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Abstract. Distributed computing must adapt its techniques to net-
works of mobile agents. Indeed, we are facing new problems like the
small size of memory and the lack of computational power. In this pa-
per, we extend the results of Angluin et al (see [4,3,2,1]) by finding
self-stabilizing algorithms to count the number of agents in the network.
We focus on two different models of communication, with a fixed base
station or with pairwise interactions. In both models we decide if there
exist algorithms (probabilistic, deterministic, with k-fair adversary) to
solve the self-stabilizing counting problem.

1 Introduction

Habitat and environmental monitoring represents a class of sensor network ap-
plications with enormous potential benefits both for scientific communities and
for society as a whole. The intimate connection with its immediate physical en-
vironment allows each sensor to provide localized measurements and detailed
information that is hard to obtain through traditional instrumentation. Many
environmental projects use sensor networks.

The SIVAM project in Amazonia is related to meteorological predictions, sen-
sors are placed in glacial areas for measuring the impact of the climate evolution,
(see [9]), use of sensors is considered in Mars exploration (see [10]) or for detect-
ing the effect of the wind or of an earthquake on a building (see [11]).

A sensor network has been deployed on Great Duck Island (see [8]) for study-
ing the behavior of Leachs Storm Petrels. Seabird colonies are notorious for the
sensibility to human disturbance and sensor networks represent a significant ad-
vance over traditional methods of monitoring. In [1], Angluin et al. introduced
the model of population protocols in connection with distributed algorithms for
mobile sensor networks. A sensor is a package containing power supply, processor,
memory and wireless communication capacity. Some physical constraints involve
limitations of computing or storage capacity and communication. In particular,
two sensors have to be close enough to be able to communicate. A particular
static entity, the base station, is provided with more computing resources.

The codes in the base station and in the sensors define what happens when
two close sensors communicate and how they communicate with the base station.
An important assumption made in this model is that the interactions between
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the sensors themselves and between the sensors and the base station are not
controlled. Also, a hypothesis of fairness states that in an infinite computation
the numbers of interactions between two given sensors or between a particular
sensor and the base station are infinite. Eventually the result of the computation
is stored at the base station and does not change any more.

This model takes into account the inherent power limitation of the real sensors
and also the fact that they can be attached to unpredictably moving supports.
For being still more realistic the model should consider the possibility for the
sensors to endure failures. Temperature variations, rain, frost, storm, etc. have
consequently, in the real world, that some sensors are crashed and that some
others are still operating, but with corrupted data.

Most of population protocols do not consider the possibility of failures. The
aim of this paper is to perform computation in mobile sensor networks subject
to some type of failures. The framework of self-stabilization is particularly well
adapted for dealing with such conditions. A self-stabilizing system, after some
memory corruptions hit some processors, regains its consistency by itself, mean-
ing that first, (convergence) it reaches a correct global configuration in a finite
number of steps and second, (correction) from then its behavior is correct until
the next corruption. It is important to note that this model assumes that the
code is immutable, e.g, stored in a ROM and then cannot be corrupted. Tradi-
tionally self-stabilization assumes that failures are not too frequent (for giving
enough time to the system for recovery) and thus the effect of a single global fail-
ure is considered. That is equivalent to consider that the system may be started
in any possible global configuration. Note that the issue of combining population
protocols with self stabilization has been addressed for ring networks in [4] and
in a different framework in [6].

In the present work we make the assumption that, if the input variables can be
corrupted, as any other variable, first they do not change during the time of the
computation and second they are regularly read by the sensor. Then eventually
a sensor deals with its correct input values.

In this paper we consider the very basic problem of computing the number
of (not crashed) sensors in the system, all sensors being identical (same code,
no identifiers), when their variables are arbitrary initialized (but the input value
of each sensor is 1). This problem is fundamental, first because the ability of
counting makes easier the solution of other problems (many distributed algo-
rithms assume that the size of the network is known in advance) and second
because if counting is feasible, sum, difference and test to 0 are too. In prac-
tice, one might want to count specific sensors, for example those carried by sick
petrels.

We present a study of this problem, under slightly different models. The varia-
tions concern the determinism or the randomization of the population protocols.
In a sub model, the sensors only communicate with the base station and in another
they communicate both between each other and with the base station. According
to the different cases, we obtain solutions or prove impossibility results.
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2 Motivation and Modelization

Imagine the following scenario : A group of birds (petrels) evolves on an island,
carrying on their body a small sensor. Whenever a petrel is close enough to the
base station, its sensor interacts with the base station, which can read the value
of the sensor, compute, and then write in the petrel sensor memory.

Depending on the hypothesis, the sensors may or may not interact with each
other when two petrels approach close enough.

2.1 Mobile Sensor Networks with a Base Station

A mobile sensor network is composed of an base station, and of n undistinguish-
able mobile sensors (In the sequel we will use the term of petrel, in relation with
our motivation example, instead of sensor.)

The network configuration considers the memory content of the base station,
a, and the petrels’ state, pi. We denote the network configuration by (a, p1, ..., pn)
where pi is the state of the ith petrel. There are two kinds of events:

• the meeting of petrel number i with the base station. After that meeting, pi is
changed, according to the protocol, to p′i, and a to a′, depending on (a, pi) (Note
that the transition is independent of i, because petrels are not distinguishable).
• themeeting of petrel number iwithpetrel number j. After thatmeeting,pi and pj

are changed to p′i and p′j, depending on (pi, pj) (here again, independently of (i, j)).

In the Sensors-To-base-station-Only model (TB for short), only the first kind
of event is possible. i.e. the sensors do not interact with each other.
In the petrels-To-Base-station-and-To-Petrels model (TBTP for short), both
events are possible: sensors do interact with each other. For deterministic proto-
cols, the last model can be divided into two sub-models, the symmetric (STBTP),
resp. the asymmetric one (ATBTP): When two petrels meet, if their state is the
same, they have to, resp. they don’t have to, change to the SAME state. A prob-
abilistic algorithm can use coin flips and perform an election between meeting
petrels to simulate the Asymmetric TBTP model.

2.2 The Problem

The number of petrels is unknown from the base station, which aims at counting
them.

We want that, eventually, the PetrelNumber variable in the base station is
and remains equal to n.

In probabilistic algorithms (we consider non-oblivious daemons, that is, they
can decide what is the next event depending on previous results of coin flips),
we require that this property is obtained with probability 1.

More generally, our algorithms must be self-stabilizing (see [7]), i.e., whatever
the initial configuration (but we initialize the base station), the base station
must give the exact number of petrels in the network (with probability 1, for
probabilistic algorithms) within a finite number of steps. This requirement does
not allow us to make any assumption on the initial configuration (except for the
base station), or to reset the value of the sensors.
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2.3 Executions, Daemons, Fairness, Rounds

Definition 1 (Execution). An execution is an infinite sequence (Cj)j∈N

(where N denotes the set of non-negative integers) of configurations and an in-
finite sequence (ej)j∈N\{0} of events such that Cj+1 is obtained after ej occurs
on Cj.

The daemon is the imaginary adversary that chooses the initial configuration
and that schedules the possible actions at every step. To solve the problem, the
daemon must be fair:

Definition 2 (Fairness). An execution is fair if every petrel communicates
with the base station infinitely often, and, in the TBTP model, if every two
petrels communicate with each other infinitely often. (Note that this fairness is
weaker than the one used by Angluin et al., which says that a configuration that
is reachable infinitely often is eventually reached)

•A daemon for a deterministic protocol is fair if every execution is fair.
•A daemon for a probabilistic protocol is strongly fair if every execution is fair
and it is weakly fair if the measure of the set of the fair executions is one. The
distinction between weak and strong fairness is of little importance in this paper.

Definition 3 (k-fairness). Let k be an integer. An execution is k-fair, if every
petrel communicates with the base station at least once in every k consecutive
events, and, in the TBTP model, if every two petrels communicate with each
other in every k consecutive events.

A daemon is k-fair if the execution is k-fair.
In this paper when the daemon is k-fair, the value of k is not assumed to be

known by the base station.

Throughout the paper, the daemon is assumed to be fair, unless it is explicitly
assumed to be k-fair.

Definition 4 (Oblivious). For probabilistic algorithms, a daemon is non-
oblivious if the decision of what is the next event can depend on the result of
previous coin flips. An oblivious daemon could be able to decide at the start of
the execution what the whole sequence of events will be.

Definition 5 (Rounds). A round is a sequence of consecutive events, during
which every petrel meets the base station at least once, and in the TBTP model,
every two petrels meet each other.

The first round is the shortest round starting from initial configuration, the
second round is the shortest round starting from the end of the first round, and
so on.

2.4 Initial Conditions

Throughout the paper, we assume that the petrels are arbitrarily initialized,
but that an initial value can be chosen for the base station. This assumption is



Self-stabilizing Counting in Mobile Sensor Networks with a Base Station 67

justified if one thinks of mobile sensors networks as the petrel population and
the base station. The existence of a base station and the possibility to initialize
it are the main differences between our model and classical sensor networks.

Note that if both the petrels and the base station can be initialized , then
the problem is obvious, with only one bit per petrel sensor. Note also that if one
can initialize neither the petrels nor the base station, then there is no protocol
to count the petrels (unless the daemon is k-fair, see remark 1 in Sec. 3).

Indeed, assume on the contrary that there is such a protocol. Let the daemon
repeat the following: it waits till every petrel has met the base station and Petrel
Number = n (this will eventually happen), then it holds back one particular pe-
trel. When PetrelNumber is n − 1 (this will eventually happen since the config-
uration is the same as if there were n petrels), the daemon frees the last petrel.

With such a daemon, PetrelNumber will never stabilize so the protocol fails.
If the protocol is deterministic, the daemon is fair, if the protocol is probabilistic,
it is weakly fair.

It can also be proved that there does not exist any algorithm under a strongly-
fair daemon PetrelNumber will stabilize with probability 0 although the daemon
is strongly-fair.

2.5 Memories

We will not make limitation on the memory size of the base station. (Note: The
codes will often use “infinite” arrays (indexed by integers), but only a finite
number of register will contain non-0 values. Of course, in practice, arrays will
have to be replaced by data structures to keep only the non-0 registers.)

On the other hand, we will make more or less strong assumptions on the
memory size of the petrel sensors:

Definition 6 (Size of the petrel sensor memories). The memory is infi-
nite if it is unlimited. In particular, it can carry integers as large as needed,
which can drift, that is, which can tend to infinity as times passes by. (this has
a practical application only if the drift is slow and there are enough bits in the
sensors to carry “large”integers). The memory is bounded if an upper-bound
P on the number of petrels is known, and if the number of different possible
states of the memory is α(P ) for some function α. The protocol may use the
knowledge of P . The memory is finite if the number of different possible states
of the memory is a constant α.

3 The Petrels-To-Base-Station-Only Model (TB)

In this section, the sensors can only communicate with the base station. People
acquainted with classical sensor networks may question the point of such a model.
There are two justifications for looking for solutions in that model :

1. Sensors are meant to be small. To implement that model, sensors only need to
carry a device so that the base station can read and write in their memories.
All the code can be implemented in the base station.
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2. The decision to run such algorithms can be made by just changing the code
in the base station. This is doable even if the sensors are already away. For
example, if an observation made of the petrels, given you the idea to count
something new and not forecast, you can use a TB algorithm.

3.1 With Infinite Memory

In this subsection, we assume that the petrel sensors (and the base station)
have an infinite memory. In this case, there exist self-stabilizing deterministic
algorithms to solve the problem.

The way the first algorithm works is simple. The drift of integers is fast, and
convergence is obtained after two rounds. The second one is a little tricky. The
drift is slow, but it converges in about P (i.e. the number of petrels) rounds.

variables

[each petrel] number :integer

[base station] R : array[integers] of booleans, initialized at 0

[base station] PetrelNumber to maintain as cardinal{i | R[i]=1}

[base station] LargestNumber : integer initialized at 0

When a petrel p approaches the base station :

if R[number_p] = 1 then R[number_p] <- 0

number_p <- LargestNumber

R[LargestNumber] <- 1

LargestNumber ++

Algorithm 1. For Unbounded Memory

3.2 With Finite or Bounded Memory

Under a fair daemon
In this paragraph we show that if the daemon only respects fairness, there neither
exists a deterministic algorithm nor a probabilistic algorithm making it possible
for the base station to count the number of sensors present.

Proposition 1. The daemon is supposed to be fair. If the sensors have a finite
memory then, there is no deterministic algorithm solving the counting problem.

Proof. The idea of this proof is to exhibit two executions resulting from two
different initial configurations that will appear to be identical for the base sta-
tion.The proof is analog to the one of proposition 10, but details are in the full
version [5].

Then, it becomes natural to try to build a probabilistic algorithm in order to
break the symmetry. Indeed, the daemon has no control on the random, thus we
can hope to beat him. Unfortunately, even in this case, there is no solution:

Proposition 2. Suppose that the daemon is strongly fair and non-oblivious. If
the sensors have a finite memory, then there does not exist any probabilistic
algorithm solving the counting problem
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variables

[each petrel] number :integer

[base station] R : array[integers] of booleans, initialized at 0

[base station] PetrelNumber to maintain as sum{R[i]}

When a petrel p approaches the base station :

if R[number_p] > 1 then R[number_p] --

number_p ++

R[number_p] ++

Algorithm 2. For Unbounded Memory

Proof. Let us consider a daemon D with n sensors (p1, . . . , pn) initialized in
I = (x1, x2, . . . , xn).
The sensors’ memory being finite, for every petrel p, in particular for the last
one, there is a state s and a positive real number η such as :

P{p goes infinitely often in s} ≥ η

In order to ”confuse” the base station, let the deamon D′ proceeds as follow
with n + 1 sensors (p1, . . . , pn, pn+1): it puts them in the initial configuration
I = (x1, x2, . . . , xn, s).

There is an integer k1 such that with D, with probability at least (1 − ε), if
pn gets in state s infinitely often, then it gets once in state s during the k1 next
events and every sensor has met the base station at least once. The daemon D′

holds back the sensor pn+1 and for at most k1 events, lets evolve the other n’s as
would do daemon D until pn gets in state s. If k1 events have been done without
pn getting in state s then D′ has lost (note that the daemon may lose either
because s does not appear infintely often with D or because the first occurrence
of s arrives too late with D). Otherwise D′ frees pn+1 and holds pn.

The daemon D′ resumes simulating D with pn+1 instead of pn and as in the
first step, but with k1 replaced by k2 such that the probability is now at least
(1− ε

2 ) instead of (1− ε). The daemon keeps on with that technique, with kl for
the lth step so that the probability is at least (1 − ε

2l−1 ).

Therefore, D′ wins with probability η
l∏

i=0

(1 − ε

2i
) > 0.

In this case, from the point of view of the base station, the execution is
indistinguishable from D, so PetrelNumber is eventually equal to n which is
wrong. So, the base station has a non null probability to lose.

Note that the proofs work with no assumption on n (the number of petrels)
which may be equal to 1. Thus the impossibility is proved both for finite and
bounded memories.

3.3 A k-Fair Daemon

Under the assumption of fairness, there exists neither a deterministic algorithm
nor a probabilistic algorithm. Thus, we have to reduce the capacities of the
daemon. If we assume the daemon is k-fair, we will get both deterministic and
probabilistic solutions.
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Deterministic algorithm
The algorithm 3 is given below.

variables

[each petrel] bit : boolean

[base station] i, cpt, PetrelNumber : integers

[base station] bit_A : boolean, initialized at 0

The base station does :

For i from 0 to infinity do

cpt <- 0

do 2^i times :

wait till a petrel p approaches

if bit_p = bit_A then cpt ++

bit_p <- not(bit_p)

PetrelNumber <- cpt

bit_A <- not(bit_A)

Algorithm 3. Deterministic, k-fair daemon

The convergence time is less than 8k. The reader may find details in the full
version [5]

Remark 1. This algorithm works even if the base station variables are not ini-
tialized but a large initial value of i induces a large convergence time.

This deterministic algorithm requires an infinite memory of the base station, due
to the drift of 2i (and of i). This can be avoided by the following probabilistic
algorithm.

Probabilistic algorithm, k-fair daemon or oblivious daemon
The algorithm is as follows:

variables

[each petrel] number, color : integer

[base station] R : array[integers] of [0...2]

/* 0 stands for empty, others for colors */

initialized at empty

[base station] PetrelNumber to maintain as card{j | R[j] is non empty}

When a petrel p approaches the base station :

h <- the minimum integer such that R[h] = empty

if R[number_p] <> color_P /* including if one of them is 0 */

then number_p <- h

else if h<number_p

then R[number_p]<-0

number_p<-h

color_p <- random{1..2}

R[number_p] <- color_p

Algorithm 4. Probabilistic, k-fair daemon
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The proof of convergence is in the full version [5] We obtain a worse time
of convergence (possibly exponential) than with the deterministic algorithm but
we observe that the base station requires a finite memory.

4 The Petrels-To-Base-Station-And-To-Petrels Model
(TBTP)

We recall that P is an upper bound of the number of petrels and α(P ) is the
number of the different possible states of the memory. In a first section we
introduce deterministic algorithms solving the counting problem. Then, in a
second part, we get interested in the lowest value α(P ) may get.

4.1 Bounded Memory, Algorithms

Proposition 3. There are deterministic solutions, with α(P ) ≥ P , to the count-
ing problem.

We are going to exhibit different algorithms. The two first ones concern the
ATBTP model and the third one the STBTP model. It is interesting to note
that we need more memory in the STBTP model. The question remains open
to know what is the minimal memory required in the symmetric case, and if
it really needs to be larger than in the asymmetric case. Explanations of the
algorithms are in the full version [5]

The ATBTP Model. We propose two algorithms :

– The first one with α(P ) = P + 1, converges in three rounds.
– The second one with α(P ) = P , converges in P + 1 rounds.

variables

[each petrel] number :integer in [0..P]

[base station] T : array [1..P] of boolean,

initialized at 0 everywhere

[base station] PetrelNumber to maintain as cardinal{i | T[i]=1 }

When a petrel p approaches the base station :

if number_p = 0

then number_p <- an integer y such that T[y]=0

T[number_p] <- 1

else T[number_p] <- 1

When two petrels meet :

If their numbers are the same

then the number of one petrel becomes 0

Algorithm 5. Deterministic asymmetric algorithm with α(P ) = P + 1
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variables

[each petrel] number :integer in [1..P]

[base station] T : array [1..P] of boolean,

initialized at 0 everywhere

[base station] PetrelNumber to maintain as cardinal{i | T[i]=1 }

When a petrel p approaches the base station :

T[number_p] <- 1

When two petrels meet :

If their numbers are the same integer x

then the number of one petrel becomes x+1 mod P

Algorithm 6. Deterministic asymmetric algorithm with α(P ) = P

The STBTP Model. The following symmetric algorithm with α(P ) = 4P
converges in three rounds:

variables

[each petrel] number :integer in [1..2P]

[each petrel] Intention : (Keep,GiveUp)

[base station] T array [1..2P] of (Free,Taken,GivenUp),

initialized at Free everywhere

[base station] PetrelNumber to maintain as cardinal{i | T[i]=Taken }

When a petrel p approaches the base station :

Depending on Intention_p :

Keep : T[number_p] <- Taken /* even if T[number_p] was GivenUp */

GiveUp : T[number_p] <- GivenUp

number_p <- a y such that T[y] = Free

T[number_p] <- Taken

Intention_p <- Keep

When two petrels meet :

If their numbers are the same integer x

and their both intentions are Keep

Then their both intentions change to GiveUp

Algorithm 7. Deterministic symmetric algorithm with α(P ) = 4P

4.2 Bounded Memory, Minimum Value for α(P )

We prove in this section there does not exist asymmetric algorithms with α(P ) ≤
P − 1.

The non-existence of algorithms with α(P ) ≤ P − 2 is much easier to prove
than the non-existence of algorithms with α(P ) = P − 1. So let us start with
the easier case:

Proposition 4. There is no deterministic solution, with α(P ) ≤ P − 2, to the
counting problem.

Proof. Assume that there is a solution. Consider an execution E with P − 1
sensors (p1, . . . , pP−1) initialized in the states (x1, . . . , xP−1). There is a state y
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and two petrels p and p′ such that infinitely often, p and p′ will be simultaneously
in state y. Now, as a daemon, perform the following execution E′ with P sensors:

Initialize them in (x1, . . . , xP−1, y), then repeat the following:

• Hold back petrel pP and proceed as in E until every petrel but pP has met
each other petrel but pP , and p and p′ are in state y.
• Free pP , hold back p, proceed as in E with pP instead of p until pP has met
every other petrel (but p), and pP and p′ are again in state y.
• Free p, hold back p′, proceed as in E with pP instead of p′ until pP has met p,
and pP and p are again in state y.

The daemon is fair, and from the point of view of the base station, E and E′

are identical, thus in E′, PetrelNumber will stabilize to P − 1, as in E, which
is a wrong result. This is a contradiction.

We are now going to look to the case where α(P ) = P − 1.

Proposition 5. There is no deterministic solution with, α(P ) = P − 1, to the
counting problem.

Proof. Assume on the opposite that there is such a solution.
Consider an execution E with P − 1 sensors (p1, . . . , pP−1) initialized in the

states (x1, . . . , xP−1).
If there is a state y and two petrels p and p′ such that infinitely often, p and

p′ are simultaneously in state y, then one can conclude as in the previous proof,
so we can assume from now on it is not the case.

This implies that eventually, say from instant T , all petrels have distinct
states.

This means first, that, in E, from T , the base station never changes the state
of a petrel it meets. Second, the rule when two petrels with different states meet
must be that they keep their current state (or exchange them, which is of little
effect). Thus the protocol rules for meeting petrels are such that the states can
change only if the meeting petrels are in the SAME state.

Lemma 1. There is a state y and a finite piece of execution EKL with P petrels,
starting with two petrels in state y and one petrel in each other state, finishing
in the same configuration, during which petrels do not meet the base station, and
whose first event is the meeting of the two petrels in state y.

The end of the proof is analog to the proof of proposition 10, but the reader may
find the entire proof in the full version [5]

It remains now to prove the key lemma (the detailled proof is in the full version
[5]):

Let us introduce two kinds of vectors, the first one for representing the states
of all the sensors at a given time, the second one to represent the effect of the
meeting of petrels.

Definition 7. The vector of configuration VC of configuration C is the vector
in N

P−1 whose ith coordinate is the number of sensors in the ith state si.
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For each state x, let us define y(x) and z(x) to be the states that two petrels’
sensors get when they meet while both in state x.

Definition 8. The vector of variation Vx of state x is 1Iy(x) + 1Iz(x) − 21Ix.

The ith coordinate of Vx represents the variation of the number of sensors in state
si when two petrels in state x meet, and indeed, if, from a configuration repre-
sented by V , two petrels in state x meet, the new configuration is represented
by V + Vx.

We claim first that there is a non-null linear combination of the vectors of
variations, with non-negative integer coefficients, which is null.

To prove the claim, start with P petrels and repeat making two petrels in the
same state meet each other (you will always find two such petrels). The vectors
of configuration you will get will stay in Y = {(qj)1≤j<P |qj ∈ N,

∑
j qj = P}

which is finite. So if you let long enough petrels with same state meet, you will
encounter twice the same configuration. The set of meetings between the two
appearances of that configuration gives you the wanted combination.

More formally: define (Vy,i)0≤i ∈ Y N and (Vw,i)1≤i ∈ ZN by induction as
follows:
Vy,0 = (2, 1, 1, 1, . . . , 1).

Once Vy,i is defined, find a coefficient x of Vy,i which is at least 2 (there is
such a coefficient), then define Vy,i+1 = Vy,i + Vx and Vw,i+1 = Vx. It is easy to
check that Vy,i+1 will be in Y .

Since Y is finite, there are two integers i1 and i2, with 0 ≤ i1 < i2 ≤ card(Y )
such that Vy,i1 = Vy,i2 . Then

∑
i1<i≤i2

Vw,i fulfills the requirement since Vy,i2 =
Vy,i1 +

∑
i1<i≤i2

Vw,i.
That first claim is proved.Let

∑
x βxVx be such a combination (So, ∀x, βx ∈ N,

∃x, βx > 0, and
∑

x βxVx = (0, 0, . . . , 0)). For the sake of simplicity, let us assume
that our combination minimizes

∑
x βx.

Let H be the multi set of vectors of variations where each Vx appears βx

times.

Our second claim is that there is an index y and an ordering (h1, h2, ..., hcard(H))
of the elements in H , such that h1 = Vy, and for every i ∈ [1, card(H)], the δ(i)th

coordinate of Zi = (1, 1, . . . , 1) + 1Iy +
∑

j<i hj is 2 or more, and no coordinate of
Zi is negative (where delta(i) is the index such that h(i) = Vδ(i)).

Proof of the second claim
Let y be an index such that βy > 0.

We build the hi by induction on i : Let h1 = Vy

Assume the hj ’s have been built up to j = i − 1, let us build hi, for some
i ∈ [2, card(H)]:

Let Zi = (1, 1, . . . , 1)+1Iy +
∑

j<i hj . Since it is in Y , there is an index x such
that Zi|x ≥ 2 (where M |v denotes the vth coordinate of M). We may assume
that x �= y or (x = y and Zi|x ≥ 3) (indeed, otherwise, Zi = (1, 1, . . . , 1) + 1Iy,
which implies that

∑
j<i hj = 0, which contradicts the minimality of

∑
x βx in

our combination).
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Thus
∑

j<i hj |x > 0, but since
∑

h∈H h|x = 0, it means that there is an ele-
ment in H , not taken yet, whose xth coordinate is negative. This element is Vx

for it is the only vector of variations whose xth may be negative. Let hi = Vx.
The built sequence (h1, h2, ..., hcard(H)) satisfies the requirement, so the second
claim is proved.

The EKL execution is the following:
Start with P petrels, two of them in state y, and one of them in each other state.
For i from 1 to card(H), make two petrels in state xi meet, where xi is the state
such that Vxi = hi (there are two such petrels thanks to the propriety on Zi is
the second claim) �	

Note on the key lemma:
The upper-bound on the length of EKL given by the proof is card{{(qj)1≤j<P |qj

∈ N,
∑

j qj = P} which is exponential in P . One can wonder if it has to be large,
or if there is such an execution EKL of size polynomial in P . The answer is that
it might be indeed exponential. Consider the set of states [0, P − 1]. Take y = 0
(that is, start, with two petrels in state 0, and one in each state i ∈ [1, P − 1]),
and let the protocol be that when two petrels in state i meet, one of them gets
in state 0, the other one gets in state (i + 1) mod P .

5 Resume

The TB model

model \ memory Finite Bounded Bounded,k-
fair daemon

Unbounded

deterministic impossible impossible Algorithm 3 Algorithm 1-2

convergence time 4k events depends on which al-
gorithm

probabilistic impossible impossible Algorithm 4 unneeded

convergence time exponential in k

The TBTP model

model \ memory Finite Bounded,α(P ) <
P

Bounded,α(P ) ≥
P

symmetric determinis-
tic

impossible impossible Algorithm 7

convergence time α(P ) = 4P , 3
rounds

asymmetric determin-
istic

impossible impossible Algorithm 5 or 6

convergence time α(P ) = P + 1, 3
rounds α(P ) = P ,
P+1 rounds
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6 Final Remarks

In this article, we have studied the problem of self-stabilizing counting in different
models of mobile sensor networks. We designed different algorithms depending
on the communication model and the class of daemon. We also gave some proof
of impossibility. In the cases where no deterministic (symmetric) solutions exist,
we proposed probabilistic solutions. The knowledge of the size of a population
is at the basis of the solutions of more complex problems, in particular when
different types of population are present.
An interesting perspective could be to model the movement of the sensors, by
random processes for example, in order to improve our algorithms and to get
better bounds for the convergence time.
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