
IMPLEMENTING COMMUNICATION-OPTIMAL PARALLEL AND
SEQUENTIAL QR FACTORIZATIONS

JAMES DEMMEL∗, LAURA GRIGORI† , MARK HOEMMEN‡ , AND JULIEN LANGOU§

Abstract. We present parallel and sequential dense QR factorization algorithms for tall and
skinny matrices and general rectangular matrices that both minimize communication, and are as
stable as Householder QR. The sequential and parallel algorithms for tall and skinny matrices lead
to significant speedups in practice over some of the existing algorithms, including LAPACK and
ScaLAPACK, for example up to 6.7x over ScaLAPACK. The parallel algorithm for general rectangu-
lar matrices is estimated to show significant speedups over ScaLAPACK, up to 22x over ScaLAPACK.

1. Introduction. In this paper we present parallel and sequential dense QR
factorization algorithms that both minimize communication, and are as stable as
Householder QR. (That is to say normwise backward stable.) Communication refers
to messages that are sent over a network in the parallel case, and to data movement
between different levels of memory hierarchy in the sequential case. The first set
of algorithms, “Tall Skinny QR” (TSQR), are for matrices for which the number of
rows is much larger than the number of columns, and which have their rows dis-
tributed over processors in a one-dimensional (1-D) block row layout. The second set
of algorithms, “Communication-Avoiding QR” (CAQR), are for general rectangular
matrices distributed using a two-dimensional (2-D) block cyclic layout. Some of these
algorithms are new, and some are based on existing work.

The new algorithms are superior in both theory and practice. In [8] we show
that the new sequential and parallel algorithms, for both 1-D layout TSQR and 2-D
block cyclic layout CAQR, are communication optimal (modulo polylogarithmic fac-
tors), that is they are optimal in bandwidth and latency costs. This assumes O(n3)
algorithms (non-Strassen-like). We also observe in [8] that LAPACK’s corresponding
sequential factorization and ScaLAPACK’s parallel QR factorization perform asymp-
totically more communication. The sequential recursive QR factorization algorithm
by Elmroth and Gustavson [12] attains the lower bound on the volume of data trans-
ferred in some special cases, though not the lower bound on the number of block
transfers.

In this paper, we focus on the implementation and performance results of these
algorithms. The efficient implementation of the QR factorizations of tall and skinny
matrices distributed in a 1-D layout is very important, since this operation arises
in a wide range of applications. We cite three important examples. Block iterative
methods frequently compute the QR factorization of a tall and skinny dense matrix.
This includes algorithms for solving linear systems Ax = B with multiple right-hand
sides (such as variants of GMRES, QMR, or CG [34, 13, 26]), as well as block it-
erative eigensolvers (for a summary of such methods, see [3, 23]). Many of these
methods have widely used implementations, on which a large community of scien-
tists and engineers depends for their computational tasks. Examples include TRLAN

∗Computer Science Division and Mathematics Department, UC Berkeley, CA 94720-1776, USA
(demmel@cs.berkeley.edu).
†INRIA Saclay-Ile de France, Laboratoire de Recherche en Informatique, Bat 490 University

Paris-Sud 11, 91405 Orsay, France (laura.grigori@inria.fr).
‡Computer Science Division, UC Berkeley, CA 94720-1776, USA (mhoemmen@eecs.berkeley.edu).
§Department of Mathematical and Statistical Sciences, University of Colorado Denver, CO 80202,

USA (julien.langou@ucdenver.edu).

1

ar
X

iv
:0

80
9.

24
07

v1
 [

m
at

h.
N

A
]

 1
4

Se
p

20
08

2 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

(Thick Restart Lanczos), BLZPACK (Block Lanczos), Anasazi (various block meth-
ods), and PRIMME (block Jacobi-Davidson methods) [35, 24, 20, 2, 4, 31]. Eigen-
value computation is particularly sensitive to the accuracy of the orthogonalization;
two recent papers suggest that large-scale eigenvalue applications require a stable QR
factorization [19, 21]. Our approach is based on Householder reflections so it is un-
conditionnally normwise backward stable, as opposed to other standard used methods
as Gram-Schmidt or CholeskyQR (see Section 5).

Recent research has reawakened an interest in alternate formulations of Krylov
subspace methods, called s-step Krylov methods, in which some number s steps of the
algorithm are performed all at once, in order to reduce communication. Demmel et
al. review the existing literature and discuss new advances in this area [10]. Such a
method generates some basis for the Krylov subspace, and then a QR factorization is
used to orthogonalize the basis vectors. This is an ideal application for TSQR, and
in fact inspired its (re-)discovery.

Householder QR decompositions of tall and skinny matrices also comprise the
panel factorization step for typical QR factorizations of matrices in a more general,
two-dimensional layout. This includes the current parallel QR factorization routine
PDGEQRF in ScaLAPACK, as well as ScaLAPACK’s out-of-DRAM QR factorization
PFDGEQRF [7]. Both algorithms use a standard column-based Householder QR for
the panel factorizations, but in the parallel case this is a latency bottleneck, and
in the out-of-DRAM case it is a bandwidth bottleneck. Our CAQR algorithm for
computing the QR factorization of general rectangular matrices uses TSQR for its
panel factorization. That’s how CAQR removes the latency bottleneck in the parallel
case and the bandwidth bottleneck in the sequential case.

The main insight behind TSQR algorithm is to perform the QR factorization of
a tall-skinny matrix as a reduction operation. This idea itself is not novel (see for
example, [1, 5, 6, 15, 18, 22, 27, 28, 29]), but we have a number of optimizations and
generalizations:

• Our TSQR algorithm can compute most of its floating-point operations by
using the best available sequential QR factorization. In particular, we can
achieve significant speedups by invoking Elmroth and Gustavson’s recursive
QR (see [11, 12]).

• We use TSQR as a building block for CAQR, the parallel factorization of rect-
angular matrices with a two-dimensional block cyclic layout. To our knowl-
edge, parallel CAQR is a new algorithm.

• We explain how TSQR can work on general reduction trees. This flexibil-
ity lets schedulers overlap communication and computation, and minimize
communication for more complicated and realistic computers with multiple
levels of parallelism and memory hierarchy (e.g., a system with disk, DRAM,
and cache on multiple boards each containing one or more multicore chips of
different clock speeds, along with compute accelerator hardware like GPUs).

In practice, parallel TSQR leads to significant speedups on several machines:
• up to 6.7× on 16 processors of a Pentium III cluster, for a 100, 000 × 200

matrix; and
• up to 4× on 32 processors of a BlueGene/L, for a 1, 000, 000× 50 matrix.

Some of this speedup is enabled by TSQR being able to use a much better local QR
decomposition than ScaLAPACK can use, such as the recursive variant by Elmroth
and Gustavson [12]. We have also implemented sequential TSQR on a laptop for
matrices that do not fit in DRAM, so that slow memory is disk. This requires a special

Implementing communication-optimal QR factorization 3

implementation in order to run at all, since virtual memory does not accommodate
matrices of the sizes we tried. By extrapolating runtime from matrices that do fit in
DRAM, we can say that our out-of-DRAM implementation was as little as 2× slower
than the predicted runtime as though DRAM were infinite.

We also estimate the performance of our parallel CAQR algorithm (whose actual
implementation and measurement is current work), yielding predicted speedups over
ScaLAPACK’s PDGEQRF of up to 22.9× on a model Petascale machine. The best
speedups occur for the largest number of processors used, and for matrices that do
not fill all of memory, since in this case latency costs dominate. In general, when the
largest possible matrices are used, computation costs dominate the communication
costs and improved communication does not help.

The rest of the paper is organized as follows. Section 2 describes the algebra of
the TSQR algorithm and shows how the parallel and sequential versions correspond
to different trees. Section 3 shows that the local QR decompositions in TSQR can
be further optimized by exploiting the structure of the matrices involved. We also
explain how to apply the Q factor from TSQR efficiently, which is needed both for
CAQR and other applications. Section 4 describes the parallel and sequential TSQR
algorithms, and presents a performance model for each. Next, Section 5 describes
other “tall skinny QR” algorithms, such as CholeskyQR and Gram-Schmidt, and
compares their cost and numerical stability to that of TSQR. This section shows that
TSQR is the only algorithm that simultaneously minimizes communication and is
numerically stable. Section 6 describes the parallel CAQR algorithm and constructs
a performance model. Section 7 presents the platforms used for testing, and discusses
the TSQR and CAQR performance results. Section 8 concludes the paper.

2. TSQR matrix algebra. In this section, we illustrate the insight behind the
TSQR algorithm for computing the QR factorization of an m×n matrix A partitioned
in P block rows, that is A = [A0;A1; · · · ;AP−1]. We use Matlab notation, so that
the Ai are stacked atop one another.

TSQR defines a family of algorithms, in which the QR factorization of A is ob-
tained by performing a sequence of QR factorizations until the lower trapezoidal part
of A is annihilated and the final R factor is obtained. The QR factorizations are
performed on block rows of A and on previously obtained R factors, stacked atop
one another. We call the pattern followed during this sequence of QR factorizations
a reduction tree. We begin with parallel TSQR, for which the reduction tree is a
binary tree, and later show sequential TSQR on a linear tree. We consider the simple
example of P = 4.

Parallel TSQR starts with the independent computation of the QR factorization
of each block row:

A =

A0

A1

A2

A3

 =

Q00R00

Q10R10

Q20R20

Q30R30

 .

This is “stage 0” of the computation, hence the second subscript 0 of the Q and R
factors. The first subscript indicates the block index at that stage. Stage 0 operates
on the P = 4 leaves of the tree. After this stage, there are P = 4 of the R factors.
We group them into successive pairs Ri,0 and Ri+1,0, and do the QR factorizations of

4 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

grouped pairs in parallel:
R00

R10

R20

R30

 =

(
R00

R10

)
(
R20

R30

)
 =

(
Q01R01

Q11R11

)
.

This is stage 1, as the second subscript of the Q and R factors indicates. We iteratively
perform stages until there is only one R factor left, which is the root of the tree:(

R01

R11

)
= Q02R02.

If we were to compute all the above Q factors explicitly as square matrices, which
we do not, each of the Qi0 would be m/P ×m/P , and Qij for j > 0 would be 2n×2n.
The final R02 factor would be m × n upper triangular (or n × n upper triangular in
a “thin QR” factorization).

Equation (2.1) shows the whole factorization:

A =

Q00

Q10

Q20

Q30

 · (Q̃01

Q̃11

)
· Q̃02 ·R02, (2.1)

in which Q̃ij with j > 1 are the matrices Qij extended by the identity to match the
dimensions m×m of the first Q factor.

The product of the first three matrices is orthonormal, because each of these three
matrices is. Since the QR decomposition is essentially unique (it is unique modulo
signs of diagonal entries of R02), this is the QR decomposition of A and R02 is the R
factor of A.

Note the binary tree structure in the nested pairs of R factors. This tree structure
and the underlined TSQR algorithm can be visualized using a similar notation to [8]:

A3

A2

A1

A0

→
→
→
→

R30

R20

R10

R00

↗
↘

↗
↘

R11

R01

↗
↘
R02

where the arrows pointing to an R factor highlight the matrices whose QR factor-
ization, when stacked atop one another, results in this R factor. This representation
illustrates well the parallelism available in the algorithm as well. The R nodes of
the tree represent local QR factorizations, that is computations performed by one
processor, and the arrows between R factors represent communication.

Sequential TSQR uses a similar factorization process, but with a “flat tree” (a
linear chain). We start with the same block row decomposition as with parallel TSQR,
but begin with a QR factorization of A0, rather than of all the block rows:

A =

A0

A1

A2

A3

 =

Q00R00

A1

A2

A3

 .

Implementing communication-optimal QR factorization 5

This is “stage 0” of the computation, hence the second subscript 0 of the Q and R
factor. We retain the first subscript for generality, though in this example it is always
zero. We then combine R00 and A1 using a QR factorization:

R00

A1

A2

A3

 =

R00

A1

A2

A3

 =

Q01R01

A2

A3

We continue this process until we run out of Ai factors. Here, the Ai blocks are
m/P ×n. If we were to compute all the above Q factors explicitly as square matrices,
which we do not, then Q00 would be m/P × m/P and Q0j for j > 0 would be
2m/P × 2m/P . The final R factor, as in the parallel case, would be m × n upper
triangular (or n× n upper triangular in a “thin QR”).

The resulting factorization has the following structure:

A =

Q00

I
I

I

 ·
 Q̃01

I
I

 · (Q̃02

I

)
· Q̃03 ·R03. (2.2)

where Q̃0j with j > 1 are the matrices Q0j extended by the identity to match the
dimensions of the equation. The above I factors are m/P ×m/P .

Sequential TSQR and the flat tree structure on which the factorization executes
is illustrated using the “arrow” abbreviation as:

A3

A2

A1

A0

��
��

��
��

��1

��
��

��
��1

���
��:

-R00
-R01

-R02
-R03

A similar algorithm, but with a bottom-up traversal of the flat tree, can also be
formulated. The flat-tree approach is similar to the updating techniques proposed for
out-of-core computations [1, 18], or for multicore [5, 28] and Cell processors [22].

The sequential algorithm differs from the parallel one in that it does not factor
the individual blocks of the input matrix A, excepting A0. This is because in the
sequential case, a bit more than one block of A can be loaded into working memory.
In the fully parallel case, each block of A resides in some processor’s working memory.
It then pays to factor all the blocks before combining them, as this reduces the volume
of communication (only the triangular R factors need to be exchanged) and reduces
the amount of arithmetic performed at the next level of the tree. In contrast, the
sequential algorithm never writes out the intermediate R factors, so it does not need
to convert the individual Ai into upper triangular factors.

The above two algorithms are extreme points in a large set of possible QR factor-
ization methods, parametrized by the tree structure. Our version of TSQR is novel
because it works on any tree. In general, the optimal tree may depend on both the
architecture and the matrix dimensions. This is because TSQR is a reduction (as
we will discuss further in Section 4.1). Trees of types other than binary often re-
sult in better reduction performance, depending on the architecture (see e.g., [25]).
Throughout this paper, we discuss two examples – the binary tree and the flat tree
– as easy extremes for illustration. It is shown in [8] that the binary tree is optimal

6 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

in the number of stages and messages in the parallel case, and that the flat tree is
optimal in the number and volume of input matrix reads and writes in the sequential
case. Methods for finding the best tree in general are future work. We expect to use
a non-binary tree in the case of real-world systems with multiple levels of memory
hierarchy and multiple, possibly heterogeneous processors, although in this paper we
do not address this issue.

3. Optimizations for TSQR. Although TSQR achieves its performance gains
because it optimizes communication, the local QR factorizations lie along the critical
path of the algorithm. The parallel cluster benchmark results in Section 7 show that
optimizing the local QR factorizations can improve performance significantly. In this
section, we outline a few of these optimizations, and hint at how they affect the
formulation of the general CAQR algorithm in Section 6.

3.1. Optimizing local factorizations in TSQR. Most of the QR factoriza-
tions performed during TSQR involve matrices consisting of one or more triangular
factors stacked atop one another. We can ignore this zero structure and still get a
correct factorization, but if we do we will do several times as many floating point
operations as necessary (up to 5× in the parallel case and 2× in the sequential case).
Previous authors have suggested using Givens rotations to avoid this [27], but this
would make it hard to achieve Level 3 BLAS performance.

Our observation is that not only it is possible to use blocked Householder transfor-
mations that both do minimal arithmetic and permit Level 3 BLAS performance, but
in fact we can organize the algorithm to get better Level 3 BLAS performance than
conventional QR decomposition. The empirical data justifying this claim appears in
Section 7, but we outline the idea here.

We illustrate with the QR decomposition of a pair [R0;R1] of 5-by-5 triangular
matrices. Their sparsity pattern, and that of the Householder vectors from their QR
decomposition are shown below:

(
R0

R1

)
=

x x x x x
x x x x

x x x
x x

x
x x x x x

x x x x
x x x

x x
x

=⇒ Householder =

1
1

1
1

1
x x x x x

x x x x
x x x

x x
x

. (3.1)

This picture suggests that it is straightforward to adapt both the unblocked
Householder decomposition and its blocked version in [30], by storing the House-
holder vectors on top of the zeroed-out entries as usual, and simply by changing the
lengths of the vectors involved in updates of the trailing matrix. For the case of two
n-by-n triangular matrices, exploiting this structure lowers the operation count to
2
3n

3 from about 10
3 n

3. It is also possible to do this when q triangles are stacked atop
one another, or when a triangle is stacked atop a rectangular block as in sequential
TSQR. Most importantly, we can apply Elmroth and Gustavson’s recursive QR algo-
rithm [12] to the matrices in fast memory (in the sequential case) or local processor
memory (in the parallel case).

Implementing communication-optimal QR factorization 7

3.2. Trailing matrix update. Section 6 will describe how to use TSQR to
factor matrices in general 2-D layouts. For these layouts, once the current panel
(block column) has been factored, the panels to the right of the current panel cannot
be factored until the transpose of the current panel’s Q factor has been applied to
them. This is called a trailing matrix update and consists of a sequence of applications
of local QT factors to groups of trailing matrix blocks. The update lies along the
critical path of the algorithm, and consumes most of the floating-point operations in
general. We now explain how to do one of these local QT applications.

Let the number of rows in a block be 2n, and the number of columns in a block be
n. Suppose that we want to apply the local QT factor from the above 2n× n matrix
factorization, to two blocks C0 and C1 of a trailing matrix panel. C0 and C1 may
have more than n columns. Our goal is to perform the operation(

R0 C0

R1 C1

)
=
(
QR C0

C1

)
= Q ·

(
R Ĉ0

Ĉ1

)
,

in which Q is the local Q factor and R is the local R factor of [R0;R1]. When the
YT representation is used for Q [30], the update of the trailing matrices takes the
following form: (

Ĉ0

Ĉ1

)
:=
(
I −

(
I
Y1

)
· T

T

·
(
I
Y1

)T)(C0

C1

)
.

If we let

D := C0 + Y T
1 C1

be the “inner product” part of the update operation formulas, then we can rewrite
the update formulas as

Ĉ0 := C0 − TTD,

Ĉ1 := C1 − Y1T
TD,

In a parallel algorithm, there are many different ways to perform this update.
The data dependencies impose a directed acyclic graph (DAG) on the flow of data
between processors. One can find the best way to do the update by realizing an
optimal computation schedule on the DAG. In Section 6 we will see a straightforward
schedule of this computation.

4. Parallel and sequential TSQR. In this section, we describe the TSQR
factorization algorithm in more detail. We also build a performance model of the
algorithm, based on a simple machine model. We predict floating-point performance
by counting floating-point operations and multiplying them by γ, the inverse peak
floating-point performance. We use the “alpha-beta” or latency-bandwidth model of
communication, in which a message of size n floating-point words takes time α+ βn
seconds. The α term represents message latency (seconds per message), and the β
factor inverse bandwidth (seconds per floating-point word communicated). We also
apply the alpha-beta model to communication between levels of the memory hierarchy
in the sequential case. We restrict our model to describe only two levels at one time:
fast memory (which is smaller) and slow memory (which is larger).

Parallel TSQR performs 2mn2/P + 2n3

3 logP flops, compared to the 2mn2/P −
2n3/(3P) flops performed by ScaLAPACK’s parallel QR factorization PDGEQRF, but

8 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

requires 2n times fewer messages. The sequential TSQR factorization performs the
same number of flops as sequential blocked Householder QR, but requires O(n) times
fewer transfers between slow and fast memory, and a factor of O(mn/W) times fewer
words transferred, in which W is the fast memory size. Note that mn/W is how many
times larger the matrix is than the fast memory.

4.1. TSQR as a reduction. Section 2 explained the algebra of the TSQR
factorization. It outlined how to reorganize the parallel QR factorization as a tree-
structured computation, in which groups of neighboring processors combine their R
factors, perform (possibly redundant) QR factorizations, and continue the process by
communicating their R factors to the next set of neighbors. Sequential TSQR works in
a similar way, except that communication consists of moving matrix factors between
slow and fast memory. This tree structure uses the same pattern of communication
found in a reduction or all-reduction. We can say TSQR factorization is itself an (all-
)reduction, in which additional data (the components of the Q factor) is stored at each
node of the (all-)reduction tree. Applying the QT factor is also a(n) (all-)reduction;
while applying the Q factor is a broadcast-like algorithm.

However, TSQR has requirements that differ from the standard (all-)reduction.
For example, if the Q factor is desired, then TSQR must store intermediate results
(the local Q factor from each level’s computation with neighbors) at interior nodes
of the tree. This requires reifying and preserving the (all-)reduction tree for later
invocation by users. Typical (all-)reduction interfaces, such as those provided by
MPI or OpenMP, do not easily allow this (see e.g., [17]).

When TSQR is implemented with an all-reduction, then the final R factor is
replicated over all the processors. This is especially useful for Krylov subspace meth-
ods. If TSQR is implemented with a simple reduction, then the final R factor is
stored only on one processor. This avoids redundant computation, and is useful both
for block column factorizations for 2-D block (cyclic) matrix layouts, and for solving
least squares problems when the Q factor is not needed.

4.2. Factorization. We now describe the parallel and sequential TSQR factor-
izations for the 1-D block row layout. (We omit the obvious generalization to a 1-D
block cyclic row layout.)

Parallel TSQR computes an R factor which is duplicated over all the processors,
and a Q factor which is stored implicitly in a distributed way. The algorithm over-
writes the lower trapezoid of Ai with the set of Householder reflectors for that block,
and the τ array of scaling factors for these reflectors is stored separately. The matrix
Ri,k is stored as an n×n upper triangular matrix for all stages k. Algorithm 1 shows
an implementation of parallel TSQR, based on an all-reduction.

At the leaf nodes of the TSQR tree (step 1 of TSQR algorithm), each processor
computes a QR factorization of an m/P×n matrix. This factorization involves around
2n2m/P −2n3/3 flops. For all the other nodes of the TSQR tree (step 2 of the TSQR
Algorithm), two processors perform redundantly the QR factorization of a 2n × n
matrix formed by two upper triangular matrices. The number of flops performed on
the critical path of TSQR is 2n2m/P − 2n3/3 + 2n3/3 logP . Thus, the run time of
the TSQR algorithm is estimated to be

TimePar. TSQR(m,n, P) =
(

2mn2

P
+

2n3

3
logP

)
γ +

(
1
2
n2 logP

)
β + (logP)α .

(4.1)

Implementing communication-optimal QR factorization 9

Algorithm 1 Parallel TSQR
Require: Π is the set of P processors
Require: All-reduction tree with height L. If P is a power of two and we want a

binary all-reduction tree, then L = log2 P .
Require: i ∈ Π: my processor’s index
Require: The m × n input matrix A is distributed in a 1-D block row layout over

the processors; Ai is the block of rows belonging to processor i.
1: Compute [Qi,0, Ri,0] := qr(Ai) using sequential Householder QR
2: for k from 1 to L do
3: if I have any neighbors in the all-reduction tree at this level then
4: Send (non-blocking) Ri,k−1 to each neighbor not myself
5: Receive (non-blocking) Rj,k−1 from each neighbor j not myself
6: Wait until the above sends and receives complete . Note: not a global

barrier.
7: Stack the upper triangular Rj,k−1 from all neighbors (including my own

Ri,k−1), by order of processor ids, into a qn× n array C, in which q is
the number of neighbors.

8: Compute [Qi,k, Ri,k] := qr(C)
9: else

10: Ri,k := Ri,k−1

11: Qi,k := In×n . Stored implicitly
12: end if
13: Processor i has an implicit representation of its block column of Qi,k. The

blocks in the block column are n× n each and there are as many of them
as there are neighbors at stage k (including i itself). We don’t need to
compute the blocks explicitly here.

14: end for
Assert: Ri,L is the R factor of A, for all processors i ∈ Π.
Assert: The Q factor is implicitly represented by {Qi,k}: i ∈ Π, k ∈ {0, 1, . . . , L}}.

Sequential TSQR begins with an m × n matrix A stored in slow memory. The
matrix A is divided into P blocks A0, A1, . . . , AP−1, each of size m/P × n. (Here,
P has nothing to do with the number of processors; it is chosen to minimize latency,
i.e. as small as possible subject to the memory constraint described below.) Each
block of A is loaded into fast memory in turn, combined with the R factor from the
previous step using a QR factorization, and the resulting Q factor written back to
slow memory. Thus, only one m/P ×n block of A resides in fast memory at one time,
along with an n×n upper triangular R factor. Thus we choose P as small as possible
subject to the memory constraint mn

P + n(n+1)
2 ≤W . Sequential TSQR computes an

n×n R factor which ends up in fast memory, and a Q factor which is stored implicitly
in slow memory as a set of blocks of Householder reflectors. Algorithm 2 shows an
implementation of sequential TSQR.

Sequential TSQR on a flat tree performs the same number of flops as sequential
Householder QR, namely 2mn2− 2n3

3 flops. However, it performs less communication
than Householder QR, as it will be discussed in Section 5. Sequential TSQR transfers
2mn− n(n+1)

2 + mn2fW words between slow and fast memory, in which

W̃ = W − n(n+ 1)/2,

10 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

Algorithm 2 Sequential TSQR
Require: The m× n input matrix A, stored in slow memory, is divided into P row

blocks A0, A1, . . . , AP−1

1: Load A0 into fast memory
2: Compute [Q00, R00] := qr(A0) using standard sequential QR. Here, the Q factor

is represented implicitly by an m/P ×n lower triangular array of Householder
reflectors Y00 and their n associated scaling factors τ00

3: Write Y00 and τ00 back to slow memory; keep R00 in fast memory
4: for k = 1 to P − 1 do
5: Load Ak

6: Compute [Q01, R01] = qr([R0,k−1;Ak]). Here, the Q factor is represented
implicitly by a full m/P × n array of Householder reflectors Y0k and their
n associated scaling factors τ0k.

7: Write Y0k and τ0k back to slow memory; keep R0k in fast memory
8: end for

Assert: R0,P−1 is the R factor in the QR factorization of A, and is in fast memory
Assert: The Q factor is implicitly represented by Q00, Q01, . . . , Q0,P−1, and is in

slow memory

and performs 2mn
W̃

transfers between slow and fast memory. Thus the runtime for
sequential TSQR is

TimeSeq. TSQR(m,n,W) =
(

2mn2 − 2n3

3

)
γ+
(

2mn− n(n+ 1)
2

+
mn2

W̃

)
β+
(

2mn

W̃

)
α .

(4.2)

We note that W̃
>
≈ 2W/3, so that the number of messages 2mn/W̃

<
≈ 3mn/W .

The parallel and sequential TSQR algorithm are performed in place. During
TSQR, in the lower trapezoidal m/P × n matrix, processor i stores the Householder
vectors corresponding to the local QR factorization of its leaf node. In the upper
triangular part, it stores first the Ri0 matrix corresponding to the local QR factoriza-
tion. For each level k of the tree at which processor i participates, it will store the R
factor at this level. At the last QR factorization in which processor i is involved, it
will store the Householder vectors corresponding to this QR factorization.

5. Other “tall skinny” QR algorithms. There are many other algorithms
besides TSQR for computing the QR factorization of a tall and skinny matrix. They
differ in terms of performance, flops, and accuracy, and may store the Q factor in
different ways that favor certain applications over others. In this section, we briefly
discuss the performance and summarize the numerical accuracy of the following com-
petitors to TSQR:

• variants of Gram-Schmidt
• CholeskyQR (see [32])
• Householder QR, with a block row layout

Gram-Schmidt has two commonly used variations: “classical” (CGS) and “modified”
(MGS). Both versions have the same floating-point operation count; MGS is more sta-
ble than CGS. Note that we are using the row-oriented version of MGS. CholeskyQR
consists of computing the Cholesky factorization RTR of ATA, and then forming
Q := AR−1.

Implementing communication-optimal QR factorization 11

Parallel algorithm # flops # messages # words
TSQR 2mn2

P + 2n3

3 log(P) log(P) n2

2 log(P)
PDGEQRF 2mn2

P − 2n3

3P 2n log(P) n2

2 log(P)
MGS by row 2mn2

P 2n log(P) n2

2 log(P)
CGS 2mn2

P 2n log(P) n2

2 log(P)
CholeskyQR mn2

P + n3

3 log(P) n2

2 log(P)
Table 5.1

Performance model of various parallel QR factorization algorithms. Lower-order terms omitted.
All parallel terms are counted along the critical path. Only the R factor is computed. (The Q factor
might be stored implicitly, explicitly or not at all depending on the algorithm.

Sequential algorithm # flops # messages # words

TSQR 2mn2 − 2n3

3
2mnfW 2mn− n(n+1)

2
+ mn2fW

PFDGEQRF 2mn2 − 2n3

3
2mn
W

+ mn2

2W
m2n2

2W
− mn3

6W
+ 3mn

2
− 3n2

4

MGS by row 2mn2 2mn2fW 3mn
2

+ m2n2

2fW
CholeskyQR mn2 + n3

3
6mn
W

3mn
Table 5.2

Performance model of various sequential QR factorization algorithms. PFDGEQRF is our
model of ScaLAPACK’s out-of-DRAM QR factorization; W is the fast memory size, and W̃ =
W − n(n + 1)/2. Lower-order terms omitted. Only the R factor is computed. (The Q factor might
be stored implicitly, explicitly or not at all depending on the algorithm.

For Householder QR, we base our parallel model on a right-looking blocked
Householder as in the ScaLAPACK routine PDGEQRF. The sequential model is
based on left-looking blocked Householder as in the out-of-core ScaLAPACK routine
PFDGEQRF [7]. In the out-of core case, left-looking is favored instead of right-looking
in order to minimize the number of writes to slow memory (the total amount of data
moved between slow and fast memory is the same for both left-looking and right-
looking blocked Householder QR).

Table 5.1 compares the performance of all the parallel QR factorizations discussed
here, and Table 5.2 compares the performance of their respective sequential imple-
mentations, including our modeled version of PFDGEQRF. These tables show that
CholeskyQR should have better performance than all the other methods. This is
because CholeskyQR requires only one all-reduction operation [32]. In the parallel
case, it requires log2 P messages, where P is the number of processors. In the se-
quential case, it reads the input matrix only once. Thus, it is optimal in the same
sense that TSQR is optimal. Furthermore, the reduction operator is matrix-matrix
addition rather than a QR factorization of a matrix with comparable dimensions, so
CholeskyQR should always be more efficient than TSQR. Section 7.2 supports this
claim with performance data on a cluster and a BlueGene/L platform.

However, numerical accuracy is also an important consideration for many users.
Unlike CholeskyQR, CGS, or MGS, Householder QR is unconditionally stable. That is,
the computed Q factors are always orthonormal to machine precision, regardless of the
properties of the input matrix [14]. This also holds for TSQR, because the algorithm
is composed entirely of no more than P Householder QR factorizations, in which P
is the number of input blocks. Each of these factorizations is itself unconditionally
stable. In contrast, the orthogonality of the Q factor computed by CGS, MGS, or
CholeskyQR depends on the condition number of the input matrix. For example, in

12 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

CholeskyQR, the loss of orthogonality of the computed Q factor depends quadratically
on the condition number of the input matrix.

However, sometimes some loss of accuracy can be tolerated, either to improve
performance, or for the algorithm to have a desirable property. For example, in some
cases the input vectors are sufficiently well-conditioned to allow using CholeskyQR,
and the accuracy of the orthogonalization is not so important.

We care about stability for two reasons. First, an important application of TSQR
is the orthogonalization of basis vectors in Krylov methods. When using Krylov
methods to compute eigenvalues of large, ill-conditioned matrices, the whole solver
can fail to converge or have a considerably slower convergence when the orthogonality
of the Ritz vectors is poor [19, 21]. Second, we will use TSQR in Section 6 as the
panel factorization in a QR decomposition algorithm for matrices of general shape.
Users who ask for a QR factorization generally expect it to be numerically stable.
This is because of their experience with Householder QR, which does more work than
Gaussian elimination, but produces more stable results. Users who are not willing to
spend this additional work already favor faster but less stable algorithms.

6. Parallel CAQR. The parallel CAQR (“Communication-Avoiding QR”) al-
gorithm uses parallel TSQR to perform a right-looking QR factorization of a dense
matrix A on a two-dimensional grid of processors P = Pr × Pc. The m × n matrix
is distributed using a 2-D block cyclic layout over the processor grid, with blocks of
dimension b × b. For the sake of simplicity, we assume that all the blocks are of the
same size and square, so that they are b× b; we also assume that m ≥ n.

In summary, the number of arithmetic operations and words transferred is roughly
the same between parallel CAQR and ScaLAPACK’s parallel QR factorization, but
the number of messages is a factor b times lower for CAQR. There is also an analogous
sequential version of CAQR, which we describe in detail in the technical report [9].

CAQR is based on TSQR in order to minimize communication. At each step
of the factorization, TSQR is used to factor a panel of columns, and the resulting
Householder vectors are applied to the rest of the matrix. The block column QR fac-
torization as performed in PDGEQRF is the latency bottleneck of the current ScaLA-
PACK QR algorithm. Replacing this block column factorization with TSQR, and
adapting the rest of the algorithm to work with TSQR’s representation of the panel
Q factors, removes the bottleneck. We use the reduction-to-one-processor variant of
TSQR on a binary tree, as the panel’s R factor need only be stored on one processor
(the processor owning the diagonal block).

CAQR is defined iteratively. We assume that the first j − 1 iterations of the
CAQR algorithm have been performed. That is, j − 1 panels of width b have been
factored and the trailing matrix has been updated. The active matrix at step j (that
is, the part of the matrix which needs to be worked on) is of dimension

(m− (j − 1)b)× (n− (j − 1)b) = mj × nj .

Figure 6.1(a) shows the execution of the QR factorization. For the sake of simplic-
ity, we suppose that processors 0, . . . , Pr−1 lie in the column of processes that hold the
current panel j, and that Pr is a power of 2. The mj×b matrix B = [B0;B1; · · · ;Bq−1]
represents the current panel j. The mj × (nj − b) matrix C = [C0;C1; · · · ;Cq−1] is
the trailing matrix that needs to be updated after the TSQR factorization of B. For
each processor i, the first b rows of its first block row of B and C are Bi and Ci

respectively.

Implementing communication-optimal QR factorization 13

(a) Step j of
CAQR

Level 0

Level 1

Level 2

Level 3

P4 P6

P4 P5 P6

P0 P1 P3P2

P0 P1 P2 P3 P7

P5 P7

P6P4P0 P2

P0 P4

(b) TSQR reduction tree

Fig. 6.1. Step j of CAQR factorization (a), and an example of a binary TSQR reduction tree
with 8 processors (b). First, the current panel of width b, B = [B0; B1; · · · ; Bq−1] is factorized
using TSQR. Here, q is the number of blocks in the current panel. Second, the trailing matrix,
C = [C0; C1; · · · ; Cq−1], is updated.

We first introduce some notation to help us refer to different parts of a binary
TSQR reduction tree. TSQR takes place in (log2 Pr + 1) steps, starting from the
bottom level k = 0 of a binary tree. Each node of the binary tree is associated with
a set of processors. We use the following notations:

• level(i, k) =
⌊

i
2k

⌋
denotes the node at level k of the reduction tree which is

assigned to a set of processors that includes processor i.
• first proc(i, k) = 2klevel(i, k) is the index of the “first” processor associated

with the node level(i, k) at stage k of the reduction tree. In a reduction (not
an all-reduction), it receives the messages from its neighbors and performs
the local computation.

• target first proc(i, k) = first proc(i, k) + 2k−1 is the index of the processor
with which first proc(i, k) exchanges data in a reduction at level k.

A binary TSQR reduction tree for 8 processors is shown in Figure 6.1(b). For
example, the processors P4 and P6 are affected to the right node at level k = 2.
With the above notation, the processors in the range i = 4, . . . , 7 can compute
easily the two processors affected to this node, that is first proc(i, 2) = 4 and
target first proc(i, 2) = 6.

Algorithm 3 outlines the right-looking parallel QR decomposition. At iteration j,
first, the block column j is factored using TSQR. After the block column factorization
is complete, the trailing matrix is updated as follows. The update corresponding to
the QR factorization at the leaves of the TSQR tree is performed locally on every
processor. The updates corresponding to the upper levels of the TSQR tree are per-
formed between groups of neighboring trailing matrix processors. Note that only one
of the trailing matrix processors in each neighbor group continues to be involved in
successive trailing matrix updates. This allows overlap of computation and commu-
nication, as the uninvolved processors can finish their computations in parallel with
successive reduction stages.

We see that CAQR consists of n
b TSQR factorizations involving Pr processors

each, and n/b−1 applications of the resulting Householder vectors. Table 6.1 expresses
the performance model over a rectangular Pr × Pc grid of processors. A detailed
derivation of the model is given in [9]. According to the table, the number of arithmetic
operations and words transferred is roughly the same between parallel CAQR and
ScaLAPACK’s parallel QR factorization, but the number of messages is a factor b
times lower for CAQR.

14 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

Algorithm 3 Right-looking parallel CAQR factorization
1: for j = 1 to n/b do
2: The column of processors that holds panel j computes a TSQR factorization

of this panel. The Householder vectors are stored in a tree-like structure
as described in Section 4.

3: Each processor p that belongs to the column of processes holding panel j
broadcasts along its row of processors the mj/Pr × b rectangular matrix
that holds the two sets of Householder vectors. Processor p also broadcasts
two arrays of size b each, containing the Householder multipliers τp.

4: Each processor in the same process row as processor p, 0 ≤ p < Pr, forms Tp0

and updates its local trailing matrix C using Tp0 and Yp0. (This computa-
tion involves all processors.)

5: for k = 1 to logPr, the processors that lie in the same row as processor
p, where 0 ≤ p < Pr equals first proc(p, k) or target first proc(p, k),
respectively. do

6: Processors in the same process row as target first proc(p, k) form
Tlevel(p,k),k locally. They also compute local pieces of W =
Y T

level(p,k),kCtarget first proc(p,k), leaving the results distributed. This
computation is overlapped with the communication in Line 7.

7: Each processor in the same process row as first proc(p, k) sends to the
processor in the same column and belonging to the row of processors
of target first proc(p, k) the local pieces of Cfirst proc(p,k).

8: Processors in the same process row as target first proc(p, k) compute local
pieces of

W = TT
level(p,k),k

(
Cfirst proc(p,k) +W

)
.

9: Each processor in the same process row as target first proc(p, k) sends to
the processor in the same column and belonging to the process row of
first proc(p, k) the local pieces of W .

10: Processors in the same process row as first proc(p, k) and
target first proc(p, k) each complete the rank-b updates
Cfirst proc(p,k) := Cfirst proc(p,k) − W and Ctarget first proc(p,k) :=
Ctarget first proc(p,k) − Ylevel(p,k),k ·W locally. The latter computation
is overlapped with the communication in Line 9.

11: end for
12: end for

The parallelization of the computation is represented by the number of flops in
Table 6.1. The first, dominant, term for CAQR represents mainly the parallelization
of the local Householder update corresponding to the leaves of the TSQR tree (the
matrix-matrix multiplication in line 4 of Algorithm 3), and matches the first term for
PDGEQRF. The second term for CAQR corresponds to forming the Tp0 matrices for
the local Householder update in line 4 of the algorithm, and also has a matching term
for PDGEQRF. The third term for CAQR represents the QR factorization of a panel
of width b that corresponds to the leaves of the TSQR tree (part of line 2) and part
of the local rank-b update (triangular matrix-matrix multiplication) in line 4 of the
algorithm, and also has a matching term for PDGEQRF.

Implementing communication-optimal QR factorization 15

Parallel CAQR

messages 3n
b

log Pr + 2n
b

log Pc

words
“

n2

Pc
+ bn

2

”
log Pr +

“
mn−n2/2

Pr
+ 2n

”
log Pc

flops 2n2(3m−n)
3P

+ bn2

2Pc
+ 3bn(2m−n)

2Pr
+

“
4b2n

3
+ n2(3b+5)

2Pc

”
log Pr − b2n

ScaLAPACK’s PDGEQRF

messages 3n log Pr + 2n
b

log Pc

words
“

n2

Pc
+ bn

”
log Pr +

“
mn−n2/2

Pr
+ bn

2

”
log Pc

flops 2n2(3m−n)
3P

+ bn2

2Pc
+ 3bn(2m−n)

2Pr
− b2n

3Pr

Table 6.1
Performance models of parallel CAQR and ScaLAPACK’s PDGEQRF when factoring an m×n

matrix, distributed in a 2-D block cyclic layout on a Pr × Pc grid of processors with square b × b
blocks. All terms are counted along the critical path. In this table, “flops” only includes floating-point
additions and multiplications, not floating-point divisions. Some lower-order terms are omitted. We
generally assume m ≥ n.

The fourth, lower order, term in the number of flops for CAQR represents the
redundant computation introduced by the TSQR formulation. In this term, the num-
ber of flops performed for computing the QR factorization of two upper triangular
matrices at each node of the TSQR tree is (2/3)nb2 log(Pr). The number of flops
performed during the Householder updates issued by each QR factorization of two
upper triangular matrices is n2(3b+ 5)/(2Pc) log(Pr).

We note that standard optimizations like overlapping computation and commu-
nication, as in look-ahead techniques, are possible with CAQR. With the look-ahead
right-looking approach, the communications are pipelined from left to right. At each
step of factorization, we would model the latency cost of the broadcast within rows of
processors as 2 instead of logPc. Also, the runtime estimation in Table 6.1 does not
take into account the overlap of computation and communication in lines 6 and 7 or
in lines 9 and 10 of Algorithm 3. Suppose that at each step of the QR factorization,
the condition

α+ β
b(nj − b)

Pc
> γb(b+ 1)

nj − b
Pc

is fulfilled, this is the case for example when β/γ > b+ 1, then the fourth flops term
that accounts for the redundant computation is decreased by n2(b + 1) log(Pr)/Pc,
about a factor of 3.

7. Experimental results. In this section we present the performance of se-
quential and parallel TSQR on several computational systems. We also use the per-
formance model of CAQR in Table 6.1 to predict its performance and compare it
to PDGEQRF. The actual implementation and measurements of parallel CAQR are
currently underway.

TSQR (and its associated CAQR factorization algorithm on a 2-D matrix layout)
is not a single algorithm, but a space of possible algorithms. It encompasses all
possible reduction tree shapes, including:

1. Binary (to minimize number of messages in the parallel case)
2. Flat (to minimize communication volume in the sequential case)
3. Hybrid (to account for network topology, and/or to balance bandwidth de-

mands with maximum parallelism)
as well as all possible ways to perform the local QR factorizations, including:

16 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

1. (Possibly multithreaded) standard LAPACK (DGEQRF)
2. An existing parallel QR factorization, such as ScaLAPACK’s PDGEQRF
3. A recursive QR factorization (e.g., [11, 12])

Choosing the right combination of parameters can help minimize communication be-
tween any or all of the levels of the memory hierarchy, from cache and shared-memory
bus, to DRAM and local disk, to parallel filesystem and distributed-memory network
interconnects, to wide-area networks.

The huge tuning space makes it a challenge to pick the right platforms for ex-
periments. Luckily, TSQR’s hierarchical structure makes tunings composable. For
example, once we have a good choice of parameters for TSQR on a single multicore
node, we don’t need to change them when we tune TSQR for a cluster of these nodes.
From the cluster perspective, it is as if the performance of the individual nodes im-
proved. This means that we can benchmark TSQR on a small, carefully chosen set
of scenarios, with confidence that they represent many platforms of interest.

Previous work covers some parts of the tuning space. Gunter et al. implement
an out-of-DRAM version of TSQR on a flat tree, and use a parallel distributed QR
factorization routine to factor in-DRAM blocks [18]. Buttari et al. suggest using a
QR factorization of this type to improve performance of parallel QR on commodity
multicore processors [5]. Quintana-Ort́ı et al. develop two variations on block QR
factorization algorithms, and use them with a dynamic task scheduling system to
parallelize the QR factorization on shared-memory machines [28]. Kurzak and Don-
garra use similar algorithms, but with static task scheduling, to parallelize the QR
factorization on Cell processors [22]. Pothen and Raghavan [27] and Cunha et al. [6]
both benchmarked parallel TSQR using a binary tree on a distributed-memory clus-
ter, and implemented the local QR factorizations with a single-threaded version of
DGEQRF. All these researchers observed significant performance improvements over
previous QR factorization algorithms. The only parallel implementations of CAQR
we are aware of are parallel CAQR with a flat tree in the shared memory context.
These have recently been presented in [5, 28]. To our knowledge, there is no imple-
mentation of parallel CAQR in the distributed context (neither flat tree nor binary
tree).

We choose to run two sets of experiments for TSQR. The first set covers the
out-of-DRAM case on a single CPU, and the results are presented in Section 7.1.
We use a laptop with a single PowerPC CPU for these experiments. The second
set, presented in Section 7.2, is like the parallel experiments of previous authors in
that it uses a binary tree on a distributed-memory cluster, but it improves on their
approach by using a better local QR factorization (the recursive approach – see [11,
12]). We use two distributed-memory machines: a Pentium III cluster (“Beowulf”)
and a BlueGene/L (“Frost”).

In Section 7.3, we estimate performance of parallel CAQR on our projection of
a future petascale machine with 8192 processors (“Peta”). Detailed performance
evaluation on two different parallel machines, an existing IBM POWER5 and a grid
formed by 128 processors linked together by the Internet, can be found in the technical
report [9].

7.1. Tests of sequential TSQR on a flat tree. We developed an out-of-
DRAM version of TSQR that uses a flat reduction tree. It invokes the system vendor’s
native BLAS and LAPACK libraries. Thus, it can exploit a multithreaded BLAS on a
machine with multiple CPUs, but the parallelism is limited to operations on a single
block of the matrix. We used standard POSIX blocking file operations, and made

Implementing communication-optimal QR factorization 17

no attempt to overlap communication and computation. Exploiting overlap could at
best double the performance.

We ran sequential tests on a laptop with a single PowerPC CPU. Details of the
platform are as follows:

• Single-core PowerPC G4 (1.5 GHz), with 512 KB of L2 cache, 512 MB of
DRAM on a 167 MHz bus, One Fujitsu MHT2080AH 80 HB hard drive
(5400 RPM).

In our experiments, we first used both out-of-DRAM TSQR and standard LA-
PACK QR to factor a collection of matrices that use only slightly more than half of
the total DRAM for the factorization. This was so that we could collect comparison
timings. Then, we ran only out-of-DRAM TSQR on matrices too large to fit in DRAM
or swap space, so that an out-of-DRAM algorithm is necessary to solve the problem at
all. For the latter timings, we extrapolated the standard LAPACK QR timings up to
the larger problem sizes, in order to estimate the runtime if memory were unbounded.
LAPACK’s QR factorization swaps so much for out-of-DRAM problem sizes that its
actual runtimes are many times larger than these extrapolated unbounded-memory
runtime estimates. Note that once an in-DRAM algorithm begins swapping, it be-
comes so much slower that most users prefer to abort the computation and try solving
a smaller problem.

We used the following power law for the extrapolation:

t = A1bm
A2nA3 ,

in which t is the time spent in computation, b is the number of input matrix blocks,
m is the number of rows per block, and n is the number of columns in the matrix.
After taking logarithms of both sides, we performed a least squares fit of log(A1), A2,
and A3. The value of A2 was 1, as expected. The value of A3 was about 1.6. This
is less than 2 as expected, given that increasing the number of columns increases the
computational intensity and thus the potential for exploitation of locality (a Level 3
BLAS effect). We expect around two digits of accuracy in the parameters, which in
themselves are not as interesting as the extrapolated runtimes; the parameter values
mainly serve as a sanity check.

Figure 7.1(a) shows the measured in-DRAM results on the laptop platform, and
Figure 7.1(b) shows the (measured TSQR, extrapolated LAPACK) out-of-DRAM
results on the same platform. In these figures, the amount of memory, and so the
total number of matrix entries is constant for all the experiments: m · n = 224. This
means the total volume of communication is the same for all experiments. The number
of blocks P used, and so the number of matrix entries per block mn/P , is the same for
each group of five bars, and is shown in a label under the horizontal axis. Within each
group of 5 bars, we varied the number of matrix columns to be 4, 8, 16, 32, and 64.
Note that we have not tried to overlap I/O and computation in this implementation.
The trends in Figure 7.1(a) suggest that the extrapolation is reasonable: TSQR takes
about twice as much time for computation as does standard LAPACK QR, and the
fraction of time spent in I/O is reasonable and decreases with problem size.

TSQR assumes that the matrix starts and ends on disk, whereas LAPACK starts
and ends in DRAM. Thus, to compare the two, one could also estimate LAPACK
performance with infinite DRAM but where the data starts and ends on disk. The
height of the reddish-brown bars in Figures 7.1(a) and 7.1(b) is the I/O time for
TSQR, which can be used to estimate the LAPACK I/O time. This is reasonable
since the volume of communication in the two cases is the same, and the fact that

18 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

(a) Measured data (b) Extrapolated runtime

Fig. 7.1. Runtimes (in seconds) of out-of-DRAM TSQR compared against (a) mea-
sured data and (b) extrapolated runtime of standard QR (LAPACK’s DGEQRF) on a single-
processor laptop. For the measured data, we limit memory usage to 256 MB, which is half of
the laptop’s total system memory, so that we can collect performance data for DGEQRF. For
extrapolated data, we use the measured data to construct a power-law performance extrapola-
tion. The graphs show different choices of block dimensions and number of blocks P . The top
of the blue bar is (a) the benchmarked total runtime for DGEQRF and (b) the extrapolated
total runtime for DGEQRF, the top of the green bar is the benchmarked compute time for
TSQR, and the top of the brown bar is the benchmarked total time for TSQR. Thus the height
of the brown bar alone is the I/O time. Note that LAPACK starts and ends in DRAM (if it
could fit in DRAM), and TSQR starts and ends on disk.

the reddish-brown bars are of similar height for different values of P , shows that the
communication is bandwidth dominated. Add this to the blue bar (the LAPACK
compute time) to estimate the runtime when the LAPACK QR routine must load the
matrix from disk and store the results back to disk.

The main purpose of our out-of-DRAM code is not to outperform existing in-
DRAM algorithms, but to be able to solve classes of problems which the existing
algorithms cannot solve. The above graphs show that the penalty of an explicitly
swapping approach is about 2x, which is small enough to warrant its practical use.
This holds even for problems with a relatively low computational intensity, such as
when the input matrix has very few columns. Furthermore, picking the number of
columns sufficiently large may allow complete overlap of file I/O by computation.

7.2. Tests of parallel TSQR on a binary tree. We also present results for
a parallel MPI implementation of TSQR on a binary tree. Rather than LAPACK’s
DGEQRF, the code uses a custom local QR factorization, DGEQR3, based on the
recursive approach of Elmroth and Gustavson [12]. Tests show that DGEQR3 consis-
tently outperforms LAPACK’s DGEQRF by a large margin for matrix dimensions of
interest.

We ran parallel TSQR on the following distributed-memory machines:
• Pentium III cluster (“Beowulf”), operated by the University of Colorado Den-

ver. It has 35 dual-socket 900 MHz Pentium III nodes with Dolphin intercon-
nect. Peak floating-point rate is 900 Mflop/s per processor, network latency
is less than 2.7 µs, benchmarked1, and network bandwidth is 350 MB/s,

1See http://www.dolphinics.com/products/benchmarks.html.

Implementing communication-optimal QR factorization 19

procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF)

1 1.02 4.14 3.73 7.17 9.68 12.63
2 0.99 4.00 6.41 12.56 15.71 19.88
4 0.92 3.35 6.62 12.78 16.07 19.59
8 0.92 2.86 6.87 12.89 11.41 17.85
16 1.00 2.56 7.48 13.02 9.75 17.29
32 1.32 2.82 8.37 13.84 8.15 16.95
64 1.88 5.96 15.46 13.84 9.46 17.74

Table 7.1
Runtime in seconds of various parallel QR factorizations on the Beowulf machine. The total

number of rows m = 100000 and the ratio dn/
√

P e = 50 (with P being the number of processors)
were kept constant as P varied from 1 to 64. This illustrates weak scaling with respect to the square
of the number of columns n in the matrix, which is of interest because the number of floating-point
operations in sequential QR is O(mn2). If an algorithm scales perfectly, then all the runtimes in
that algorithm’s column should be constant. Both the Q and R factors were computed explicitly; in
particular, for those codes which form an implicit representation of Q, the conversion to an explicit
representation was included in the runtime measurement.

procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF)

1 0.45 3.43 3.61 7.13 7.07 7.26
2 0.47 4.02 7.11 14.04 11.59 13.95
4 0.47 4.29 6.09 12.09 13.94 13.74
8 0.50 4.30 7.53 15.06 14.21 14.05
16 0.54 4.33 7.79 15.04 14.66 14.94
32 0.52 4.42 7.85 15.38 14.95 15.01
64 0.65 4.45 7.96 15.46 14.66 15.33

Table 7.2
Runtime in seconds of various parallel QR factorizations on the Beowulf machine, illustrating

weak scaling with respect to the total number of rows m in the matrix. The ratio dm/P e = 100000
and the total number of columns n = 50 were kept constant as the number of processors P varied
from 1 to 64. If an algorithm scales perfectly, then all the runtimes in that algorithm’s column
should be constant. For those algorithms which compute an implicit representation of the Q factor,
that representation was left implicit.

benchmarked upper bound.
• IBM BlueGene/L (“Frost”), operated by the National Center for Atmospheric

Research. We use one BlueGene/L rack with 1024 700 MHz compute CPUs.
Peak floating-point rate is 2.8 Gflop/s per processor, network2 latency is 1.5
µs, hardware, and network one-way bandwidth is 350 MB/s, hardware.

The experiments compare many different implementations of a parallel QR fac-
torization. TSQR was tested both with the recursive local QR factorization DGEQR3,
and the standard LAPACK routine DGEQRF. Both CGS and MGS (by row) were
timed.

Tables 7.1 and 7.2 show the results of two different performance experiments on
the Pentium III cluster. In the first of these, the total number of rows m = 100, 000
and the ratio dn/

√
P e = 50 (with P being the number of processors) were kept con-

stant as P varied from 1 to 64. This was meant to illustrate weak scaling with respect
to n2 (the square of the number of columns in the matrix), which is of interest because

2The BlueGene/L has two separate networks – a torus for nearest-neighbor communication and
a tree for collectives. The latency and bandwidth figures here are for the collectives network.

20 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF)

32 0.140 0.453 0.836 0.694 1.132 1.817
64 0.075 0.235 0.411 0.341 0.570 0.908
128 0.038 0.118 0.180 0.144 0.247 0.399
256 0.020 0.064 0.086 0.069 0.121 0.212

Table 7.3
Runtime in seconds of various parallel QR factorizations on the Frost machine on a 106 × 50

matrix. This metric illustrates strong scaling (constant problem size, but number of processors
increases).

the number of floating-point operations in sequential QR is O(mn2). If an algorithm
scales perfectly, then all the runtimes shown in that algorithm’s column should be
constant. Both the tall and skinny Q and the square R factors were computed ex-
plicitly; in particular, for those codes which form an implicit representation of Q, the
conversion to an explicit representation was included in the runtime measurement.
The results show that TSQR scales better than CGS or MGS (by row), and signifi-
cantly outperforms ScaLAPACK’s QR. Also, using the recursive local QR in TSQR,
rather than LAPACK’s QR, more than doubles performance. CholeskyQR gets the
best performance of all the algorithms, but at the expense of significant loss of orthog-
onality when the initial matrix A is ill-conditioned. Note that, in this case (Q and R
requested), CholeskyQR, CGS, and MGS perform half the flops of the Householder
based algorithms, TSQR-DGEQR3, TSQR-DGEQRF, and PDGEQRF (2mn2 versus
4mn2).

Table 7.2 shows the results of the second set of experiments on the Pentium III
cluster. In these experiments, we also illustrate weak scaling with respect to the
total number of rows m in the matrix. For this, the ratio dm/P e = 100, 000 and the
total number of columns n = 50 were kept constant as the number of processors P
varied from 1 to 64. Unlike in the previous set of experiments, for those algorithms
which compute an implicit representation of the Q factor, that representation was left
implicit. The results show that TSQR scales well. In particular, when using TSQR
with the recursive local QR factorization, there is almost no performance penalty
for moving from one processor to two, unlike with CGS, MGS, and ScaLAPACK’s
QR. Again, the recursive local QR significantly improves TSQR performance; here
it is the main factor in making TSQR perform better than ScaLAPACK’s QR. Note
that, in this case (only R requested), CholeskyQR, performs half the flops of all the
others algorithm CGS, MGS, TSQR-DGEQR3, TSQR-DGEQRF, and PDGEQRF
(mn2 versus 2mn2).

Table 7.3 shows the results of the third set of experiments, which was performed on
the BlueGene/L cluster “Frost.” These data show performance per processor (Mflop
/ s / (number of processors)) on a matrix of constant dimensions 106 × 50, as the
number of processors was increased. This illustrates strong scaling. If an algorithm
scales perfectly, then all the numbers in that algorithm’s column should decrease
proportionally to P , i.e. halve from row to row. For ScaLAPACK’s QR factorization,
we used PDGEQRF. We observe that using the recursive local QR factorization with
TSQR makes it clearly outperfom ScaLAPACK. Note that, in this case (Q and R
requested), CholeskyQR, CGS, and MGS perform half the flops of the Householder
based algorithms, TSQR-DGEQR3, TSQR-DGEQRF, and PDGEQRF (2mn2 versus
4mn2).

Implementing communication-optimal QR factorization 21

Both the Pentium III and BlueGene/L platforms have relatively slow processors
with a relatively low-latency interconnect. TSQR was optimized for the opposite case
of fast processors and expensive communication. Nevertheless, TSQR outperforms
ScaLAPACK’s QR by over 6.7× on 16 processors (and 3.5× on 64 processors) on the
Pentium III cluster, and 4.0× on 32 processors (and 3.3× on 256 processors) on the
BlueGene/L machine.

7.3. Performance estimation of parallel CAQR . We use the performance
model developed in Section 6 to estimate the performance of parallel CAQR on a
model of a petascale machine. We expect CAQR to outperform ScaLAPACK, in
part because it uses a faster algorithm for performing most of the computation of
each panel factorization (DGEQR3 vs. DGEQRF), and in part because it reduces the
latency cost. Our performance model uses the same time per floating-point operation
for both CAQR and PDGEQRF. Hence our model evaluates the improvement due
only to reducing the latency cost.

Our projection of a future petascale machine (“Peta”) has 8192 processors. Each
“processor” of Peta may itself be a parallel multicore node, but we consider it as a
single fast sequential processor for the sake of our model. Here are the parameters we
use:

• Peta. Peak floating-point rate is 500 Gflop/s per processor, network latency
is 10 µs, and network bandwidth is 4 GB/s.

We evaluate the performance using matrices of size n × n, distributed over a
Pr × Pc grid of P processors using a 2D block cyclic distribution, with square blocks
of size b× b. We estimate the best performance of CAQR and PDGEQRF for a given
problem size n and a given number of processors P , by finding the optimal values for
the block size b and the shape of the grid Pr × Pc in the allowed ranges. The matrix
size n is varied in the range 103, 103.5, 104, . . . , 107.5. The block size b is varied in
the range 1, 5, 10, . . . , 50, 60, . . . , min(200,m/Pr, n/Pc). The number of processors
is varied from 1 to the largest power of 2 smaller than pmax, in which pmax is the
maximum number of processors available in the system. The values for Pr and Pc are
also chosen to be powers of two.

When we evaluate the model, we set the floating-point performance value in the
model so that the modeled floating-point rate is 80% of the machine’s peak rate, so as
to capture realistic performance on the local QR factorizations. The inverse network
bandwidth β has units of seconds per word. The white regions in the plots signify
that the problem needed more memory than available on the machine.

Figure 7.2 shows our performance estimates of CAQR and PDGEQRF on the
Petascale machine, in which we display

• Figure 7.2(a) – the best speedup obtained by CAQR, with respect to the
runtime using the fewest number of processors with enough memory to hold
the matrix (which may be more than one processor),

• Figure 7.2(b) – the best speedup obtained by PDGEQRF, computed similarly,
and

• Figure 7.2(c) – the ratio of PDGEQRF runtime to CAQR runtime.
As can be seen in Figure 7.2(a), CAQR is expected to show good scalability

for large matrices. For example, for n = 105.5, a speedup of 1431, measured with
respect to the time on 2 processors, is obtained on 8192 processors. For n = 106 a
speedup of 167, measured with respect to the time on 32 processors, is obtained on
8192 processors.

In the technical report [9], we also estimate the fractions of time in computation,

22 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

log10 n Best log2 P for PDGEQRF CAQR speedup
3.0 1 1
3.5 2–3 1.1–1.5
4.0 4–5 1.7–2.5
4.5 7–10 2.7–6.6
5.0 11–13 4.1–7.4
5.5 13 3.0
6.0 13 1.4

Table 7.4
Estimated runtime of PDGEQRF divided by estimated runtime of parallel CAQR on a square

n × n matrix, on the Peta platform, for those values of P (number of processors) for which
PDGEQRF performs the best for that problem size.

latency, and bandwidth for PDGEQRF and CAQR. These estimations show that for
the largest problems that can fit in memory, in the top left part of the plots in
Figure 7.2, the computation dominates the total time, while in the right bottom part
the latency dominates the total time. For the test cases situated between these two
parts, the bandwidth dominates the time.

CAQR leads to more significant improvements when the latency represents an
important fraction of the total time, the right bottom part of Figure 7.2(c). The best
improvement is a factor of 22.9, obtained for n = 104 and P = 8192. The speedup
of the best CAQR compared to the best PDGEQRF for n = 104 when using at
most P = 8192 processors is larger than 8, which is still an important improvement.
The best performance of CAQR is obtained for P = 4096 processors and the best
performance of PDGEQRF is obtained for P = 16 processors.

Useful improvements are also obtained for larger matrices. For n = 106, CAQR
outperforms PDGEQRF by a factor of 1.4. When the computation dominates the par-
allel time, Figure 7.2(c) predicts that there is no benefit from using CAQR. However,
CAQR is never slower. For any fixed n, we can take the number of processors P for
which PDGEQRF would perform the best, and measure the speedup of CAQR over
PDGEQRF using that number of processors. We do this in Table 7.4, which predicts
that CAQR always is at least as fast as PDGEQRF, and often significantly faster (up
to 7.4× faster in some cases).

8. Conclusions and Future Work. We have presented sequential and parallel
algorithms that minimize the communication performed during the QR factorization
of tall and skinny matrices and general rectangular matrices. In the accompanying
paper [8] we have shown that the new algorithms are optimal in the amount of com-
munication they perform, thus they are superior in theory over existing algorithms.
In this paper we have presented implementations demonstrating in practice signifi-
cant speedups over LAPACK and ScaLAPACK. In particular, we have studied the
performance of parallel TSQR on a binary tree and sequential TSQR on a flat tree.

Implementations of parallel CAQR are currently underway. Optimization of the
TSQR reduction tree for more general, practical architectures (such as multicore,
multisocket, or GPUs) is future work, as well as optimization of the rest of CAQR to
the most general architectures, with proofs of optimality.

It is natural to ask to how much of dense linear algebra one can extend the
results of this paper, that is finding algorithms that attain communication lower
bounds. In the case of parallel LU with pivoting, refer to the paper by Grigori,

Implementing communication-optimal QR factorization 23

(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Fig. 7.2. Performance prediction comparing CAQR and PDGEQRF on Peta.

Demmel, and Xiang [16], and in the case of sequential LU, refer to the paper by
Toledo [33]. More broadly, we hope to extend the results of this paper to other linear
algebra operations, including two-sided factorizations (such as reduction to symmetric
tridiagonal, bidiagonal, or (generalized) upper Hessenberg forms). Once a matrix is
symmetric tridiagonal (or bidiagonal) and so takes little memory, fast algorithms for
the eigenproblem (or SVD) are available. Most challenging is likely to be finding
eigenvalues of a matrix in upper Hessenberg form (or of a matrix pencil).

REFERENCES

[1] M. Baboulin, L. Giraud, S. Gratton, and J. Langou, Parallel tools for solving incremental
dense least squares problems. Application to space geodesy, Tech. Report UT-CS-06-582,
University of Tennessee, Sept. 2006. LAWN #179.

[2] J. Baglama, D. Calvetti, and L. Reichel, Algorithm 827: irbleigs: A MATLAB program
for computing a few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math.
Softw., 29 (2003), pp. 337–348.

[3] Z. Bai and D. Day, Block Arnoldi method, in Templates for the Solution of Algebraic Eigen-
value Problems: A Practical Guide, Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and
H. van der Vorst, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA,

24 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

USA, 2000, pp. 196–204.
[4] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist, Anasazi webpage.

http://trilinos.sandia.gov/packages/anasazi/.
[5] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, A class of parallel tiled linear

algebra algorithms for multicore architectures, Tech. Report UT-CS-07-600, University of
Tennessee, Sept. 2007. LAWN #191.

[6] R. D. Da Cunha, D. Becker, and J. C. Patterson, New parallel (rank-revealing) QR factor-
ization algorithms, in Euro-Par 2002. Parallel Processing: Eighth International Euro-Par
Conference, Paderborn, Germany, August 27–30, 2002, 2002.

[7] E. D’Azevedo and J. Dongarra, The design and implementation of the parallel out-of-core
ScaLAPACK LU, QR, and Cholesky factorization routines, Concurrency Practice and
Experience, 12 (2000), pp. 1481–1483.

[8] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-avoiding par-
allel and sequential QR and LU factorizations. Submitted to SIAM Journal of Scientific
Computing, 2008.

[9] , Communication-avoiding parallel and sequential QR and LU factorizations: theory
and practice, Tech. Report UCB/EECS-2008-89, University of California Berkeley, EECS
Department, 2008. LAWN #204.

[10] J. W. Demmel and M. Hoemmen, Communication-avoiding Krylov subspace methods, tech.
report, University of California Berkeley, Department of Electrical Engineering and Com-
puter Science, in preparation.

[11] E. Elmroth and F. Gustavson, New serial and parallel recursive QR factorization algo-
rithms for SMP systems, in Applied Parallel Computing. Large Scale Scientific and Indus-
trial Problems., B. K̊agström et al., ed., vol. 1541 of Lecture Notes in Computer Science,
Springer, 1998, pp. 120–128.

[12] , Applying recursion to serial and parallel QR factorization leads to better performance,
IBM Journal of Research and Development, 44 (2000), pp. 605–624.

[13] R. W. Freund and M. Malhotra, A block QMR algorithm for non-Hermitian linear systems
with multiple right-hand sides, Linear Algebra and its Applications, 254 (1997), pp. 119–
157. Proceedings of the Fifth Conference of the International Linear Algebra Society
(Atlanta, GA, 1995).

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, USA, third ed., 1996.

[15] G. H. Golub, R. J. Plemmons, and A. Sameh, Parallel block schemes for large-scale least-
squares computations, in High-Speed Computing: Scientific Applications and Algorithm
Design, Robert B. Wilhelmson, ed., University of Illinois Press, Urbana and Chicago, IL,
USA, 1988, pp. 171–179.

[16] L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elimination,
Proceedings of the ACM/IEEE SC08 Conference, (2008).

[17] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press, 1999.

[18] B. C. Gunter and R. A. van de Geijn, Parallel out-of-core computation and updating of the
QR factorization, ACM Transactions on Mathematical Software, 31 (2005), pp. 60–78.

[19] U. Hetmaniuk and R. Lehoucq, Basis selection in LOBPCG, Journal of Computational
Physics, 218 (2006), pp. 324–332.

[20] A. V. Knyazev, BLOPEX webpage. http://www-math.cudenver.edu/∼aknyazev/software/
BLOPEX/.

[21] A. V. Knyazev, M. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally opti-
mal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc, Tech. Report
UCDHSC-CCM-251P, University of California Davis, 2007.

[22] J. Kurzak and J. J. Dongarra, QR factorization for the CELL processor, Tech. Report
UT-CS-08-616, University of Tennessee, May 2008. LAWN #201.

[23] R. Lehoucq and K. Maschhoff, Block Arnoldi method, in Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. W. Demmel, J. J. Dongarra,
A. Ruhe, and H. van der Vorst, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000, pp. 185–187.

[24] O. Marques, BLZPACK webpage. http://crd.lbl.gov/∼osni/.
[25] R. Nishtala, G. Almási, and C. Caşcaval, Performance without pain = productivity: Data

layout and collective communication in UPC, in Proceedings of the ACM SIGPLAN 2008
Symposium on Principles and Practice of Parallel Programming, 2008.

[26] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra
and its Applications, 29 (1980), pp. 293–322.

Implementing communication-optimal QR factorization 25

[27] A. Pothen and P. Raghavan, Distributed orthogonal factorization: Givens and Householder
algorithms, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1113–1134.

[28] G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, E. Chan, F. G. Van Zee, and R. A. van de
Geijn, Scheduling of QR factorization algorithms on SMP and multi-core architectures, in
Proceedings of the 16th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, Toulouse, France, Feb. 2008. FLAME Working Note #24.

[29] E. Rabani and S. Toledo, Out-of-core SVD and QR decompositions, in Proceedings of the
10th SIAM Conference on Parallel Processing for Scientific Computing, Norfolk, Virginia,
SIAM, Mar. 2001.

[30] R. Schreiber and C. Van Loan, A storage efficient WY representation for products of House-
holder transformations, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 53–57.

[31] A. Stathopoulos, PRIMME webpage. http://www.cs.wm.edu/∼andreas/software/.
[32] A. Stathopoulos and K. Wu, A block orthogonalization procedure with constant synchroniza-

tion requirements, SIAM Journal on Scientific Computing, 23 (2002), pp. 2165–2182.
[33] S. Toledo, Locality of reference in LU decomposition with partial pivoting, SIAM J. Matrix

Anal. Appl., 18 (1997), pp. 1065–1081.

[34] B. Vital, Étude de quelques méthodes de résolution de problèmes linéaires de grande taille sur
multiprocesseur, Ph.D. dissertation, Université de Rennes I, Rennes, Nov. 1990.

[35] K. Wu and H. D. Simon, TRLAN webpage. http://crd.lbl.gov/∼kewu/ps/trlan .html.

