis-
tic networks for establishing event correlations through pre-
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diction algorithms.We also evaluated the role of time-series
methods, rule-based classification algorithms and Bayesian
network models in event prediction.

Based on historical data, our results suggest that it is
feasible to predict system performance parameters (SARs)
with a high degree of accuracy using time-series models.
Rule-based classification techniques can be used to extract
machine-event signatures to predict critical events with up
to 70% accuracy.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications -
Data Mining; 1.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

Event logs have been used on many computer systems for
recording errors occurring in hardware and software compo-
nents of the system. These logs are typically used by system
administrators to monitor the health of the machine, re-
spond to system outages, and plan activities like scheduled
maintenance. These system management activities tend to
be reactive in nature.

In accordance with Moore’s Law, the computational power
available for a fixed hardware budget has grown at an ex-
ponential pace. Clusters of workstations or personal com-
puters are gaining popularity as a cost-effective computing
platform [2]. However, clusters remain difficult to manage,
and human system administration accounts for a large frac-
tion of the total cost of ownership of these systems. With



the constant need for greater reliability, availability, and ser-
viceability (RAS) of systems, there are clear benefits to more
automated and proactive system management [13].

Several techniques have been proposed in the literature
for proactive system management, including prediction of
failures and software rejuvenation. However, it is widely ac-
cepted that further research is needed to enhance the effec-
tiveness of these techniques before they are widely deployed.
Successful prediction of errors in a computer system offers
the promise of enabling significantly improved system man-
agement. For example, in a cluster system, prediction of
a specific node failure can be used to steer jobs away from
the failing node. This could be done prior to job launch
(by avoiding such a node for scheduling jobs) or by migrat-
ing a running job to healthier nodes before failure strikes.
Such predictions can reduce scheduled system maintenances
to appropriate times and avoid unplanned outages. Even if
the prediction of an error happens too late to allow proac-
tive action, the same analysis can serve as a foundation for
more effective error isolation (e.g., identifying the node that
led to an error, given an avalanche of errors subsequently
observed in a cluster).

In this paper, we describe our efforts at building a proac-
tive prediction and control system for large scale clusters.
We collected event logs containing information about RAS
events and system activity reports (SARs) from a 350 node
cluster for a period of one year. We found that filtering of
logs to eliminate redundant information was an important
first step to allow meaningful analysis of log data, which also
helps reduce the space requirements. We prepared a well-
defined set of primary and derived variables to be used for
prediction algorithms. We applied a number of prediction
algorithms that have been proposed in the literature, such as
time-series algorithms, rule-based classification techniques,
and Baysian network models, to assess the effectiveness of
these techniques at predicting failures in a cluster. Based on
the analysis, it was established that different classes of algo-
rithms are effective at predicting different kinds of system
events. Our experimental results show that it is indeed feasi-
ble to predict system performance related parameters with a
high degree of accuracy using time-series models. Similarly,
rule-based classification algorithms can predict the critical
events with 70% accuracy. The prediction accuracy im-
proves further by considering the “warning-windows” within
the calculation domain. Furthermore, Bayesian network
based algorithms can be successfully used to build the de-
pendency graphs to isolate the root cause of problems.

The rest of the paper is organized as follows. Section 2
describes related work on event log analysis for both single
node and cluster based systems. Section 3 presents a brief
description of the characteristics of the event logs, includ-
ing the preprocessing and modeling of the data. Section 4
describes various time-series, rule-based classifications and
Bayesian network based analyses and prediction results. Fi-
nally, we conclude the paper with a summary of the results
and our future work plans in Section 5.

2. RELATED WORK

There have been many research efforts on analyzing event
logs and other system related health signals [5, 6, 15, 16, 24].
However, relatively few of these efforts have dealt with large
clusters. Tsao [23] demonstrated the feasibility of tuple-
based classification to reduce the data observed on a DEC

system. Lee et al. [15] and Lin et al. [16] worked indepen-
dently on analyzing the error trends for Tandem system and
DCE environments, establishing Weibull, lognormal [19],
and other specific distributions through observed data fit-
ting and functions. Buckley [5, 6] carried out a study on a
fairly large VAX/VMS cluster with a total of 193 systems,
collecting 2.35 million events covering about 335-machine
years of time. His work coalesced related events into a set of
critical event logs, extending Tsao’s tuple-based studies. His
scheme covered extensive analyses of the event logs with a
vast amount of data, for which fault diagnosis and recovery
can be carried out.

For event prediction, a wide variety of algorithms includ-
ing standard time-series, wavelet analysis and POMDP tech-
niques are available in the literature [14, 18]. We define
the event prediction problem for large cluster computer sys-
tems similar to the telecommunications problems reported
in literature. Time-series based prediction tools have been
mostly used to predict telecommunication related problems
[7, 27, 28, 29, 26]. However, these prediction tools are not
sufficient to address the requirements of computer systems
event prediction, because of the mixed nature of the system
health related data. Hence, either dispersion frame based
techniques or heuristic based approaches have been used in
the literature for prediction purposes [5]. Traditional classi-
fication methods like C4.5 [21] recursively split the instance
space until each region is class uniform (i.e., they follow a
discriminant-description strategy). Use of either time-series
based techniques or heuristic approaches for large-scale com-
puter system would result in developing complex event based
classification rules. Moreover the presence of uneven inter-
arrival times for the events would require either variable
inter-arrival times or “time-normalization” based techniques
to predict the rare events through data mining [24]. Root
cause isolation of problems through dynamic belief networks
has been successfully used for Microsoft Windows operating
systems [3, 12].

The absence of any realistic system-health based data
analysis for proactive management of larg-scale cluster sys-
tems was the prime motivation of the study reported in this

paper.

Table 1: Error Log Sample

Error Data: | splnlen0.watson.ibm.com: 33164DD2
0625102702 T H Worm Switch
sender link sync error
Usage Data: 00:05:30 0 12 32 4 52

3. EVENT LOGS AND OTHER DATA SETS

In order to establish a methodology to collect, filter and
analyze the events recorded on clustered systems, all the
RAS related events were collected from a 350 node cluster
providing both scientific and commercial workloads. The
collected data (both system activity reports and event logs)
were retrieved through cron jobs. These data were filtered
and processed to prepare a well defined set of primary and
derived variables to be used for various time-series and other
belief-network based algorithms including machine-learning
based algorithms for proactive system management, predic-
tion, and probing.



Table 2: Event-type vs. Event-class

Weightage | PERM | PERF | PEND | INFO | TEMP | UNKN
Weightage 5 2 4 0 1 3
Class H 4 155 5 6 9 181 34
Class O 1 11 0 1 35 14 0
Class S 2 213 2 13 28 120 47
Class U 3 9 1 2 0 6 8

3.1 Data Collection

The information about the system can be generalized into
three basic categories: event logs, SAR (usage) data, and
node topology. The node topology provides the static infor-
mation about the system connectivity along with the respec-
tive application domains. The SAR and event log data pro-
vide the temporal status of system health and environment.
Since the SAR data (collected data at regular five minute
intervals) and the event log data (collected locally through
an event logging mechanism and finally consolidated to a
centralized location once per day) can be misaligned, the
alignment needs to be carried out, together with filtering
and preprocessing the data. More details of the data pre-
processing and filtering are covered in Section 3.4.

3.2 Event Log Characteristics

The event log from our system consists of a total of six
fields of information (Table 1). In Table 1, the event log
data represents the node number, event identifier, times-
tamp, event type, event class, and short-descriptions for
fields one to six respectively. The event log information are
recorded through system calls and kernel interrupt mecha-
nisms. Based on the data collected from our cluster, the
following classification or characteristics of the events were
recorded. Most of the errors can be categorized into either
event types or event classes. A combination of event class
and event type can represent the way it is either affecting
the system health or the overall system performance. The
event types can be categorized as: (1) PEND: The loss
of availability of a device or component is imminent. (2)
PERF: The performance of the device/component has de-
graded to below an acceptable level. (3) PERM: Permanent
Error (Unrecoverable/Most Severe Error). (4) TEMP: Con-
dition recovered after a number of unsuccessful attempts.
(5) UNKN: Unknown error (Cannot determine the sever-
ity). (6) INFO: Entry is a information/warning .

Similarly, events can also be categorized into the following
classes: (1) Class H: Hardware related events, (2) Class S:
Software related events, (3) Class O: Events for information
only, and (4) Class U: Undetermined events.

In other words the event-class and event-types are two di-
mensions of the space of events recorded through the RAS
event log mechanism. The cluster event logs can be repre-
sented as an event-matrix (Table 2) with rows having the
same event class and the columns representing the event
types. More details about the event log characteristics are
covered elsewhere [22].

3.3 System Performance Logs

Unlike the event log information, SAR information can be
collected at regular intervals. We collected SAR information
for all nodes at a regular interval of five minutes. Similar to
event logs, this information has six fields, representing time,

processor number, user time, idle time, CPU time, and I/O
time, respectively (Table 1). The alignment of the event log
data and SAR data was carried out by locating the nearest
previous SAR data collected for that particular event, on
that particular node.

3.4 Event Parsing and Filtering Mechanism

Error logs recorded and gathered by the system suffer
from several problems:

e A single event may be repeated, due to the associated
state being checked multiple times.

e An event may be suppressed because of the co-occurrence
of another event. Due to poor resolution on the times-
tamps, which are accurate only to a minute, two un-
related problems could occur at nearly the same time,
and appear as a single event, recorded twice.

e Sometimes the events get lost or deleted before they
are logged into the log file because of problems with
storing or communication.

e Unwanted information as a result of scheduled oper-
ations, time-bound reporting status are also recorded
in event logs.

In order to handle the problem of duplicate entries, we im-
plemented a series of filtering algorithms. The initial elim-
ination of duplicate adjacent lines from the error logs re-
sulted in a nearly 90% reduction in the number of lines of
data. A second filter was designed to address the problem of
repeated attempts (e.g. system retry). This filter accepted
a threshold time parameter. After an event of a given er-
ror identifier occurred at a particular node, the filter would
ignore events of the same type occurring on the same node
for the duration of the threshold. We selected the threshold
parameter such that the duplicate events are less than 1%
of the total filtered events.

3.4.1 Parsing and Correlating System Logs

Another challenge was how to handle missing event log or
usage data, with SAR being collected at regular intervals,
whereas the event log arrivals were totally random. The
missing data were mostly a result of the way the data were
collected. Finally, to address the problems of residual errors
from a previous time and incomplete usage data, the errors
for which we did not have corresponding usage data were
removed.

3.5 System Variables

Once the error logs and SAR logs have been filtered ap-
propriately, it is possible to merge these logs in order to
create a single, coherent summary of the system’s behavior.
The system usage data come in the form of average loads



Table 3: Primary and Derived Variables

Variable

Type Description

Timestamp (time)

Primary Variable | Time at which the event occurred

Severity (Sev)

Primary Variable | Event severity type

Node ID (node)

Primary Variable | Host node ID

Event ID (eID)

Primary Variable | Event Identification Number

Event Severity (sev)

Primary Variable | Classification based on

type of problem

Event Class (class)

Primary Variable | Classification based on type

of affected subsystem

CPU Utilization (%sys)

Primary Variable | Processor Utilization

User Utilization (%user)

Primary Variable | User Utilization

Idle Time (%idle)

Primary Variable | System idle time

Frame (Frame)

Primary Variable | System Frame

Unconditional Delay (Delay)

Derived Variable

Inter-arrival time,

derived from base time

Node Conditional Delay ( nDelay)

Derived Variable

Inter-arrival time

within a particular node

Event Conditional Delay (eDelay)

Derived Variable

Inter-arrival time

for a particular event

Event Node Conditional Delay (bDelay)

Derived Variable

Inter-arrival time

for a particular event within a node

over a period of time. These average loads are associated,
using the timestamps, with the errors that occurred during
that period. The node topology information indicates not
only which nodes share a rack with each other, but also in-
formation about the nodes themselves, such as the size of
the node. In this manner, it is possible to generate a log
of events not only indicating the load on the system, but
also covering the generated characteristics of the node at
that instant of time. Based on the type of information col-
lected directly or based on judgement about hidden features
to extract from the system, we defined primary and derived
variables for analysis and establishing event correlations.

3.5.1 Primary Variables

The primary variables are the raw data collected from the
system, either through event logs or through system activity
reporting. It is worth mentioning some of the important
primary variables.

e Severity: From a unique error ID associated with a
particular type of error, it is possible to assign a sever-
ity and to classify the error as occurring in a particular
subsystem of the cluster. The severity and subsys-
tem, or class, are numbered in such a way that the
value of the number indicates the importance of the
event. For example, an informational event is given a
low weightage, whereas a catastrophic event is given a
high weightage.

e Base Time: Error logs frequently contained residual
errors from a previous time. In fact, some errors were
found to be months old. It was necessary to filter
out those errors that occurred prior to when we began
collecting usage data. We refer this time as the base
time of our data. The timestamps on our errors are
made relative to the base time.

3.5.2 Derived Variables

In addition to the primary variables provided by the sys-
tem in these log files, we generated several derived variables
to assist in our analysis. An important class of derived vari-
ables is related to the inter-arrival time of two events based
on certain criteria. The node delay (nDelay) indicates, for
every error, the amount of time that has passed since an
error last occurred at that node. Error delay (eDelay) indi-
cates the time since an error with that ID has last occurred
on any node. Further, bDelay measures the inter-arrival time
between two events at the same node and of the same ID.
Unconditional delay (Delay) simply indicates the time since
any events were reported anywhere in the system.

3.5.3 Filtered Datasets

We believe that the combination of filtered error data and
the SAR parameters along with the system topology infor-
mation provide an overall system health data-set through
proper alignment and preprocessing. There is a clear reduc-
tion in the quantity of data as a result of this processing. As
an example in a collection of 11 days of logs (including error
logs, usage logs, and node topology information together),
there were 6,949,819 lines of data taking up more than 328
MB of space. After filtering and integrating this data, there
were 2996 lines of data, totaling only 138 KB.

4. PREDICTION ALGORITHMS

A number of time-series and belief-network algorithms ap-
pear in the literature for RAS event analysis. After studying
various algorithms, we confined our analysis to three types of
algorithms: (1) Time-series algorithms, (2) Rule-based clas-
sification algorithms and (3) Bayesian network algorithms.
The algorithms were chosen based on the goal of the work,
the type of data collected from the systems under analysis,
and the applicability of each algorithm.

4.1 Time-series Algorithms

Linear time-series models have been successfully used for



Table 4: Linear Time Series Models

Model Description
MEAN Average of Previous Values
LAST Last Measured Value
BM(p) Average of Previous N
Values; N chosen to minimize
minimize one-step ahead error
AR(p) Purely Autoregressive;Uses
Yule-Walker Technique
MA(q) Moving Average; Uses
Powell Minimization
ARMA (p,q) Autoregressive Moving
Average; Uses Powell
0.125
0.1 O AR16
5 E ARs
0 ARMASS
g 0078 BM16
= & Bms
S 005 LAST
2 @ ma1e
< &l mas
0.025 H mean
0

500 1000 1500 2000 2500
No. of Training Events

Figure 1: Mean error (abs.) for event class predic-
tion.

forecasting and prediction in various fields. We use time-
series models to predict system parameters like percentages
of system utilization (%sys), idle time ( %idle), and network
I/O (%I0). For initial calculations, we assume the events
to be distributed at equal time intervals, so that the corre-
sponding system scalar functionalities can be easily used as
input parameters for time-series models.

The time-series models [4] with which we experimented,
can be obtained from the RPS toolkit implementation [8].
The analysis is performed on a single node basis rather than
for the whole cluster. The following assumptions are made
for time-series based modeling and predictions.

e Each primary variable within time-series is assumed
to be an independent system health component and
uniformly distributed with respect to clock-time. For
example, if we analyze the event types as a series of
system health related events, we assume that the inter-
arrival time does not affect the type of event and its
occurrence.

o We assign different weights to both event classes and
event types, based on the nature of the problem or how
critical the event type or class is for the system. The
details of the weight values are given in Table 2.

Figures 1-4 show comparisons of various time-series models
for class,%sys, sev, and eID. As a representative case, we
present the comparison of the absolute mean errors associ-
ated with different models evaluating the prediction of the
10th event, once the model has been trained through 500,

[0 ARr16

E ARs
ARMASS
BM16
B sms
LAST

2 ma1e
MAS

E mEAN

Absolute Mean Error

500 1000 1500 2000 2500
No. of Training Events

Figure 2: Mean error (abs.) for system utilization
prediction.

0.2
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Figure 3: Mean Error (abs.) for severity prediction.
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Figure 4: Mean error (abs.) for event ID prediction.



1000, 1500, 2000, and 2500 data points respectively. All the
results are compared with the LAST model as a basis for
comparison. Based on the results in Figures 1-4, we made
the following observations.

e The LAST models, along-with BM(16) and BM(8),
do better than other models. This is mostly due to
the small changes associated with the performance pa-
rameters, compared to the way event logs change with
time.

e The error associated with ARMA model with a small
amount of training data is quite high. However, for
larger training data sets, its performance is better than
that of other models.

e For continuous data like %sys, the absolute mean error
decreases monotonically with the size of the training
set.

The absolute mean error bars for some of the time-series
models like BM16, BM8 and LAST are often negligible com-
pared to the absolute mean errors associated with other
models. Hence the error bars do not show up in the fig-
ures.

4.2 Rule-based Classification Algorithms

Learning to recognize rare events is a difficult task. The
difficulty stems from several reasons: very few examples sup-
port the target class; events are described by categorical
features that display uneven inter-arrival times; and time
recordings only approximate the true arrival times, such as
those occurring in computer-network logs, transaction logs,
and speech signals, etc.

Our prediction strategy for predicting rare or target events
involves the following steps:

1. Finding all event types which frequently precede target
events within a fixed time window. We refer to these
as eventsets.

2. Validating eventsets that uniquely characterize target
events, and do not occur far from the time arrival of
target events.

3. Combining validated eventsets to build a probabilistic
rule-based system for prediction.

4.2.1 Searching for frequent eventsets

We are interested in finding sets of event types which oc-
cur frequently before a target event within a window of size
W (Figure 5) [9, 25]. On every occurrence of a target
event, all event types within the window are stored as a
new transaction. Once all events have been analyzed, it
is straightforward to apply an association-rule algorithm to
find all eventsets above a minimum user-defined support.

In our approach, both the ordering of events and the inter-
arrival times between events within each time window are
not relevant. This is useful when an eventset occurs under
different permutations, and when inter-arrival times exhibit
high variation (i.e., signals are noisy). These characteristics
are present in many domains, including the real produc-
tion network used for our experiments. For example, we ob-
served that a DISK-ADAPTER problem may be generated
together with a variety of events under different permuta-
tions, and with inter-arrival-time variation in the order of

target event non-target target ﬂ-e{:

- * -
= L=l
. o
® = .
= - -
(a) time
target event non-target target event

Figure 5: Rule-based classification algorithm.

seconds. Further, the filtering process described in Section
3 minimizes the noise and makes sure that the eventsets are
free from redundant or false-alarm information.

4.2.2 Accurate eventsets

There is another data filtering process conducted within
the algorithm based on the rules establishing the confidence
levels. The general idea is to look at the number of times
each of the frequent eventsets occurs outside the time win-
dows preceding target events. Such information enables us
to compute the confidence of each frequent eventset and to
eliminate those below a minimum threshold.

Our validation phase ensures that the probability of an
eventset Z appearing before a target event is significantly
larger than the probability of Z not appearing before target
events. The validation phase discards any negative corre-
lation between Z and the occurrence of target events. In
addition, this phase serves as a filtering step to reduce the
number of candidate patterns used to build a rule-based
model for prediction. We now turn to our goal of finding a
model for prediction.

4.2.3 A rule-based model

As the last step, we combine frequent and accurate sets of
eventsets into a rule-based model. The rationale behind our
rule-based system is to find the most accurate and specific
rules first [17].

Specifically, let 7' be the set of large and validated eventsets.
The first step sorts all eventsets according to their confi-
dence. In the next step, our algorithm selects the next best
eventset Z; and removes all other eventsets Z; in F' more
general than Z;. This step eliminates eventsets that refer
to the same pattern as Z; but are overly general. The re-
sulting rule is of the form Z; — targetevent. The search
then continues for all eventsets capturing different patterns
preceding the occurrence of target events. The final rule-
based system R can be used for prediction by checking for
the occurrence of any of the eventsets in R along the event
sequence used for testing. The model predicts finding a tar-
get event within a time window of size W after any such
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Figure 7: False-positives through rule-based classi-
fication.

eventset is detected.

Before describing our experimental results, we explain ad-
ditional algorithm parameters. First, we limit the maximum
number of negative windows (i.e., windows not preceding
target events) as a percentage of the number of target events.
One would normally like to consider all negative windows,
but this is computationally very expensive. Setting this limit
helps reduce the amount of memory and computation. Our
default value is 10 times the number of target events. We set
to 10% the minimum support threshold (i.e., minimum num-
ber of occurrences for a pattern to be considered frequent).
Finally our quality metric for rule ranking is information
gain [21], but other metrics could potentially be used (e.g.,
gini, x?, Laplace).

We have evaluated the algorithm to compute the accuracy
of the prediction of several critical errors with varying time
windows, before the occurrence of actual events. As a rep-
resentative case study, we cover one of the critical hardware
error events in detail. Based on the filtered data collected
from a 350 node cluster, we chose EventID 193 happening
on node 354 as our target event within the cluster. The eID
193 represents Adapter Error happening on Node 354. We
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Figure 8: Total errors through rule-based classifica-
tion.
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Figure 9: False-positive errors for different “warning
window” size.

varied the time window size to build the model by training
the data. Figures 6, 7, and 8 represent the validation of
the model, with the same/different test and training data
sets. Figure 6 presents the false-negatives; i.e. the model
fails to predict when actual-events that occur. Here we pre-
dict up to 70% accuracy, the occurrence of the event elID
193 with an optimum window size of 400 seconds. Figure 7
represents the probability of false-positives; i.e., the model
predicts events which do not occur. At a window size of
about 400 seconds, the probability of false positives (with
different training and test data) is about 0.1, which seems
acceptable for actions like avoiding a node, which is likely to
fail, for long running jobs. Again, from Figure 8 (total er-
ror), the optimum window size for the target event is around
400 seconds. The calculations in Figures 6, 7, and 8 do not
include the “warning window” or time associated with an
event for a preventive action to take place. However, when
we used the rules extraction process with “warning window”,
the probabilistic analysis resulted in improving the accuracy
for various “warning window’ sizes (Figure 9). We are fur-
ther investigating the strong periodicity observed for the
“warning window” in Figure 9.
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Figure 10: Single-node analysis: a Bayesian network
learned by B-Course. Scenario 1: there are no ob-
served nodes, and every node shows its marginal
distribution according to the model, prior to any
observations.

4.3 Bayesian Network Model

In this section, we describe our work in progress related to
learning probabilistic dependency models, such as Bayesian
networks, from event data. A Bayesian network model [20]
describes domain variables (such as event occurrence, event
severity level, etc.) and probabilistic dependencies among
them specified by conditional probability distributions. Bayesian
networks provide a compact representation of multi-variate
joint distributions and support efficient algorithms for infer-
ence tasks such as prediction and diagnosis.

Formally, a Bayesian network is a directed acyclic graph
(DAG) where the nodes correspond to random variables
X = {X1,..., Xn}, and each node X; is associated with its
conditional probability distribution P(X;|pa;) where pa; are
the parents of the node, i.e. nodes directly pointing to X;. A
Bayesian network represents a joint probability distribution
over variables in X in a product form:

P(z1,....,xz,) = II;—; P(z;|pai), (1)

As a part of our initial analysis we attempted to reconstruct
the dependencies between the primary and derived variables
for the cluster event data. First, we focused only on vari-
ables describing the events coming from a single node (called
herein the ‘single-node’ analysis). Then we considered all
variables describing the whole cluster (‘cluster analysis’).
The results were obtained using B-Course[1], an interactive
web-based tool that can learn Bayesian network models from
data and perform inferences based on observations.

4.3.1 Single Node Analysis

elD
3 . 51 EEA
52 .. 99 [l26%
100 .. 147]3.2%

Yousr

0. 333

34 _ 66[l5.4%
67 . 100 IEE3

Figure 11: Single-node analysis: a Bayesian network
learned by B-Course. Scenario 2: node Class takes
value 2, and the posterior distributions of nodes Sew,
%usr and eID change accordingly.

From a total of fifteen variables (both primary and de-
rived variables), only eight were included into single node
analysis. Some of the variables were excluded because, for
single-node analysis, they were constants. These excluded
variables were node, size, and frame. Also excluded were
wio (which was always 0), %sys (which was nearly constant),
eDelay, and bDelay. Figure 10 and 11 present the depen-
dency graphs obtained after evaluating 1907381 candidate
models. Actually, the last 1887361 evaluations did not re-
sult in finding better models than the current model. The
black lines indicate that the model would be less than a bil-
lionth as probable if that dependency was removed, i.e., it
indicates a strong dependency under the given model. A
Blue line indicates one thousandth and light blue indicates
a weak dependency.

Figures 10 and 11 show snapshots from B-Course’s [1]
interactive JAVA playground. They depict a Bayesian net-
work model constructed by the tool, and the probabilities as-
sociated with each node. B-course attempts to find a model
that best fits the data [10, 12]. However, it may find several
models that fit the data similarly well but differ in the direc-
tionality of the arcs, so that we should not necessarily view
the directed arcs as causal dependencies. Indeed, in our case
different runs of B-course resulted in slightly different DAG
structures. However, the ‘families’ of nodes (a node and
its parents), and the encoded joint probability distribution,
were preserved among different DAGs learned from same set
of data.

In Figure 10, all nodes were ‘opened’ in order to show
their prior marginal probability distributions in the absence
of observations (no node is assumed to have a particular
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Figure 12: Bayesian network model for primary and
secondary variables based on B-course for a 350
node cluster.

value). Since most of the variables have too many values
(hundreds or thousands), the values were split in groups
(shown as intervals in Figures 10 and 11). We can see that
most of the events (98%) had high severity, that 99% of all
events affected the subsystem of class 3, and that in 96% of
cases the activity of user processes was high.

However, more interesting conclusions can be made by
probabilistic inference that finds conditional probability of
variables of interest given the observations. For example, in
Figure 11, the node Class was assigned value 2 (the node
assigned value is highlighted). Given such an observation,
we can now find conditional probabilities of other variables
which make the dependencies more clear. For example, we
can conclude that:

e most of the events (93%) that had affected subsystem
in class 2 were of low severity, and 71% of such events
had eID in the range 3 to 51 (note that overall the
event IDs were mostly coming from a different range,
52 to 99, as shown in Figure 10);

o while the overall user process activity was mostly high
(Figure 10), the events affecting the subsystem of class
2 often happened during periods of low activity (e.g.
in 44% of cases the activity was quite low).

This is just a simple example of useful inferences that can be
drawn from a Bayesian network model. Generally, a diag-
nosis or prediction task can be expressed as finding P(X|Y)
where X is the variable we are trying to predict or diag-
nose and Y is the set of observations (e.g. features in usual
classification framework).

4.3.2 Cluster Analysis

In case of the 350 node based cluster, all the fifteen vari-
ables were considered for Bayesian network analysis through
B-course. Figure 12 represents the network model associat-
ing the primary and secondary variables derived from the
cluster wide event log and SAR data. Note that the bold-
face arcs indicate that the model would be less than a bil-
lionth as likely if that arc were removed, i.e., it indicates a

strong dependency under the given model. Remaining arcs,
shown in lighter color, indicate weaker dependencies (re-
moving those reduces the likelihood of the model by smaller
factors. A similar ‘what-if’ analysis based on probabilistic
inference can also be carried out for the whole cluster us-
ing the Bayesian network extracted for the variables. Based
on the explanations above, it is clear that, irrespective of
the availability of the detailed knowledge about the cluster
system, a dependency graph with probabilistic model can
be established. In other words, using no assumptions about
the system, these Bayesian tools would be able to determine
statistical relationships among the variables of a node or a
number of nodes within a cluster system.

We plan to continue the current work in order to come up
with Bayesian network diagnosis and prediction algorithms
based on event streams. Our future work includes learn-
ing temporal probabilistic dependencies between the events
using Dynamic Bayesian networks [11], and using them to-
gether with time-series analysis in order to predict future
events based on the observed ones.

5. SUMMARY

A total system health related information processing, pre-
diction, and control analysis effort has been carried out
based on event logs, system activity reporting, and other
system related parameters. The data analyses are based on
the collection of a variety of system health related informa-
tion gathered from a 350 node cluster over a period of one
year.

An event parser or filtering mechanism has been devel-
oped to take into account a number of both discrete and
continuous signals including system and event collection in-
termittency. Parsing and filtering of data was carried out to
minimize false reporting, reporting of artificial events, and
other scheduled system maintenance operations. The filered
data was found to be less than 1% of the total collected data.
Based on the processed data, a set of primary and derived
variables were established. These variables can be either dis-
crete or continuous variables. The decision about the vari-
ables was based on the requirement from the prediction al-
gorithms for proactive rare event prediction, diagnosis, and
control.

Time-series analysis was found to be more useful for pre-
dicting continuous variables like usage and idle time than
for predicting event characteristics based variables. A rule-
based classification algorithm could predict the critical rare
events with up to 70% accuracy based on the associative
data mining rules within a specified time window. By includ-
ing the warning window parameter into the analysis, rule-
based classification results were further improved in terms
of prediction accuracy.

Bayesian network models can be effectively used for es-
tablishing causal relationships among the defined primary
and derived variables, including the failure probability of
the nodes with the type of errors.

For proactive management and control, the system perfor-
mance parameter prediction results from time-series analy-
sis, rare event occurrence from rule-based classification re-
sults, and the root causal analysis through Bayesian network
based analysis could be combined. Moreover, it would be
possible to take actions in terms of job submission, process
migration to avoid potential problem domains within large
clusters.



Our future work plan includes developing a hybrid model
linking the three prediction and probing components to-
gether and verifying the integrated hybrid model for a large
cluster RAS system. We are also, designing an online system
to carry out an automated system management and control
including developing a cluster probe manager as our next
target.
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